diff --git a/egs/ksponspeech/ASR/README.md b/egs/ksponspeech/ASR/README.md new file mode 100644 index 000000000..2b02b9cca --- /dev/null +++ b/egs/ksponspeech/ASR/README.md @@ -0,0 +1,32 @@ +# Introduction +KsponSpeech is a large-scale spontaneous speech corpus of Korean. +This corpus contains 969 hours of open-domain dialog utterances, +spoken by about 2,000 native Korean speakers in a clean environment. + +All data were constructed by recording the dialogue of two people +freely conversing on a variety of topics and manually transcribing the utterances. + +The transcription provides a dual transcription consisting of orthography and pronunciation, +and disfluency tags for spontaneity of speech, such as filler words, repeated words, and word fragments. + +The original audio data has a pcm extension. +During preprocessing, it is converted into a file in the flac extension and saved anew. + +KsponSpeech is publicly available on an open data hub site of the Korea government. +The dataset must be downloaded manually. + +For more details, please visit: + + - Dataset: https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=123 + - Paper: https://www.mdpi.com/2076-3417/10/19/6936 + +[./RESULTS.md](./RESULTS.md) contains the latest results. + +# Transducers +There are various folders containing the name `transducer` in this folder. The following table lists the differences among them. + +| | Encoder | Decoder | Comment | +| ---------------------------------------- | -------------------- | ------------------ | ------------------------------------------------- | +| `pruned_transducer_stateless7_streaming` | Streaming Zipformer | Embedding + Conv1d | streaming version of pruned_transducer_stateless7 | + +The decoder in `transducer_stateless` is modified from the paper [Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419/). We place an additional Conv1d layer right after the input embedding layer. \ No newline at end of file diff --git a/egs/ksponspeech/ASR/RESULTS.md b/egs/ksponspeech/ASR/RESULTS.md new file mode 100644 index 000000000..1afcd19a9 --- /dev/null +++ b/egs/ksponspeech/ASR/RESULTS.md @@ -0,0 +1,68 @@ +## Results + +### Streaming Zipformer-Transducer (Pruned Stateless Transducer + Streaming Zipformer) + +#### [pruned_transducer_stateless7_streaming](./pruned_transducer_stateless7_streaming) + +Number of model parameters: 79,022,891, i.e., 79.02 M + +##### Training on KsponSpeech (with MUSAN) + +The CERs are: + +| decoding method | chunk size | eval_clean | eval_other | comment | decoding mode | +|----------------------|------------|------------|------------|---------------------|----------------------| +| greedy search | 320ms | 10.21 | 11.07 | --epoch 30 --avg 9 | simulated streaming | +| greedy search | 320ms | 10.22 | 11.07 | --epoch 30 --avg 9 | chunk-wise | +| fast beam search | 320ms | 10.21 | 11.04 | --epoch 30 --avg 9 | simulated streaming | +| fast beam search | 320ms | 10.25 | 11.08 | --epoch 30 --avg 9 | chunk-wise | +| modified beam search | 320ms | 10.13 | 10.88 | --epoch 30 --avg 9 | simulated streaming | +| modified beam search | 320ms | 10.1 | 10.93 | --epoch 30 --avg 9 | chunk-size | +| greedy search | 640ms | 9.94 | 10.82 | --epoch 30 --avg 9 | simulated streaming | +| greedy search | 640ms | 10.04 | 10.85 | --epoch 30 --avg 9 | chunk-wise | +| fast beam search | 640ms | 10.01 | 10.81 | --epoch 30 --avg 9 | simulated streaming | +| fast beam search | 640ms | 10.04 | 10.7 | --epoch 30 --avg 9 | chunk-wise | +| modified beam search | 640ms | 9.91 | 10.72 | --epoch 30 --avg 9 | simulated streaming | +| modified beam search | 640ms | 9.92 | 10.72 | --epoch 30 --avg 9 | chunk-size | + +Note: `simulated streaming` indicates feeding full utterance during decoding using `decode.py`, +while `chunk-size` indicates feeding certain number of frames at each time using `streaming_decode.py`. + +The training command is: + +```bash +./pruned_transducer_stateless7_streaming/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --use-fp16 1 \ + --exp-dir pruned_transducer_stateless7_streaming/exp \ + --max-duration 750 \ + --enable-musan True +``` + +The simulated streaming decoding command (e.g., chunk-size=320ms) is: +```bash +for m in greedy_search fast_beam_search modified_beam_search; do + ./pruned_transducer_stateless7_streaming/decode.py \ + --epoch 30 \ + --avg 9 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --max-duration 600 \ + --decode-chunk-len 32 \ + --decoding-method $m +done +``` + +The streaming chunk-size decoding command (e.g., chunk-size=320ms) is: +```bash +for m in greedy_search modified_beam_search fast_beam_search; do + ./pruned_transducer_stateless7_streaming/streaming_decode.py \ + --epoch 30 \ + --avg 9 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --decoding-method $m \ + --decode-chunk-len 32 \ + --num-decode-streams 2000 +done +``` \ No newline at end of file diff --git a/egs/ksponspeech/ASR/local/__init__.py b/egs/ksponspeech/ASR/local/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/egs/ksponspeech/ASR/local/compute_fbank_ksponspeech.py b/egs/ksponspeech/ASR/local/compute_fbank_ksponspeech.py new file mode 100755 index 000000000..7c3cb7931 --- /dev/null +++ b/egs/ksponspeech/ASR/local/compute_fbank_ksponspeech.py @@ -0,0 +1,183 @@ +#!/usr/bin/env python3 +# Copyright 2024 (Author: SeungHyun Lee, Contacts: whsqkaak@naver.com) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import logging +import os +from pathlib import Path +from typing import Optional + +import sentencepiece as spm +import torch +from filter_cuts import filter_cuts +from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter +from lhotse.recipes.utils import read_manifests_if_cached + +from icefall.utils import get_executor, str2bool + +# Torch's multithreaded behavior needs to be disabled or +# it wastes a lot of CPU and slow things down. +# Do this outside of main() in case it needs to take effect +# even when we are not invoking the main (e.g. when spawning subprocesses). +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + + +def get_args(): + parser = argparse.ArgumentParser() + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to the bpe.model. If not None, we will remove short and + long utterances before extracting features""", + ) + + parser.add_argument( + "--dataset", + type=str, + help="""Dataset parts to compute fbank. If None, we will use all""", + ) + + parser.add_argument( + "--perturb-speed", + type=str2bool, + default=True, + help="""Perturb speed with factor 0.9 and 1.1 on train subset.""", + ) + parser.add_argument( + "--data-dir", + type=str, + default='data', + help="""Path of data directory""", + ) + + return parser.parse_args() + + +def compute_fbank_speechtools( + bpe_model: Optional[str] = None, + dataset: Optional[str] = None, + perturb_speed: Optional[bool] = False, + data_dir: Optional[str] = 'data', +): + src_dir = Path(data_dir) / "manifests" + output_dir = Path(data_dir ) / "fbank" + num_jobs = min(4, os.cpu_count()) + num_mel_bins = 80 + + if bpe_model: + logging.info(f"Loading {bpe_model}") + sp = spm.SentencePieceProcessor() + sp.load(bpe_model) + + if dataset is None: + dataset_parts = ( + "train", + "dev", + "eval_clean", + "eval_other", + ) + else: + dataset_parts = dataset.split(" ", -1) + + prefix = "ksponspeech" + suffix = "jsonl.gz" + logging.info(f"Read manifests...") + manifests = read_manifests_if_cached( + dataset_parts=dataset_parts, + output_dir=src_dir, + prefix=prefix, + suffix=suffix, + ) + assert manifests is not None + + assert len(manifests) == len(dataset_parts), ( + len(manifests), + len(dataset_parts), + list(manifests.keys()), + dataset_parts, + ) + + if torch.cuda.is_available(): + # Use cuda for fbank compute + device = 'cuda' + else: + device = 'cpu' + logging.info(f"Device: {device}") + + extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins, device=device)) + + with get_executor() as ex: # Initialize the executor only once. + logging.info(f"Executor: {ex}") + for partition, m in manifests.items(): + cuts_filename = f"{prefix}_cuts_{partition}.{suffix}" + if (output_dir / cuts_filename).is_file(): + logging.info(f"{partition} already exists - skipping.") + continue + logging.info(f"Processing {partition}") + cut_set = CutSet.from_manifests( + recordings=m["recordings"], + supervisions=m["supervisions"], + ) + + # Filter duration + cut_set = cut_set.filter(lambda x: x.duration > 1 and x.sampling_rate == 16000) + + if "train" in partition: + if bpe_model: + cut_set = filter_cuts(cut_set, sp) + if perturb_speed: + logging.info(f"Doing speed perturb") + cut_set = ( + cut_set + + cut_set.perturb_speed(0.9) + + cut_set.perturb_speed(1.1) + ) + logging.info(f"Compute & Store features...") + if device == 'cuda': + cut_set = cut_set.compute_and_store_features_batch( + extractor=extractor, + storage_path=f"{output_dir}/{prefix}_feats_{partition}", + num_workers=4, + storage_type=LilcomChunkyWriter, + ) + else: + cut_set = cut_set.compute_and_store_features( + extractor=extractor, + storage_path=f"{output_dir}/{prefix}_feats_{partition}", + # when an executor is specified, make more partitions + num_jobs=num_jobs if ex is None else 80, + executor=ex, + storage_type=LilcomChunkyWriter, + ) + cut_set.to_file(output_dir / cuts_filename) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + args = get_args() + logging.info(vars(args)) + compute_fbank_speechtools( + bpe_model=args.bpe_model, + dataset=args.dataset, + perturb_speed=args.perturb_speed, + data_dir=args.data_dir, + ) diff --git a/egs/ksponspeech/ASR/local/compute_fbank_musan.py b/egs/ksponspeech/ASR/local/compute_fbank_musan.py new file mode 100755 index 000000000..7afe8e00f --- /dev/null +++ b/egs/ksponspeech/ASR/local/compute_fbank_musan.py @@ -0,0 +1,158 @@ +#!/usr/bin/env python3 +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This file computes fbank features of the musan dataset. +It looks for manifests in the directory `src_dir` (default is data/manifests). + +The generated fbank features are saved in data/fbank. +""" +import argparse +import logging +import os +from pathlib import Path + +import torch +from lhotse import ( + CutSet, + Fbank, + FbankConfig, + LilcomChunkyWriter, + MonoCut, + WhisperFbank, + WhisperFbankConfig, + combine, +) +from lhotse.recipes.utils import read_manifests_if_cached + +from icefall.utils import get_executor, str2bool + +# Torch's multithreaded behavior needs to be disabled or +# it wastes a lot of CPU and slow things down. +# Do this outside of main() in case it needs to take effect +# even when we are not invoking the main (e.g. when spawning subprocesses). +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + + +def is_cut_long(c: MonoCut) -> bool: + return c.duration > 5 + + +def compute_fbank_musan( + src_dir: str = "data/manifests", + num_mel_bins: int = 80, + whisper_fbank: bool = False, + output_dir: str = "data/fbank" +): + src_dir = Path(src_dir) + output_dir = Path(output_dir) + num_jobs = min(15, os.cpu_count()) + + dataset_parts = ( + "music", + "speech", + "noise", + ) + prefix = "musan" + suffix = "jsonl.gz" + manifests = read_manifests_if_cached( + dataset_parts=dataset_parts, + output_dir=src_dir, + prefix=prefix, + suffix=suffix, + ) + assert manifests is not None + + assert len(manifests) == len(dataset_parts), ( + len(manifests), + len(dataset_parts), + list(manifests.keys()), + dataset_parts, + ) + + musan_cuts_path = output_dir / "musan_cuts.jsonl.gz" + + if musan_cuts_path.is_file(): + logging.info(f"{musan_cuts_path} already exists - skipping") + return + + logging.info("Extracting features for Musan") + + if whisper_fbank: + extractor = WhisperFbank( + WhisperFbankConfig(num_filters=num_mel_bins, device="cuda") + ) + else: + extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) + + with get_executor() as ex: # Initialize the executor only once. + # create chunks of Musan with duration 5 - 10 seconds + musan_cuts = ( + CutSet.from_manifests( + recordings=combine(part["recordings"] for part in manifests.values()) + ) + .cut_into_windows(10.0) + .filter(is_cut_long) + .compute_and_store_features( + extractor=extractor, + storage_path=f"{output_dir}/musan_feats", + num_jobs=num_jobs if ex is None else 80, + executor=ex, + storage_type=LilcomChunkyWriter, + ) + ) + musan_cuts.to_file(musan_cuts_path) + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--src-dir", + type=str, + default="data/manifests", + help="Source manifests directory.", + ) + parser.add_argument( + "--num-mel-bins", + type=int, + default=80, + help="""The number of mel bins for Fbank""", + ) + parser.add_argument( + "--whisper-fbank", + type=str2bool, + default=False, + help="Use WhisperFbank instead of Fbank. Default: False.", + ) + parser.add_argument( + "--output-dir", + type=str, + default="data/fbank", + help="Output directory. Default: data/fbank.", + ) + return parser.parse_args() + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + args = get_args() + compute_fbank_musan( + src_dir=args.src_dir, + num_mel_bins=args.num_mel_bins, + whisper_fbank=args.whisper_fbank, + output_dir=args.output_dir, + ) diff --git a/egs/ksponspeech/ASR/local/filter_cuts.py b/egs/ksponspeech/ASR/local/filter_cuts.py new file mode 100644 index 000000000..f081da5df --- /dev/null +++ b/egs/ksponspeech/ASR/local/filter_cuts.py @@ -0,0 +1,157 @@ +#!/usr/bin/env python3 + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script removes short and long utterances from a cutset. + +Caution: + You may need to tune the thresholds for your own dataset. + +Usage example: + + python3 ./local/filter_cuts.py \ + --bpe-model data/lang_bpe_5000/bpe.model \ + --in-cuts data/fbank/speechtools_cuts_test.jsonl.gz \ + --out-cuts data/fbank-filtered/speechtools_cuts_test.jsonl.gz +""" + +import argparse +import logging +from pathlib import Path + +import sentencepiece as spm +from lhotse import CutSet, load_manifest_lazy +from lhotse.cut import Cut + + +def get_args(): + parser = argparse.ArgumentParser() + + parser.add_argument( + "--bpe-model", + type=Path, + help="Path to the bpe.model", + ) + + parser.add_argument( + "--in-cuts", + type=Path, + help="Path to the input cutset", + ) + + parser.add_argument( + "--out-cuts", + type=Path, + help="Path to the output cutset", + ) + + return parser.parse_args() + + +def filter_cuts(cut_set: CutSet, sp: spm.SentencePieceProcessor): + total = 0 # number of total utterances before removal + removed = 0 # number of removed utterances + + def remove_short_and_long_utterances(c: Cut): + """Return False to exclude the input cut""" + nonlocal removed, total + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ./display_manifest_statistics.py + # + # You should use ./display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + total += 1 + if c.duration < 1.0 or c.duration > 20.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + removed += 1 + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./pruned_transducer_stateless2/conformer.py, the + # conv module uses the following expression + # for subsampling + if c.num_frames is None: + num_frames = c.duration * 100 # approximate + else: + num_frames = c.num_frames + + T = ((num_frames - 1) // 2 - 1) // 2 + # Note: for ./lstm_transducer_stateless/lstm.py, the formula is + # T = ((num_frames - 3) // 2 - 1) // 2 + + # Note: for ./pruned_transducer_stateless7/zipformer.py, the formula is + # T = ((num_frames - 7) // 2 + 1) // 2 + + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + removed += 1 + return False + + return True + + # We use to_eager() here so that we can print out the value of total + # and removed below. + ans = cut_set.filter(remove_short_and_long_utterances).to_eager() + ratio = removed / total * 100 + logging.info( + f"Removed {removed} cuts from {total} cuts. {ratio:.3f}% data is removed." + ) + return ans + + +def main(): + args = get_args() + logging.info(vars(args)) + + if args.out_cuts.is_file(): + logging.info(f"{args.out_cuts} already exists - skipping") + return + + assert args.in_cuts.is_file(), f"{args.in_cuts} does not exist" + assert args.bpe_model.is_file(), f"{args.bpe_model} does not exist" + + sp = spm.SentencePieceProcessor() + sp.load(str(args.bpe_model)) + + cut_set = load_manifest_lazy(args.in_cuts) + assert isinstance(cut_set, CutSet) + + cut_set = filter_cuts(cut_set, sp) + logging.info(f"Saving to {args.out_cuts}") + args.out_cuts.parent.mkdir(parents=True, exist_ok=True) + cut_set.to_file(args.out_cuts) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + + main() diff --git a/egs/ksponspeech/ASR/local/train_bpe_model.py b/egs/ksponspeech/ASR/local/train_bpe_model.py new file mode 100755 index 000000000..5979d5b98 --- /dev/null +++ b/egs/ksponspeech/ASR/local/train_bpe_model.py @@ -0,0 +1,115 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +# You can install sentencepiece via: +# +# pip install sentencepiece +# +# Due to an issue reported in +# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030 +# +# Please install a version >=0.1.96 + +import argparse +import shutil +from pathlib import Path +from typing import Dict + +import sentencepiece as spm + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--lang-dir", + type=str, + help="""Input and output directory. + The generated bpe.model is saved to this directory. + """, + ) + + parser.add_argument( + "--transcript", + type=str, + help="Training transcript.", + ) + + parser.add_argument( + "--vocab-size", + type=int, + help="Vocabulary size for BPE training", + ) + + return parser.parse_args() + + +def generate_tokens(lang_dir: Path): + """ + Generate the tokens.txt from a bpe model. + """ + sp = spm.SentencePieceProcessor() + sp.load(str(lang_dir / "bpe.model")) + token2id: Dict[str, int] = {sp.id_to_piece(i): i for i in range(sp.vocab_size())} + with open(lang_dir / "tokens.txt", "w", encoding="utf-8") as f: + for sym, i in token2id.items(): + f.write(f"{sym} {i}\n") + + +def main(): + args = get_args() + vocab_size = args.vocab_size + lang_dir = Path(args.lang_dir) + + model_type = "unigram" + + model_prefix = f"{lang_dir}/{model_type}_{vocab_size}" + train_text = args.transcript + character_coverage = 1.0 + input_sentence_size = 100000000 + + user_defined_symbols = ["", ""] + unk_id = len(user_defined_symbols) + # Note: unk_id is fixed to 2. + # If you change it, you should also change other + # places that are using it. + + model_file = Path(model_prefix + ".model") + if not model_file.is_file(): + spm.SentencePieceTrainer.train( + input=train_text, + vocab_size=vocab_size, + model_type=model_type, + model_prefix=model_prefix, + input_sentence_size=input_sentence_size, + character_coverage=character_coverage, + user_defined_symbols=user_defined_symbols, + unk_id=unk_id, + bos_id=-1, + eos_id=-1, + ) + else: + print(f"{model_file} exists - skipping") + return + + shutil.copyfile(model_file, f"{lang_dir}/bpe.model") + + generate_tokens(lang_dir) + + +if __name__ == "__main__": + main() diff --git a/egs/ksponspeech/ASR/local/validate_manifest.py b/egs/ksponspeech/ASR/local/validate_manifest.py new file mode 100755 index 000000000..98f273419 --- /dev/null +++ b/egs/ksponspeech/ASR/local/validate_manifest.py @@ -0,0 +1,101 @@ +#!/usr/bin/env python3 +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script checks the following assumptions of the generated manifest: + +- Single supervision per cut +- Supervision time bounds are within cut time bounds + +We will add more checks later if needed. + +Usage example: + + python3 ./local/validate_manifest.py \ + ./data/fbank/speechtools_cuts_train.jsonl.gz + +""" + +import argparse +import logging +from pathlib import Path + +from lhotse import CutSet, load_manifest_lazy +from lhotse.cut import Cut +from lhotse.dataset.speech_recognition import validate_for_asr + + +def get_args(): + parser = argparse.ArgumentParser() + + parser.add_argument( + "manifest", + type=Path, + help="Path to the manifest file", + ) + + return parser.parse_args() + + +def validate_one_supervision_per_cut(c: Cut): + if len(c.supervisions) != 1: + raise ValueError(f"{c.id} has {len(c.supervisions)} supervisions") + + +def validate_supervision_and_cut_time_bounds(c: Cut): + tol = 2e-3 # same tolerance as in 'validate_for_asr()' + s = c.supervisions[0] + + # Supervision start time is relative to Cut ... + # https://lhotse.readthedocs.io/en/v0.10_e/cuts.html + if s.start < -tol: + raise ValueError( + f"{c.id}: Supervision start time {s.start} must not be negative." + ) + if s.start > tol: + raise ValueError( + f"{c.id}: Supervision start time {s.start} is not at the beginning of the Cut. Please apply `lhotse cut trim-to-supervisions`." + ) + if c.start + s.end > c.end + tol: + raise ValueError( + f"{c.id}: Supervision end time {c.start+s.end} is larger " + f"than cut end time {c.end}" + ) + + +def main(): + args = get_args() + + manifest = args.manifest + logging.info(f"Validating {manifest}") + + assert manifest.is_file(), f"{manifest} does not exist" + cut_set = load_manifest_lazy(manifest) + assert isinstance(cut_set, CutSet) + + for c in cut_set: + validate_one_supervision_per_cut(c) + validate_supervision_and_cut_time_bounds(c) + + # Validation from K2 training + # - checks supervision start is 0 + # - checks supervision.duration is not longer than cut.duration + # - there is tolerance 2ms + validate_for_asr(cut_set) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + + main() diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/README.md b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/README.md new file mode 100644 index 000000000..644bf9564 --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/README.md @@ -0,0 +1 @@ +This recipe implements Streaming Zipformer-Transducer model. \ No newline at end of file diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/asr_datamodule.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/asr_datamodule.py new file mode 100644 index 000000000..5b61ccdc7 --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/asr_datamodule.py @@ -0,0 +1,415 @@ +# Copyright 2024 (Author: SeungHyun Lee, Contacts: whsqkaak@naver.com) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import inspect +import logging +from functools import lru_cache +from pathlib import Path +from typing import Any, Dict, Optional + +import torch +from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy +from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures + CutConcatenate, + CutMix, + DynamicBucketingSampler, + K2SpeechRecognitionDataset, + PrecomputedFeatures, + SimpleCutSampler, + SpecAugment, +) +from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples + AudioSamples, + OnTheFlyFeatures, +) +from lhotse.utils import fix_random_seed +from torch.utils.data import DataLoader + +from icefall.utils import str2bool + + +class _SeedWorkers: + def __init__(self, seed: int): + self.seed = seed + + def __call__(self, worker_id: int): + fix_random_seed(self.seed + worker_id) + + +class KsponSpeechAsrDataModule: + """ + DataModule for k2 ASR experiments. + It assumes there is always one train and valid dataloader. + + It contains all the common data pipeline modules used in ASR + experiments, e.g.: + - dynamic batch size, + - bucketing samplers, + - cut concatenation, + - augmentation, + - on-the-fly feature extraction + + This class should be derived for specific corpora used in ASR tasks. + """ + + def __init__(self, args: argparse.Namespace): + self.args = args + + @classmethod + def add_arguments(cls, parser: argparse.ArgumentParser): + group = parser.add_argument_group( + title="ASR data related options", + description="These options are used for the preparation of " + "PyTorch DataLoaders from Lhotse CutSet's -- they control the " + "effective batch sizes, sampling strategies, applied data " + "augmentations, etc.", + ) + group.add_argument( + "--manifest-dir", + type=Path, + default=Path("data/fbank"), + help="Path to directory with train/valid/test cuts.", + ) + group.add_argument( + "--max-duration", + type=int, + default=200.0, + help="Maximum pooled recordings duration (seconds) in a " + "single batch. You can reduce it if it causes CUDA OOM.", + ) + group.add_argument( + "--bucketing-sampler", + type=str2bool, + default=True, + help="When enabled, the batches will come from buckets of " + "similar duration (saves padding frames).", + ) + group.add_argument( + "--num-buckets", + type=int, + default=30, + help="The number of buckets for the DynamicBucketingSampler" + "(you might want to increase it for larger datasets).", + ) + group.add_argument( + "--concatenate-cuts", + type=str2bool, + default=False, + help="When enabled, utterances (cuts) will be concatenated " + "to minimize the amount of padding.", + ) + group.add_argument( + "--duration-factor", + type=float, + default=1.0, + help="Determines the maximum duration of a concatenated cut " + "relative to the duration of the longest cut in a batch.", + ) + group.add_argument( + "--gap", + type=float, + default=1.0, + help="The amount of padding (in seconds) inserted between " + "concatenated cuts. This padding is filled with noise when " + "noise augmentation is used.", + ) + group.add_argument( + "--on-the-fly-feats", + type=str2bool, + default=False, + help="When enabled, use on-the-fly cut mixing and feature " + "extraction. Will drop existing precomputed feature manifests " + "if available.", + ) + group.add_argument( + "--shuffle", + type=str2bool, + default=True, + help="When enabled (=default), the examples will be " + "shuffled for each epoch.", + ) + group.add_argument( + "--drop-last", + type=str2bool, + default=True, + help="Whether to drop last batch. Used by sampler.", + ) + group.add_argument( + "--return-cuts", + type=str2bool, + default=True, + help="When enabled, each batch will have the " + "field: batch['supervisions']['cut'] with the cuts that " + "were used to construct it.", + ) + + group.add_argument( + "--num-workers", + type=int, + default=2, + help="The number of training dataloader workers that " + "collect the batches.", + ) + + group.add_argument( + "--enable-spec-aug", + type=str2bool, + default=True, + help="When enabled, use SpecAugment for training dataset.", + ) + + group.add_argument( + "--spec-aug-time-warp-factor", + type=int, + default=80, + help="Used only when --enable-spec-aug is True. " + "It specifies the factor for time warping in SpecAugment. " + "Larger values mean more warping. " + "A value less than 1 means to disable time warp.", + ) + + group.add_argument( + "--enable-musan", + type=str2bool, + default=True, + help="When enabled, select noise from MUSAN and mix it" + "with training dataset. ", + ) + + group.add_argument( + "--input-strategy", + type=str, + default="PrecomputedFeatures", + help="AudioSamples or PrecomputedFeatures", + ) + + def train_dataloaders( + self, + cuts_train: CutSet, + sampler_state_dict: Optional[Dict[str, Any]] = None, + ) -> DataLoader: + """ + Args: + cuts_train: + CutSet for training. + sampler_state_dict: + The state dict for the training sampler. + """ + transforms = [] + if self.args.enable_musan: + logging.info("Enable MUSAN") + logging.info("About to get Musan cuts") + cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz") + transforms.append( + CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True) + ) + else: + logging.info("Disable MUSAN") + + if self.args.concatenate_cuts: + logging.info( + f"Using cut concatenation with duration factor " + f"{self.args.duration_factor} and gap {self.args.gap}." + ) + # Cut concatenation should be the first transform in the list, + # so that if we e.g. mix noise in, it will fill the gaps between + # different utterances. + transforms = [ + CutConcatenate( + duration_factor=self.args.duration_factor, gap=self.args.gap + ) + ] + transforms + + input_transforms = [] + if self.args.enable_spec_aug: + logging.info("Enable SpecAugment") + logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}") + # Set the value of num_frame_masks according to Lhotse's version. + # In different Lhotse's versions, the default of num_frame_masks is + # different. + num_frame_masks = 10 + num_frame_masks_parameter = inspect.signature( + SpecAugment.__init__ + ).parameters["num_frame_masks"] + if num_frame_masks_parameter.default == 1: + num_frame_masks = 2 + logging.info(f"Num frame mask: {num_frame_masks}") + input_transforms.append( + SpecAugment( + time_warp_factor=self.args.spec_aug_time_warp_factor, + num_frame_masks=num_frame_masks, + features_mask_size=27, + num_feature_masks=2, + frames_mask_size=100, + ) + ) + else: + logging.info("Disable SpecAugment") + + logging.info("About to create train dataset") + train = K2SpeechRecognitionDataset( + input_strategy=eval(self.args.input_strategy)(), + cut_transforms=transforms, + input_transforms=input_transforms, + return_cuts=self.args.return_cuts, + ) + + if self.args.on_the_fly_feats: + # NOTE: the PerturbSpeed transform should be added only if we + # remove it from data prep stage. + # Add on-the-fly speed perturbation; since originally it would + # have increased epoch size by 3, we will apply prob 2/3 and use + # 3x more epochs. + # Speed perturbation probably should come first before + # concatenation, but in principle the transforms order doesn't have + # to be strict (e.g. could be randomized) + # transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa + # Drop feats to be on the safe side. + train = K2SpeechRecognitionDataset( + cut_transforms=transforms, + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), + input_transforms=input_transforms, + return_cuts=self.args.return_cuts, + ) + + if self.args.bucketing_sampler: + logging.info("Using DynamicBucketingSampler.") + train_sampler = DynamicBucketingSampler( + cuts_train, + max_duration=self.args.max_duration, + shuffle=self.args.shuffle, + num_buckets=self.args.num_buckets, + buffer_size=self.args.num_buckets * 2000, + shuffle_buffer_size=self.args.num_buckets * 5000, + drop_last=self.args.drop_last, + ) + else: + logging.info("Using SimpleCutSampler.") + train_sampler = SimpleCutSampler( + cuts_train, + max_duration=self.args.max_duration, + shuffle=self.args.shuffle, + ) + logging.info("About to create train dataloader") + + if sampler_state_dict is not None: + logging.info("Loading sampler state dict") + train_sampler.load_state_dict(sampler_state_dict) + + # 'seed' is derived from the current random state, which will have + # previously been set in the main process. + seed = torch.randint(0, 100000, ()).item() + worker_init_fn = _SeedWorkers(seed) + + train_dl = DataLoader( + train, + sampler=train_sampler, + batch_size=None, + num_workers=self.args.num_workers, + persistent_workers=False, + worker_init_fn=worker_init_fn, + ) + + return train_dl + + def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader: + transforms = [] + if self.args.concatenate_cuts: + transforms = [ + CutConcatenate( + duration_factor=self.args.duration_factor, gap=self.args.gap + ) + ] + transforms + + logging.info("About to create dev dataset") + if self.args.on_the_fly_feats: + validate = K2SpeechRecognitionDataset( + cut_transforms=transforms, + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), + return_cuts=self.args.return_cuts, + ) + else: + validate = K2SpeechRecognitionDataset( + cut_transforms=transforms, + return_cuts=self.args.return_cuts, + ) + valid_sampler = DynamicBucketingSampler( + cuts_valid, + max_duration=self.args.max_duration, + shuffle=False, + ) + logging.info("About to create dev dataloader") + valid_dl = DataLoader( + validate, + sampler=valid_sampler, + batch_size=None, + num_workers=2, + persistent_workers=False, + ) + + return valid_dl + + def test_dataloaders(self, cuts: CutSet) -> DataLoader: + logging.debug("About to create test dataset") + test = K2SpeechRecognitionDataset( + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))) + if self.args.on_the_fly_feats + else eval(self.args.input_strategy)(), + return_cuts=self.args.return_cuts, + ) + sampler = DynamicBucketingSampler( + cuts, + max_duration=self.args.max_duration, + shuffle=False, + ) + logging.debug("About to create test dataloader") + test_dl = DataLoader( + test, + batch_size=None, + sampler=sampler, + num_workers=self.args.num_workers, + ) + return test_dl + + @lru_cache() + def train_cuts(self) -> CutSet: + logging.info("About to get train cuts.") + return load_manifest_lazy( + self.args.manifest_dir / "ksponspeech_cuts_train.jsonl.gz" + ) + + @lru_cache() + def dev_cuts(self) -> CutSet: + logging.info("About to get dev cuts") + return load_manifest_lazy( + self.args.manifest_dir / "ksponspeech_cuts_dev.jsonl.gz" + ) + + @lru_cache() + def eval_clean_cuts(self) -> CutSet: + logging.info("About to get eval_clean cuts") + return load_manifest_lazy( + self.args.manifest_dir / "ksponspeech_cuts_eval_clean.jsonl.gz" + ) + + @lru_cache() + def eval_other_cuts(self) -> CutSet: + logging.info("About to get eval_other cuts") + return load_manifest_lazy( + self.args.manifest_dir / "ksponspeech_cuts_eval_other.jsonl.gz" + ) diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/beam_search.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/beam_search.py new file mode 100644 index 000000000..66c84b2a9 --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/beam_search.py @@ -0,0 +1,3183 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang +# Xiaoyu Yang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +import warnings +from dataclasses import dataclass, field +from typing import Dict, List, Optional, Tuple, Union + +import k2 +import sentencepiece as spm +import torch +from torch import nn + +from icefall import ContextGraph, ContextState, NgramLm, NgramLmStateCost +from icefall.decode import Nbest, one_best_decoding +from icefall.lm_wrapper import LmScorer +from icefall.rnn_lm.model import RnnLmModel +from icefall.transformer_lm.model import TransformerLM +from icefall.utils import ( + DecodingResults, + KeywordResult, + add_eos, + add_sos, + get_texts, + get_texts_with_timestamp, +) + + +def fast_beam_search_one_best( + model: nn.Module, + decoding_graph: k2.Fsa, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + beam: float, + max_states: int, + max_contexts: int, + temperature: float = 1.0, + ilme_scale: float = 0.0, + blank_penalty: float = 0.0, + return_timestamps: bool = False, + allow_partial: bool = False, +) -> Union[List[List[int]], DecodingResults]: + """It limits the maximum number of symbols per frame to 1. + + A lattice is first obtained using fast beam search, and then + the shortest path within the lattice is used as the final output. + + Args: + model: + An instance of `Transducer`. + decoding_graph: + Decoding graph used for decoding, may be a TrivialGraph or a LG. + encoder_out: + A tensor of shape (N, T, C) from the encoder. + encoder_out_lens: + A tensor of shape (N,) containing the number of frames in `encoder_out` + before padding. + beam: + Beam value, similar to the beam used in Kaldi.. + max_states: + Max states per stream per frame. + max_contexts: + Max contexts pre stream per frame. + temperature: + Softmax temperature. + return_timestamps: + Whether to return timestamps. + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + lattice = fast_beam_search( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=beam, + max_states=max_states, + max_contexts=max_contexts, + temperature=temperature, + ilme_scale=ilme_scale, + allow_partial=allow_partial, + blank_penalty=blank_penalty, + ) + + best_path = one_best_decoding(lattice) + + if not return_timestamps: + return get_texts(best_path) + else: + return get_texts_with_timestamp(best_path) + + +def fast_beam_search_nbest_LG( + model: nn.Module, + decoding_graph: k2.Fsa, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + beam: float, + max_states: int, + max_contexts: int, + num_paths: int, + nbest_scale: float = 0.5, + use_double_scores: bool = True, + temperature: float = 1.0, + blank_penalty: float = 0.0, + ilme_scale: float = 0.0, + return_timestamps: bool = False, + allow_partial: bool = False, +) -> Union[List[List[int]], DecodingResults]: + """It limits the maximum number of symbols per frame to 1. + + The process to get the results is: + - (1) Use fast beam search to get a lattice + - (2) Select `num_paths` paths from the lattice using k2.random_paths() + - (3) Unique the selected paths + - (4) Intersect the selected paths with the lattice and compute the + shortest path from the intersection result + - (5) The path with the largest score is used as the decoding output. + + Args: + model: + An instance of `Transducer`. + decoding_graph: + Decoding graph used for decoding, may be a TrivialGraph or a LG. + encoder_out: + A tensor of shape (N, T, C) from the encoder. + encoder_out_lens: + A tensor of shape (N,) containing the number of frames in `encoder_out` + before padding. + beam: + Beam value, similar to the beam used in Kaldi.. + max_states: + Max states per stream per frame. + max_contexts: + Max contexts pre stream per frame. + num_paths: + Number of paths to extract from the decoded lattice. + nbest_scale: + It's the scale applied to the lattice.scores. A smaller value + yields more unique paths. + use_double_scores: + True to use double precision for computation. False to use + single precision. + temperature: + Softmax temperature. + return_timestamps: + Whether to return timestamps. + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + lattice = fast_beam_search( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=beam, + max_states=max_states, + max_contexts=max_contexts, + temperature=temperature, + allow_partial=allow_partial, + blank_penalty=blank_penalty, + ilme_scale=ilme_scale, + ) + + nbest = Nbest.from_lattice( + lattice=lattice, + num_paths=num_paths, + use_double_scores=use_double_scores, + nbest_scale=nbest_scale, + ) + + # The following code is modified from nbest.intersect() + word_fsa = k2.invert(nbest.fsa) + if hasattr(lattice, "aux_labels"): + # delete token IDs as it is not needed + del word_fsa.aux_labels + word_fsa.scores.zero_() + word_fsa_with_epsilon_loops = k2.linear_fsa_with_self_loops(word_fsa) + path_to_utt_map = nbest.shape.row_ids(1) + + if hasattr(lattice, "aux_labels"): + # lattice has token IDs as labels and word IDs as aux_labels. + # inv_lattice has word IDs as labels and token IDs as aux_labels + inv_lattice = k2.invert(lattice) + inv_lattice = k2.arc_sort(inv_lattice) + else: + inv_lattice = k2.arc_sort(lattice) + + if inv_lattice.shape[0] == 1: + path_lattice = k2.intersect_device( + inv_lattice, + word_fsa_with_epsilon_loops, + b_to_a_map=torch.zeros_like(path_to_utt_map), + sorted_match_a=True, + ) + else: + path_lattice = k2.intersect_device( + inv_lattice, + word_fsa_with_epsilon_loops, + b_to_a_map=path_to_utt_map, + sorted_match_a=True, + ) + + # path_lattice has word IDs as labels and token IDs as aux_labels + path_lattice = k2.top_sort(k2.connect(path_lattice)) + tot_scores = path_lattice.get_tot_scores( + use_double_scores=use_double_scores, + log_semiring=True, # Note: we always use True + ) + # See https://github.com/k2-fsa/icefall/pull/420 for why + # we always use log_semiring=True + + ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores) + best_hyp_indexes = ragged_tot_scores.argmax() + best_path = k2.index_fsa(nbest.fsa, best_hyp_indexes) + + if not return_timestamps: + return get_texts(best_path) + else: + return get_texts_with_timestamp(best_path) + + +def fast_beam_search_nbest( + model: nn.Module, + decoding_graph: k2.Fsa, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + beam: float, + max_states: int, + max_contexts: int, + num_paths: int, + nbest_scale: float = 0.5, + use_double_scores: bool = True, + temperature: float = 1.0, + blank_penalty: float = 0.0, + return_timestamps: bool = False, + allow_partial: bool = False, +) -> Union[List[List[int]], DecodingResults]: + """It limits the maximum number of symbols per frame to 1. + + The process to get the results is: + - (1) Use fast beam search to get a lattice + - (2) Select `num_paths` paths from the lattice using k2.random_paths() + - (3) Unique the selected paths + - (4) Intersect the selected paths with the lattice and compute the + shortest path from the intersection result + - (5) The path with the largest score is used as the decoding output. + + Args: + model: + An instance of `Transducer`. + decoding_graph: + Decoding graph used for decoding, may be a TrivialGraph or a LG. + encoder_out: + A tensor of shape (N, T, C) from the encoder. + encoder_out_lens: + A tensor of shape (N,) containing the number of frames in `encoder_out` + before padding. + beam: + Beam value, similar to the beam used in Kaldi.. + max_states: + Max states per stream per frame. + max_contexts: + Max contexts pre stream per frame. + num_paths: + Number of paths to extract from the decoded lattice. + nbest_scale: + It's the scale applied to the lattice.scores. A smaller value + yields more unique paths. + use_double_scores: + True to use double precision for computation. False to use + single precision. + temperature: + Softmax temperature. + return_timestamps: + Whether to return timestamps. + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + lattice = fast_beam_search( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=beam, + max_states=max_states, + max_contexts=max_contexts, + blank_penalty=blank_penalty, + temperature=temperature, + allow_partial=allow_partial, + ) + + nbest = Nbest.from_lattice( + lattice=lattice, + num_paths=num_paths, + use_double_scores=use_double_scores, + nbest_scale=nbest_scale, + ) + + # at this point, nbest.fsa.scores are all zeros. + + nbest = nbest.intersect(lattice) + # Now nbest.fsa.scores contains acoustic scores + + max_indexes = nbest.tot_scores().argmax() + + best_path = k2.index_fsa(nbest.fsa, max_indexes) + + if not return_timestamps: + return get_texts(best_path) + else: + return get_texts_with_timestamp(best_path) + + +def fast_beam_search_nbest_oracle( + model: nn.Module, + decoding_graph: k2.Fsa, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + beam: float, + max_states: int, + max_contexts: int, + num_paths: int, + ref_texts: List[List[int]], + use_double_scores: bool = True, + nbest_scale: float = 0.5, + temperature: float = 1.0, + blank_penalty: float = 0.0, + return_timestamps: bool = False, + allow_partial: bool = False, +) -> Union[List[List[int]], DecodingResults]: + """It limits the maximum number of symbols per frame to 1. + + A lattice is first obtained using fast beam search, and then + we select `num_paths` linear paths from the lattice. The path + that has the minimum edit distance with the given reference transcript + is used as the output. + + This is the best result we can achieve for any nbest based rescoring + methods. + + Args: + model: + An instance of `Transducer`. + decoding_graph: + Decoding graph used for decoding, may be a TrivialGraph or a LG. + encoder_out: + A tensor of shape (N, T, C) from the encoder. + encoder_out_lens: + A tensor of shape (N,) containing the number of frames in `encoder_out` + before padding. + beam: + Beam value, similar to the beam used in Kaldi.. + max_states: + Max states per stream per frame. + max_contexts: + Max contexts pre stream per frame. + num_paths: + Number of paths to extract from the decoded lattice. + ref_texts: + A list-of-list of integers containing the reference transcripts. + If the decoding_graph is a trivial_graph, the integer ID is the + BPE token ID. + use_double_scores: + True to use double precision for computation. False to use + single precision. + nbest_scale: + It's the scale applied to the lattice.scores. A smaller value + yields more unique paths. + temperature: + Softmax temperature. + return_timestamps: + Whether to return timestamps. + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + lattice = fast_beam_search( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=beam, + max_states=max_states, + max_contexts=max_contexts, + temperature=temperature, + allow_partial=allow_partial, + blank_penalty=blank_penalty, + ) + + nbest = Nbest.from_lattice( + lattice=lattice, + num_paths=num_paths, + use_double_scores=use_double_scores, + nbest_scale=nbest_scale, + ) + + hyps = nbest.build_levenshtein_graphs() + refs = k2.levenshtein_graph(ref_texts, device=hyps.device) + + levenshtein_alignment = k2.levenshtein_alignment( + refs=refs, + hyps=hyps, + hyp_to_ref_map=nbest.shape.row_ids(1), + sorted_match_ref=True, + ) + + tot_scores = levenshtein_alignment.get_tot_scores( + use_double_scores=False, log_semiring=False + ) + ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores) + + max_indexes = ragged_tot_scores.argmax() + + best_path = k2.index_fsa(nbest.fsa, max_indexes) + + if not return_timestamps: + return get_texts(best_path) + else: + return get_texts_with_timestamp(best_path) + + +def fast_beam_search( + model: nn.Module, + decoding_graph: k2.Fsa, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + beam: float, + max_states: int, + max_contexts: int, + temperature: float = 1.0, + subtract_ilme: bool = False, + ilme_scale: float = 0.1, + allow_partial: bool = False, + blank_penalty: float = 0.0, +) -> k2.Fsa: + """It limits the maximum number of symbols per frame to 1. + + Args: + model: + An instance of `Transducer`. + decoding_graph: + Decoding graph used for decoding, may be a TrivialGraph or a LG. + encoder_out: + A tensor of shape (N, T, C) from the encoder. + encoder_out_lens: + A tensor of shape (N,) containing the number of frames in `encoder_out` + before padding. + beam: + Beam value, similar to the beam used in Kaldi.. + max_states: + Max states per stream per frame. + max_contexts: + Max contexts pre stream per frame. + temperature: + Softmax temperature. + Returns: + Return an FsaVec with axes [utt][state][arc] containing the decoded + lattice. Note: When the input graph is a TrivialGraph, the returned + lattice is actually an acceptor. + """ + assert encoder_out.ndim == 3 + + context_size = model.decoder.context_size + vocab_size = model.decoder.vocab_size + + B, T, C = encoder_out.shape + + config = k2.RnntDecodingConfig( + vocab_size=vocab_size, + decoder_history_len=context_size, + beam=beam, + max_contexts=max_contexts, + max_states=max_states, + ) + individual_streams = [] + for i in range(B): + individual_streams.append(k2.RnntDecodingStream(decoding_graph)) + decoding_streams = k2.RnntDecodingStreams(individual_streams, config) + + encoder_out = model.joiner.encoder_proj(encoder_out) + + for t in range(T): + # shape is a RaggedShape of shape (B, context) + # contexts is a Tensor of shape (shape.NumElements(), context_size) + shape, contexts = decoding_streams.get_contexts() + # `nn.Embedding()` in torch below v1.7.1 supports only torch.int64 + contexts = contexts.to(torch.int64) + # decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim) + decoder_out = model.decoder(contexts, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + # current_encoder_out is of shape + # (shape.NumElements(), 1, joiner_dim) + # fmt: off + current_encoder_out = torch.index_select( + encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64) + ) + # fmt: on + logits = model.joiner( + current_encoder_out.unsqueeze(2), + decoder_out.unsqueeze(1), + project_input=False, + ) + logits = logits.squeeze(1).squeeze(1) + + if blank_penalty != 0: + logits[:, 0] -= blank_penalty + + log_probs = (logits / temperature).log_softmax(dim=-1) + + if ilme_scale != 0: + ilme_logits = model.joiner( + torch.zeros_like( + current_encoder_out, device=current_encoder_out.device + ).unsqueeze(2), + decoder_out.unsqueeze(1), + project_input=False, + ) + ilme_logits = ilme_logits.squeeze(1).squeeze(1) + if blank_penalty != 0: + ilme_logits[:, 0] -= blank_penalty + ilme_log_probs = (ilme_logits / temperature).log_softmax(dim=-1) + log_probs -= ilme_scale * ilme_log_probs + + decoding_streams.advance(log_probs) + decoding_streams.terminate_and_flush_to_streams() + lattice = decoding_streams.format_output( + encoder_out_lens.tolist(), allow_partial=allow_partial + ) + + return lattice + + +def greedy_search( + model: nn.Module, + encoder_out: torch.Tensor, + max_sym_per_frame: int, + blank_penalty: float = 0.0, + return_timestamps: bool = False, +) -> Union[List[int], DecodingResults]: + """Greedy search for a single utterance. + Args: + model: + An instance of `Transducer`. + encoder_out: + A tensor of shape (N, T, C) from the encoder. Support only N==1 for now. + max_sym_per_frame: + Maximum number of symbols per frame. If it is set to 0, the WER + would be 100%. + return_timestamps: + Whether to return timestamps. + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + assert encoder_out.ndim == 3 + + # support only batch_size == 1 for now + assert encoder_out.size(0) == 1, encoder_out.size(0) + + blank_id = model.decoder.blank_id + context_size = model.decoder.context_size + unk_id = getattr(model, "unk_id", blank_id) + + device = next(model.parameters()).device + + decoder_input = torch.tensor( + [-1] * (context_size - 1) + [blank_id], device=device, dtype=torch.int64 + ).reshape(1, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + + encoder_out = model.joiner.encoder_proj(encoder_out) + + T = encoder_out.size(1) + t = 0 + hyp = [blank_id] * context_size + + # timestamp[i] is the frame index after subsampling + # on which hyp[i] is decoded + timestamp = [] + + # Maximum symbols per utterance. + max_sym_per_utt = 1000 + + # symbols per frame + sym_per_frame = 0 + + # symbols per utterance decoded so far + sym_per_utt = 0 + + while t < T and sym_per_utt < max_sym_per_utt: + if sym_per_frame >= max_sym_per_frame: + sym_per_frame = 0 + t += 1 + continue + + # fmt: off + current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2) + # fmt: on + logits = model.joiner( + current_encoder_out, decoder_out.unsqueeze(1), project_input=False + ) + # logits is (1, 1, 1, vocab_size) + + if blank_penalty != 0: + logits[:, :, :, 0] -= blank_penalty + + y = logits.argmax().item() + if y not in (blank_id, unk_id): + hyp.append(y) + timestamp.append(t) + decoder_input = torch.tensor([hyp[-context_size:]], device=device).reshape( + 1, context_size + ) + + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + + sym_per_utt += 1 + sym_per_frame += 1 + else: + sym_per_frame = 0 + t += 1 + hyp = hyp[context_size:] # remove blanks + + if not return_timestamps: + return hyp + else: + return DecodingResults( + hyps=[hyp], + timestamps=[timestamp], + ) + + +def greedy_search_batch( + model: nn.Module, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + blank_penalty: float = 0, + return_timestamps: bool = False, +) -> Union[List[List[int]], DecodingResults]: + """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. + Args: + model: + The transducer model. + encoder_out: + Output from the encoder. Its shape is (N, T, C), where N >= 1. + encoder_out_lens: + A 1-D tensor of shape (N,), containing number of valid frames in + encoder_out before padding. + return_timestamps: + Whether to return timestamps. + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + assert encoder_out.ndim == 3 + assert encoder_out.size(0) >= 1, encoder_out.size(0) + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + device = next(model.parameters()).device + + blank_id = model.decoder.blank_id + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + hyps = [[-1] * (context_size - 1) + [blank_id] for _ in range(N)] + + # timestamp[n][i] is the frame index after subsampling + # on which hyp[n][i] is decoded + timestamps = [[] for _ in range(N)] + # scores[n][i] is the logits on which hyp[n][i] is decoded + scores = [[] for _ in range(N)] + + decoder_input = torch.tensor( + hyps, + device=device, + dtype=torch.int64, + ) # (N, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + # decoder_out: (N, 1, decoder_out_dim) + + encoder_out = model.joiner.encoder_proj(packed_encoder_out.data) + + offset = 0 + for t, batch_size in enumerate(batch_size_list): + start = offset + end = offset + batch_size + current_encoder_out = encoder_out.data[start:end] + current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim) + offset = end + + decoder_out = decoder_out[:batch_size] + + logits = model.joiner( + current_encoder_out, decoder_out.unsqueeze(1), project_input=False + ) + # logits'shape (batch_size, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (batch_size, vocab_size) + assert logits.ndim == 2, logits.shape + + if blank_penalty != 0: + logits[:, 0] -= blank_penalty + + y = logits.argmax(dim=1).tolist() + emitted = False + for i, v in enumerate(y): + if v not in (blank_id, unk_id): + hyps[i].append(v) + timestamps[i].append(t) + scores[i].append(logits[i, v].item()) + emitted = True + if emitted: + # update decoder output + decoder_input = [h[-context_size:] for h in hyps[:batch_size]] + decoder_input = torch.tensor( + decoder_input, + device=device, + dtype=torch.int64, + ) + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + + sorted_ans = [h[context_size:] for h in hyps] + ans = [] + ans_timestamps = [] + ans_scores = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + ans_timestamps.append(timestamps[unsorted_indices[i]]) + ans_scores.append(scores[unsorted_indices[i]]) + + if not return_timestamps: + return ans + else: + return DecodingResults( + hyps=ans, + timestamps=ans_timestamps, + scores=ans_scores, + ) + + +@dataclass +class Hypothesis: + # The predicted tokens so far. + # Newly predicted tokens are appended to `ys`. + ys: List[int] + + # The log prob of ys. + # It contains only one entry. + log_prob: torch.Tensor + + ac_probs: Optional[List[float]] = None + + # timestamp[i] is the frame index after subsampling + # on which ys[i] is decoded + timestamp: List[int] = field(default_factory=list) + + # the lm score for next token given the current ys + lm_score: Optional[torch.Tensor] = None + + # the RNNLM states (h and c in LSTM) + state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None + + # N-gram LM state + state_cost: Optional[NgramLmStateCost] = None + + # Context graph state + context_state: Optional[ContextState] = None + + num_tailing_blanks: int = 0 + + @property + def key(self) -> str: + """Return a string representation of self.ys""" + return "_".join(map(str, self.ys)) + + +class HypothesisList(object): + def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None: + """ + Args: + data: + A dict of Hypotheses. Its key is its `value.key`. + """ + if data is None: + self._data = {} + else: + self._data = data + + @property + def data(self) -> Dict[str, Hypothesis]: + return self._data + + def add(self, hyp: Hypothesis) -> None: + """Add a Hypothesis to `self`. + + If `hyp` already exists in `self`, its probability is updated using + `log-sum-exp` with the existed one. + + Args: + hyp: + The hypothesis to be added. + """ + key = hyp.key + if key in self: + old_hyp = self._data[key] # shallow copy + torch.logaddexp(old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob) + else: + self._data[key] = hyp + + def get_most_probable(self, length_norm: bool = False) -> Hypothesis: + """Get the most probable hypothesis, i.e., the one with + the largest `log_prob`. + + Args: + length_norm: + If True, the `log_prob` of a hypothesis is normalized by the + number of tokens in it. + Returns: + Return the hypothesis that has the largest `log_prob`. + """ + if length_norm: + return max(self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys)) + else: + return max(self._data.values(), key=lambda hyp: hyp.log_prob) + + def remove(self, hyp: Hypothesis) -> None: + """Remove a given hypothesis. + + Caution: + `self` is modified **in-place**. + + Args: + hyp: + The hypothesis to be removed from `self`. + Note: It must be contained in `self`. Otherwise, + an exception is raised. + """ + key = hyp.key + assert key in self, f"{key} does not exist" + del self._data[key] + + def filter(self, threshold: torch.Tensor) -> "HypothesisList": + """Remove all Hypotheses whose log_prob is less than threshold. + + Caution: + `self` is not modified. Instead, a new HypothesisList is returned. + + Returns: + Return a new HypothesisList containing all hypotheses from `self` + with `log_prob` being greater than the given `threshold`. + """ + ans = HypothesisList() + for _, hyp in self._data.items(): + if hyp.log_prob > threshold: + ans.add(hyp) # shallow copy + return ans + + def topk(self, k: int, length_norm: bool = False) -> "HypothesisList": + """Return the top-k hypothesis. + + Args: + length_norm: + If True, the `log_prob` of a hypothesis is normalized by the + number of tokens in it. + """ + hyps = list(self._data.items()) + + if length_norm: + hyps = sorted( + hyps, key=lambda h: h[1].log_prob / len(h[1].ys), reverse=True + )[:k] + else: + hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k] + + ans = HypothesisList(dict(hyps)) + return ans + + def __contains__(self, key: str): + return key in self._data + + def __iter__(self): + return iter(self._data.values()) + + def __len__(self) -> int: + return len(self._data) + + def __str__(self) -> str: + s = [] + for key in self: + s.append(key) + return ", ".join(s) + + +def get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape: + """Return a ragged shape with axes [utt][num_hyps]. + + Args: + hyps: + len(hyps) == batch_size. It contains the current hypothesis for + each utterance in the batch. + Returns: + Return a ragged shape with 2 axes [utt][num_hyps]. Note that + the shape is on CPU. + """ + num_hyps = [len(h) for h in hyps] + + # torch.cumsum() is inclusive sum, so we put a 0 at the beginning + # to get exclusive sum later. + num_hyps.insert(0, 0) + + num_hyps = torch.tensor(num_hyps) + row_splits = torch.cumsum(num_hyps, dim=0, dtype=torch.int32) + ans = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=row_splits[-1].item() + ) + return ans + + +def keywords_search( + model: nn.Module, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + keywords_graph: ContextGraph, + beam: int = 4, + num_tailing_blanks: int = 0, + blank_penalty: float = 0, +) -> List[List[KeywordResult]]: + """Beam search in batch mode with --max-sym-per-frame=1 being hardcoded. + + Args: + model: + The transducer model. + encoder_out: + Output from the encoder. Its shape is (N, T, C). + encoder_out_lens: + A 1-D tensor of shape (N,), containing number of valid frames in + encoder_out before padding. + keywords_graph: + A instance of ContextGraph containing keywords and their configurations. + beam: + Number of active paths during the beam search. + num_tailing_blanks: + The number of tailing blanks a keyword should be followed, this is for the + scenario that a keyword will be the prefix of another. In most cases, you + can just set it to 0. + blank_penalty: + The score used to penalize blank probability. + Returns: + Return a list of list of KeywordResult. + """ + assert encoder_out.ndim == 3, encoder_out.shape + assert encoder_out.size(0) >= 1, encoder_out.size(0) + assert keywords_graph is not None + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + blank_id = model.decoder.blank_id + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + device = next(model.parameters()).device + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + B = [HypothesisList() for _ in range(N)] + for i in range(N): + B[i].add( + Hypothesis( + ys=[-1] * (context_size - 1) + [blank_id], + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + context_state=keywords_graph.root, + timestamp=[], + ac_probs=[], + ) + ) + + encoder_out = model.joiner.encoder_proj(packed_encoder_out.data) + + offset = 0 + finalized_B = [] + sorted_ans = [[] for _ in range(N)] + for t, batch_size in enumerate(batch_size_list): + start = offset + end = offset + batch_size + current_encoder_out = encoder_out.data[start:end] + current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim) + offset = end + + finalized_B = B[batch_size:] + finalized_B + B = B[:batch_size] + + hyps_shape = get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.cat( + [hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps] + ) # (num_hyps, 1) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + # decoder_out is of shape (num_hyps, 1, 1, joiner_dim) + + # Note: For torch 1.7.1 and below, it requires a torch.int64 tensor + # as index, so we use `to(torch.int64)` below. + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) # (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) + + if blank_penalty != 0: + logits[:, 0] -= blank_penalty + + probs = logits.softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs = probs.log() + + probs = probs.reshape(-1) + + log_probs.add_(ys_log_probs) + + vocab_size = log_probs.size(-1) + + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) + ragged_probs = k2.RaggedTensor(shape=log_probs_shape, value=probs) + + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + hyp_probs = ragged_probs[i].tolist() + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + new_ys = hyp.ys[:] + new_token = topk_token_indexes[k] + new_timestamp = hyp.timestamp[:] + new_ac_probs = hyp.ac_probs[:] + context_score = 0 + new_context_state = hyp.context_state + new_num_tailing_blanks = hyp.num_tailing_blanks + 1 + if new_token not in (blank_id, unk_id): + new_ys.append(new_token) + new_timestamp.append(t) + new_ac_probs.append(hyp_probs[topk_indexes[k]]) + ( + context_score, + new_context_state, + _, + ) = keywords_graph.forward_one_step(hyp.context_state, new_token) + new_num_tailing_blanks = 0 + if new_context_state.token == -1: # root + new_ys[-context_size:] = [-1] * (context_size - 1) + [blank_id] + + new_log_prob = topk_log_probs[k] + context_score + + new_hyp = Hypothesis( + ys=new_ys, + log_prob=new_log_prob, + timestamp=new_timestamp, + ac_probs=new_ac_probs, + context_state=new_context_state, + num_tailing_blanks=new_num_tailing_blanks, + ) + B[i].add(new_hyp) + + top_hyp = B[i].get_most_probable(length_norm=True) + matched, matched_state = keywords_graph.is_matched(top_hyp.context_state) + if matched: + ac_prob = ( + sum(top_hyp.ac_probs[-matched_state.level :]) / matched_state.level + ) + if ( + matched + and top_hyp.num_tailing_blanks > num_tailing_blanks + and ac_prob >= matched_state.ac_threshold + ): + keyword = KeywordResult( + hyps=top_hyp.ys[-matched_state.level :], + timestamps=top_hyp.timestamp[-matched_state.level :], + phrase=matched_state.phrase, + ) + sorted_ans[i].append(keyword) + B[i] = HypothesisList() + B[i].add( + Hypothesis( + ys=[-1] * (context_size - 1) + [blank_id], + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + context_state=keywords_graph.root, + timestamp=[], + ac_probs=[], + ) + ) + + B = B + finalized_B + + for i, hyps in enumerate(B): + top_hyp = hyps.get_most_probable(length_norm=True) + matched, matched_state = keywords_graph.is_matched(top_hyp.context_state) + if matched: + ac_prob = ( + sum(top_hyp.ac_probs[-matched_state.level :]) / matched_state.level + ) + if matched and ac_prob >= matched_state.ac_threshold: + keyword = KeywordResult( + hyps=top_hyp.ys[-matched_state.level :], + timestamps=top_hyp.timestamp[-matched_state.level :], + phrase=matched_state.phrase, + ) + sorted_ans[i].append(keyword) + + ans = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + return ans + + +def modified_beam_search( + model: nn.Module, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + context_graph: Optional[ContextGraph] = None, + beam: int = 4, + temperature: float = 1.0, + blank_penalty: float = 0.0, + return_timestamps: bool = False, +) -> Union[List[List[int]], DecodingResults]: + """Beam search in batch mode with --max-sym-per-frame=1 being hardcoded. + + Args: + model: + The transducer model. + encoder_out: + Output from the encoder. Its shape is (N, T, C). + encoder_out_lens: + A 1-D tensor of shape (N,), containing number of valid frames in + encoder_out before padding. + beam: + Number of active paths during the beam search. + temperature: + Softmax temperature. + return_timestamps: + Whether to return timestamps. + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + assert encoder_out.ndim == 3, encoder_out.shape + assert encoder_out.size(0) >= 1, encoder_out.size(0) + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + blank_id = model.decoder.blank_id + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + device = next(model.parameters()).device + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + B = [HypothesisList() for _ in range(N)] + for i in range(N): + B[i].add( + Hypothesis( + ys=[-1] * (context_size - 1) + [blank_id], + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + context_state=None if context_graph is None else context_graph.root, + timestamp=[], + ) + ) + + encoder_out = model.joiner.encoder_proj(packed_encoder_out.data) + + offset = 0 + finalized_B = [] + for t, batch_size in enumerate(batch_size_list): + start = offset + end = offset + batch_size + current_encoder_out = encoder_out.data[start:end] + current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim) + offset = end + + finalized_B = B[batch_size:] + finalized_B + B = B[:batch_size] + + hyps_shape = get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.cat( + [hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps] + ) # (num_hyps, 1) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + # decoder_out is of shape (num_hyps, 1, 1, joiner_dim) + + # Note: For torch 1.7.1 and below, it requires a torch.int64 tensor + # as index, so we use `to(torch.int64)` below. + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) # (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) + + if blank_penalty != 0: + logits[:, 0] -= blank_penalty + + log_probs = (logits / temperature).log_softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs.add_(ys_log_probs) + + vocab_size = log_probs.size(-1) + + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) + + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + new_ys = hyp.ys[:] + new_token = topk_token_indexes[k] + new_timestamp = hyp.timestamp[:] + context_score = 0 + new_context_state = None if context_graph is None else hyp.context_state + if new_token not in (blank_id, unk_id): + new_ys.append(new_token) + new_timestamp.append(t) + if context_graph is not None: + ( + context_score, + new_context_state, + ) = context_graph.forward_one_step(hyp.context_state, new_token) + + new_log_prob = topk_log_probs[k] + context_score + + new_hyp = Hypothesis( + ys=new_ys, + log_prob=new_log_prob, + timestamp=new_timestamp, + context_state=new_context_state, + ) + B[i].add(new_hyp) + + B = B + finalized_B + + # finalize context_state, if the matched contexts do not reach final state + # we need to add the score on the corresponding backoff arc + if context_graph is not None: + finalized_B = [HypothesisList() for _ in range(len(B))] + for i, hyps in enumerate(B): + for hyp in list(hyps): + context_score, new_context_state = context_graph.finalize( + hyp.context_state + ) + finalized_B[i].add( + Hypothesis( + ys=hyp.ys, + log_prob=hyp.log_prob + context_score, + timestamp=hyp.timestamp, + context_state=new_context_state, + ) + ) + B = finalized_B + + best_hyps = [b.get_most_probable(length_norm=True) for b in B] + + sorted_ans = [h.ys[context_size:] for h in best_hyps] + sorted_timestamps = [h.timestamp for h in best_hyps] + ans = [] + ans_timestamps = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + ans_timestamps.append(sorted_timestamps[unsorted_indices[i]]) + + if not return_timestamps: + return ans + else: + return DecodingResults( + hyps=ans, + timestamps=ans_timestamps, + ) + + +def modified_beam_search_lm_rescore( + model: nn.Module, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + LM: LmScorer, + lm_scale_list: List[int], + beam: int = 4, + temperature: float = 1.0, + return_timestamps: bool = False, +) -> Union[List[List[int]], DecodingResults]: + """Beam search in batch mode with --max-sym-per-frame=1 being hardcoded. + Rescore the final results with RNNLM and return the one with the highest score + + Args: + model: + The transducer model. + encoder_out: + Output from the encoder. Its shape is (N, T, C). + encoder_out_lens: + A 1-D tensor of shape (N,), containing number of valid frames in + encoder_out before padding. + beam: + Number of active paths during the beam search. + temperature: + Softmax temperature. + LM: + A neural network language model + return_timestamps: + Whether to return timestamps. + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + assert encoder_out.ndim == 3, encoder_out.shape + assert encoder_out.size(0) >= 1, encoder_out.size(0) + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + blank_id = model.decoder.blank_id + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + device = next(model.parameters()).device + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + B = [HypothesisList() for _ in range(N)] + for i in range(N): + B[i].add( + Hypothesis( + ys=[-1] * (context_size - 1) + [blank_id], + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + timestamp=[], + ) + ) + + encoder_out = model.joiner.encoder_proj(packed_encoder_out.data) + + offset = 0 + finalized_B = [] + for t, batch_size in enumerate(batch_size_list): + start = offset + end = offset + batch_size + current_encoder_out = encoder_out.data[start:end] + current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim) + offset = end + + finalized_B = B[batch_size:] + finalized_B + B = B[:batch_size] + + hyps_shape = get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.cat( + [hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps] + ) # (num_hyps, 1) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + # decoder_out is of shape (num_hyps, 1, 1, joiner_dim) + + # Note: For torch 1.7.1 and below, it requires a torch.int64 tensor + # as index, so we use `to(torch.int64)` below. + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) # (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) + + log_probs = (logits / temperature).log_softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs.add_(ys_log_probs) + + vocab_size = log_probs.size(-1) + + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) + + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + new_ys = hyp.ys[:] + new_token = topk_token_indexes[k] + new_timestamp = hyp.timestamp[:] + if new_token not in (blank_id, unk_id): + new_ys.append(new_token) + new_timestamp.append(t) + + new_log_prob = topk_log_probs[k] + new_hyp = Hypothesis( + ys=new_ys, log_prob=new_log_prob, timestamp=new_timestamp + ) + B[i].add(new_hyp) + + B = B + finalized_B + + # get the am_scores for n-best list + hyps_shape = get_hyps_shape(B) + am_scores = torch.tensor([hyp.log_prob.item() for b in B for hyp in b]) + am_scores = k2.RaggedTensor(value=am_scores, shape=hyps_shape).to(device) + + # now LM rescore + # prepare input data to LM + candidate_seqs = [hyp.ys[context_size:] for b in B for hyp in b] + possible_seqs = k2.RaggedTensor(candidate_seqs) + row_splits = possible_seqs.shape.row_splits(1) + sentence_token_lengths = row_splits[1:] - row_splits[:-1] + possible_seqs_with_sos = add_sos(possible_seqs, sos_id=1) + possible_seqs_with_eos = add_eos(possible_seqs, eos_id=1) + sentence_token_lengths += 1 + + x = possible_seqs_with_sos.pad(mode="constant", padding_value=blank_id) + y = possible_seqs_with_eos.pad(mode="constant", padding_value=blank_id) + x = x.to(device).to(torch.int64) + y = y.to(device).to(torch.int64) + sentence_token_lengths = sentence_token_lengths.to(device).to(torch.int64) + + lm_scores = LM.lm(x=x, y=y, lengths=sentence_token_lengths) + assert lm_scores.ndim == 2 + lm_scores = -1 * lm_scores.sum(dim=1) + + ans = {} + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + + # get the best hyp with different lm_scale + for lm_scale in lm_scale_list: + key = f"nnlm_scale_{lm_scale:.2f}" + tot_scores = am_scores.values + lm_scores * lm_scale + ragged_tot_scores = k2.RaggedTensor(shape=am_scores.shape, value=tot_scores) + max_indexes = ragged_tot_scores.argmax().tolist() + unsorted_hyps = [candidate_seqs[idx] for idx in max_indexes] + hyps = [] + for idx in unsorted_indices: + hyps.append(unsorted_hyps[idx]) + + ans[key] = hyps + return ans + + +def modified_beam_search_lm_rescore_LODR( + model: nn.Module, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + LM: LmScorer, + LODR_lm: NgramLm, + sp: spm.SentencePieceProcessor, + lm_scale_list: List[int], + beam: int = 4, + temperature: float = 1.0, + return_timestamps: bool = False, +) -> Union[List[List[int]], DecodingResults]: + """Beam search in batch mode with --max-sym-per-frame=1 being hardcoded. + Rescore the final results with RNNLM and return the one with the highest score + + Args: + model: + The transducer model. + encoder_out: + Output from the encoder. Its shape is (N, T, C). + encoder_out_lens: + A 1-D tensor of shape (N,), containing number of valid frames in + encoder_out before padding. + beam: + Number of active paths during the beam search. + temperature: + Softmax temperature. + LM: + A neural network language model + return_timestamps: + Whether to return timestamps. + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + assert encoder_out.ndim == 3, encoder_out.shape + assert encoder_out.size(0) >= 1, encoder_out.size(0) + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + blank_id = model.decoder.blank_id + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + device = next(model.parameters()).device + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + B = [HypothesisList() for _ in range(N)] + for i in range(N): + B[i].add( + Hypothesis( + ys=[-1] * (context_size - 1) + [blank_id], + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + timestamp=[], + ) + ) + + encoder_out = model.joiner.encoder_proj(packed_encoder_out.data) + + offset = 0 + finalized_B = [] + for t, batch_size in enumerate(batch_size_list): + start = offset + end = offset + batch_size + current_encoder_out = encoder_out.data[start:end] + current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim) + offset = end + + finalized_B = B[batch_size:] + finalized_B + B = B[:batch_size] + + hyps_shape = get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.cat( + [hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps] + ) # (num_hyps, 1) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + # decoder_out is of shape (num_hyps, 1, 1, joiner_dim) + + # Note: For torch 1.7.1 and below, it requires a torch.int64 tensor + # as index, so we use `to(torch.int64)` below. + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) # (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) + + log_probs = (logits / temperature).log_softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs.add_(ys_log_probs) + + vocab_size = log_probs.size(-1) + + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) + + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + new_ys = hyp.ys[:] + new_token = topk_token_indexes[k] + new_timestamp = hyp.timestamp[:] + if new_token not in (blank_id, unk_id): + new_ys.append(new_token) + new_timestamp.append(t) + + new_log_prob = topk_log_probs[k] + new_hyp = Hypothesis( + ys=new_ys, log_prob=new_log_prob, timestamp=new_timestamp + ) + B[i].add(new_hyp) + + B = B + finalized_B + + # get the am_scores for n-best list + hyps_shape = get_hyps_shape(B) + am_scores = torch.tensor([hyp.log_prob.item() for b in B for hyp in b]) + am_scores = k2.RaggedTensor(value=am_scores, shape=hyps_shape).to(device) + + # now LM rescore + # prepare input data to LM + candidate_seqs = [hyp.ys[context_size:] for b in B for hyp in b] + possible_seqs = k2.RaggedTensor(candidate_seqs) + row_splits = possible_seqs.shape.row_splits(1) + sentence_token_lengths = row_splits[1:] - row_splits[:-1] + possible_seqs_with_sos = add_sos(possible_seqs, sos_id=1) + possible_seqs_with_eos = add_eos(possible_seqs, eos_id=1) + sentence_token_lengths += 1 + + x = possible_seqs_with_sos.pad(mode="constant", padding_value=blank_id) + y = possible_seqs_with_eos.pad(mode="constant", padding_value=blank_id) + x = x.to(device).to(torch.int64) + y = y.to(device).to(torch.int64) + sentence_token_lengths = sentence_token_lengths.to(device).to(torch.int64) + + lm_scores = LM.lm(x=x, y=y, lengths=sentence_token_lengths) + assert lm_scores.ndim == 2 + lm_scores = -1 * lm_scores.sum(dim=1) + + # now LODR scores + import math + + LODR_scores = [] + for seq in candidate_seqs: + tokens = " ".join(sp.id_to_piece(seq)) + LODR_scores.append(LODR_lm.score(tokens)) + LODR_scores = torch.tensor(LODR_scores).to(device) * math.log( + 10 + ) # arpa scores are 10-based + assert lm_scores.shape == LODR_scores.shape + + ans = {} + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + + LODR_scale_list = [0.05 * i for i in range(1, 20)] + # get the best hyp with different lm_scale and lodr_scale + for lm_scale in lm_scale_list: + for lodr_scale in LODR_scale_list: + key = f"nnlm_scale_{lm_scale:.2f}_lodr_scale_{lodr_scale:.2f}" + tot_scores = ( + am_scores.values / lm_scale + lm_scores - LODR_scores * lodr_scale + ) + ragged_tot_scores = k2.RaggedTensor(shape=am_scores.shape, value=tot_scores) + max_indexes = ragged_tot_scores.argmax().tolist() + unsorted_hyps = [candidate_seqs[idx] for idx in max_indexes] + hyps = [] + for idx in unsorted_indices: + hyps.append(unsorted_hyps[idx]) + + ans[key] = hyps + return ans + + +def _deprecated_modified_beam_search( + model: nn.Module, + encoder_out: torch.Tensor, + beam: int = 4, + return_timestamps: bool = False, +) -> Union[List[int], DecodingResults]: + """It limits the maximum number of symbols per frame to 1. + + It decodes only one utterance at a time. We keep it only for reference. + The function :func:`modified_beam_search` should be preferred as it + supports batch decoding. + + + Args: + model: + An instance of `Transducer`. + encoder_out: + A tensor of shape (N, T, C) from the encoder. Support only N==1 for now. + beam: + Beam size. + return_timestamps: + Whether to return timestamps. + + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + + assert encoder_out.ndim == 3 + + # support only batch_size == 1 for now + assert encoder_out.size(0) == 1, encoder_out.size(0) + blank_id = model.decoder.blank_id + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + + device = next(model.parameters()).device + + T = encoder_out.size(1) + + B = HypothesisList() + B.add( + Hypothesis( + ys=[-1] * (context_size - 1) + [blank_id], + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + timestamp=[], + ) + ) + encoder_out = model.joiner.encoder_proj(encoder_out) + + for t in range(T): + # fmt: off + current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2) + # current_encoder_out is of shape (1, 1, 1, encoder_out_dim) + # fmt: on + A = list(B) + B = HypothesisList() + + ys_log_probs = torch.cat([hyp.log_prob.reshape(1, 1) for hyp in A]) + # ys_log_probs is of shape (num_hyps, 1) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyp in A], + device=device, + dtype=torch.int64, + ) + # decoder_input is of shape (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + # decoder_output is of shape (num_hyps, 1, 1, joiner_dim) + + current_encoder_out = current_encoder_out.expand( + decoder_out.size(0), 1, 1, -1 + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) + # logits is of shape (num_hyps, 1, 1, vocab_size) + logits = logits.squeeze(1).squeeze(1) + + # now logits is of shape (num_hyps, vocab_size) + log_probs = logits.log_softmax(dim=-1) + + log_probs.add_(ys_log_probs) + + log_probs = log_probs.reshape(-1) + topk_log_probs, topk_indexes = log_probs.topk(beam) + + # topk_hyp_indexes are indexes into `A` + topk_hyp_indexes = topk_indexes // logits.size(-1) + topk_token_indexes = topk_indexes % logits.size(-1) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = topk_hyp_indexes.tolist() + topk_token_indexes = topk_token_indexes.tolist() + + for i in range(len(topk_hyp_indexes)): + hyp = A[topk_hyp_indexes[i]] + new_ys = hyp.ys[:] + new_timestamp = hyp.timestamp[:] + new_token = topk_token_indexes[i] + if new_token not in (blank_id, unk_id): + new_ys.append(new_token) + new_timestamp.append(t) + new_log_prob = topk_log_probs[i] + new_hyp = Hypothesis( + ys=new_ys, log_prob=new_log_prob, timestamp=new_timestamp + ) + B.add(new_hyp) + + best_hyp = B.get_most_probable(length_norm=True) + ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks + + if not return_timestamps: + return ys + else: + return DecodingResults(hyps=[ys], timestamps=[best_hyp.timestamp]) + + +def beam_search( + model: nn.Module, + encoder_out: torch.Tensor, + beam: int = 4, + temperature: float = 1.0, + blank_penalty: float = 0.0, + return_timestamps: bool = False, +) -> Union[List[int], DecodingResults]: + """ + It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf + + espnet/nets/beam_search_transducer.py#L247 is used as a reference. + + Args: + model: + An instance of `Transducer`. + encoder_out: + A tensor of shape (N, T, C) from the encoder. Support only N==1 for now. + beam: + Beam size. + temperature: + Softmax temperature. + return_timestamps: + Whether to return timestamps. + + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + assert encoder_out.ndim == 3 + + # support only batch_size == 1 for now + assert encoder_out.size(0) == 1, encoder_out.size(0) + blank_id = model.decoder.blank_id + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + + device = next(model.parameters()).device + + decoder_input = torch.tensor( + [blank_id] * context_size, + device=device, + dtype=torch.int64, + ).reshape(1, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + + encoder_out = model.joiner.encoder_proj(encoder_out) + + T = encoder_out.size(1) + t = 0 + + B = HypothesisList() + B.add( + Hypothesis( + ys=[-1] * (context_size - 1) + [blank_id], log_prob=0.0, timestamp=[] + ) + ) + + max_sym_per_utt = 20000 + + sym_per_utt = 0 + + decoder_cache: Dict[str, torch.Tensor] = {} + + while t < T and sym_per_utt < max_sym_per_utt: + # fmt: off + current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2) + # fmt: on + A = B + B = HypothesisList() + + joint_cache: Dict[str, torch.Tensor] = {} + + # TODO(fangjun): Implement prefix search to update the `log_prob` + # of hypotheses in A + + while True: + y_star = A.get_most_probable() + A.remove(y_star) + + cached_key = y_star.key + + if cached_key not in decoder_cache: + decoder_input = torch.tensor( + [y_star.ys[-context_size:]], + device=device, + dtype=torch.int64, + ).reshape(1, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + decoder_cache[cached_key] = decoder_out + else: + decoder_out = decoder_cache[cached_key] + + cached_key += f"-t-{t}" + if cached_key not in joint_cache: + logits = model.joiner( + current_encoder_out, + decoder_out.unsqueeze(1), + project_input=False, + ) + + if blank_penalty != 0: + logits[:, :, :, 0] -= blank_penalty + + # TODO(fangjun): Scale the blank posterior + log_prob = (logits / temperature).log_softmax(dim=-1) + # log_prob is (1, 1, 1, vocab_size) + log_prob = log_prob.squeeze() + # Now log_prob is (vocab_size,) + joint_cache[cached_key] = log_prob + else: + log_prob = joint_cache[cached_key] + + # First, process the blank symbol + skip_log_prob = log_prob[blank_id] + new_y_star_log_prob = y_star.log_prob + skip_log_prob + + # ys[:] returns a copy of ys + B.add( + Hypothesis( + ys=y_star.ys[:], + log_prob=new_y_star_log_prob, + timestamp=y_star.timestamp[:], + ) + ) + + # Second, process other non-blank labels + values, indices = log_prob.topk(beam + 1) + for i, v in zip(indices.tolist(), values.tolist()): + if i in (blank_id, unk_id): + continue + new_ys = y_star.ys + [i] + new_log_prob = y_star.log_prob + v + new_timestamp = y_star.timestamp + [t] + A.add( + Hypothesis( + ys=new_ys, + log_prob=new_log_prob, + timestamp=new_timestamp, + ) + ) + + # Check whether B contains more than "beam" elements more probable + # than the most probable in A + A_most_probable = A.get_most_probable() + + kept_B = B.filter(A_most_probable.log_prob) + + if len(kept_B) >= beam: + B = kept_B.topk(beam) + break + + t += 1 + + best_hyp = B.get_most_probable(length_norm=True) + ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks + + if not return_timestamps: + return ys + else: + return DecodingResults(hyps=[ys], timestamps=[best_hyp.timestamp]) + + +def fast_beam_search_with_nbest_rescoring( + model: nn.Module, + decoding_graph: k2.Fsa, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + beam: float, + max_states: int, + max_contexts: int, + ngram_lm_scale_list: List[float], + num_paths: int, + G: k2.Fsa, + sp: spm.SentencePieceProcessor, + word_table: k2.SymbolTable, + oov_word: str = "", + use_double_scores: bool = True, + nbest_scale: float = 0.5, + temperature: float = 1.0, + return_timestamps: bool = False, +) -> Dict[str, Union[List[List[int]], DecodingResults]]: + """It limits the maximum number of symbols per frame to 1. + A lattice is first obtained using fast beam search, num_path are selected + and rescored using a given language model. The shortest path within the + lattice is used as the final output. + + Args: + model: + An instance of `Transducer`. + decoding_graph: + Decoding graph used for decoding, may be a TrivialGraph or a LG. + encoder_out: + A tensor of shape (N, T, C) from the encoder. + encoder_out_lens: + A tensor of shape (N,) containing the number of frames in `encoder_out` + before padding. + beam: + Beam value, similar to the beam used in Kaldi. + max_states: + Max states per stream per frame. + max_contexts: + Max contexts pre stream per frame. + ngram_lm_scale_list: + A list of floats representing LM score scales. + num_paths: + Number of paths to extract from the decoded lattice. + G: + An FsaVec containing only a single FSA. It is an n-gram LM. + sp: + The BPE model. + word_table: + The word symbol table. + oov_word: + OOV words are replaced with this word. + use_double_scores: + True to use double precision for computation. False to use + single precision. + nbest_scale: + It's the scale applied to the lattice.scores. A smaller value + yields more unique paths. + temperature: + Softmax temperature. + return_timestamps: + Whether to return timestamps. + Returns: + Return the decoded result in a dict, where the key has the form + 'ngram_lm_scale_xx' and the value is the decoded results + optionally with timestamps. `xx` is the ngram LM scale value + used during decoding, i.e., 0.1. + """ + lattice = fast_beam_search( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=beam, + max_states=max_states, + max_contexts=max_contexts, + temperature=temperature, + ) + + nbest = Nbest.from_lattice( + lattice=lattice, + num_paths=num_paths, + use_double_scores=use_double_scores, + nbest_scale=nbest_scale, + ) + # at this point, nbest.fsa.scores are all zeros. + + nbest = nbest.intersect(lattice) + # Now nbest.fsa.scores contains acoustic scores + + am_scores = nbest.tot_scores() + + # Now we need to compute the LM scores of each path. + # (1) Get the token IDs of each Path. We assume the decoding_graph + # is an acceptor, i.e., lattice is also an acceptor + tokens_shape = nbest.fsa.arcs.shape().remove_axis(1) # [path][arc] + + tokens = k2.RaggedTensor(tokens_shape, nbest.fsa.labels.contiguous()) + tokens = tokens.remove_values_leq(0) # remove -1 and 0 + + token_list: List[List[int]] = tokens.tolist() + word_list: List[List[str]] = sp.decode(token_list) + + assert isinstance(oov_word, str), oov_word + assert oov_word in word_table, oov_word + oov_word_id = word_table[oov_word] + + word_ids_list: List[List[int]] = [] + + for words in word_list: + this_word_ids = [] + for w in words.split(): + if w in word_table: + this_word_ids.append(word_table[w]) + else: + this_word_ids.append(oov_word_id) + word_ids_list.append(this_word_ids) + + word_fsas = k2.linear_fsa(word_ids_list, device=lattice.device) + word_fsas_with_self_loops = k2.add_epsilon_self_loops(word_fsas) + + num_unique_paths = len(word_ids_list) + + b_to_a_map = torch.zeros( + num_unique_paths, + dtype=torch.int32, + device=lattice.device, + ) + + rescored_word_fsas = k2.intersect_device( + a_fsas=G, + b_fsas=word_fsas_with_self_loops, + b_to_a_map=b_to_a_map, + sorted_match_a=True, + ret_arc_maps=False, + ) + + rescored_word_fsas = k2.remove_epsilon_self_loops(rescored_word_fsas) + rescored_word_fsas = k2.top_sort(k2.connect(rescored_word_fsas)) + ngram_lm_scores = rescored_word_fsas.get_tot_scores( + use_double_scores=True, + log_semiring=False, + ) + + ans: Dict[str, Union[List[List[int]], DecodingResults]] = {} + for s in ngram_lm_scale_list: + key = f"ngram_lm_scale_{s}" + tot_scores = am_scores.values + s * ngram_lm_scores + ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores) + max_indexes = ragged_tot_scores.argmax() + best_path = k2.index_fsa(nbest.fsa, max_indexes) + + if not return_timestamps: + ans[key] = get_texts(best_path) + else: + ans[key] = get_texts_with_timestamp(best_path) + + return ans + + +def fast_beam_search_with_nbest_rnn_rescoring( + model: nn.Module, + decoding_graph: k2.Fsa, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + beam: float, + max_states: int, + max_contexts: int, + ngram_lm_scale_list: List[float], + num_paths: int, + G: k2.Fsa, + sp: spm.SentencePieceProcessor, + word_table: k2.SymbolTable, + rnn_lm_model: torch.nn.Module, + rnn_lm_scale_list: List[float], + oov_word: str = "", + use_double_scores: bool = True, + nbest_scale: float = 0.5, + temperature: float = 1.0, + return_timestamps: bool = False, +) -> Dict[str, Union[List[List[int]], DecodingResults]]: + """It limits the maximum number of symbols per frame to 1. + A lattice is first obtained using fast beam search, num_path are selected + and rescored using a given language model and a rnn-lm. + The shortest path within the lattice is used as the final output. + + Args: + model: + An instance of `Transducer`. + decoding_graph: + Decoding graph used for decoding, may be a TrivialGraph or a LG. + encoder_out: + A tensor of shape (N, T, C) from the encoder. + encoder_out_lens: + A tensor of shape (N,) containing the number of frames in `encoder_out` + before padding. + beam: + Beam value, similar to the beam used in Kaldi. + max_states: + Max states per stream per frame. + max_contexts: + Max contexts pre stream per frame. + ngram_lm_scale_list: + A list of floats representing LM score scales. + num_paths: + Number of paths to extract from the decoded lattice. + G: + An FsaVec containing only a single FSA. It is an n-gram LM. + sp: + The BPE model. + word_table: + The word symbol table. + rnn_lm_model: + A rnn-lm model used for LM rescoring + rnn_lm_scale_list: + A list of floats representing RNN score scales. + oov_word: + OOV words are replaced with this word. + use_double_scores: + True to use double precision for computation. False to use + single precision. + nbest_scale: + It's the scale applied to the lattice.scores. A smaller value + yields more unique paths. + temperature: + Softmax temperature. + return_timestamps: + Whether to return timestamps. + Returns: + Return the decoded result in a dict, where the key has the form + 'ngram_lm_scale_xx' and the value is the decoded results + optionally with timestamps. `xx` is the ngram LM scale value + used during decoding, i.e., 0.1. + """ + lattice = fast_beam_search( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=beam, + max_states=max_states, + max_contexts=max_contexts, + temperature=temperature, + ) + + nbest = Nbest.from_lattice( + lattice=lattice, + num_paths=num_paths, + use_double_scores=use_double_scores, + nbest_scale=nbest_scale, + ) + # at this point, nbest.fsa.scores are all zeros. + + nbest = nbest.intersect(lattice) + # Now nbest.fsa.scores contains acoustic scores + + am_scores = nbest.tot_scores() + + # Now we need to compute the LM scores of each path. + # (1) Get the token IDs of each Path. We assume the decoding_graph + # is an acceptor, i.e., lattice is also an acceptor + tokens_shape = nbest.fsa.arcs.shape().remove_axis(1) # [path][arc] + + tokens = k2.RaggedTensor(tokens_shape, nbest.fsa.labels.contiguous()) + tokens = tokens.remove_values_leq(0) # remove -1 and 0 + + token_list: List[List[int]] = tokens.tolist() + word_list: List[List[str]] = sp.decode(token_list) + + assert isinstance(oov_word, str), oov_word + assert oov_word in word_table, oov_word + oov_word_id = word_table[oov_word] + + word_ids_list: List[List[int]] = [] + + for words in word_list: + this_word_ids = [] + for w in words.split(): + if w in word_table: + this_word_ids.append(word_table[w]) + else: + this_word_ids.append(oov_word_id) + word_ids_list.append(this_word_ids) + + word_fsas = k2.linear_fsa(word_ids_list, device=lattice.device) + word_fsas_with_self_loops = k2.add_epsilon_self_loops(word_fsas) + + num_unique_paths = len(word_ids_list) + + b_to_a_map = torch.zeros( + num_unique_paths, + dtype=torch.int32, + device=lattice.device, + ) + + rescored_word_fsas = k2.intersect_device( + a_fsas=G, + b_fsas=word_fsas_with_self_loops, + b_to_a_map=b_to_a_map, + sorted_match_a=True, + ret_arc_maps=False, + ) + + rescored_word_fsas = k2.remove_epsilon_self_loops(rescored_word_fsas) + rescored_word_fsas = k2.top_sort(k2.connect(rescored_word_fsas)) + ngram_lm_scores = rescored_word_fsas.get_tot_scores( + use_double_scores=True, + log_semiring=False, + ) + + # Now RNN-LM + blank_id = model.decoder.blank_id + sos_id = sp.piece_to_id("sos_id") + eos_id = sp.piece_to_id("eos_id") + + sos_tokens = add_sos(tokens, sos_id) + tokens_eos = add_eos(tokens, eos_id) + sos_tokens_row_splits = sos_tokens.shape.row_splits(1) + sentence_lengths = sos_tokens_row_splits[1:] - sos_tokens_row_splits[:-1] + + x_tokens = sos_tokens.pad(mode="constant", padding_value=blank_id) + y_tokens = tokens_eos.pad(mode="constant", padding_value=blank_id) + + x_tokens = x_tokens.to(torch.int64) + y_tokens = y_tokens.to(torch.int64) + sentence_lengths = sentence_lengths.to(torch.int64) + + rnn_lm_nll = rnn_lm_model(x=x_tokens, y=y_tokens, lengths=sentence_lengths) + assert rnn_lm_nll.ndim == 2 + assert rnn_lm_nll.shape[0] == len(token_list) + rnn_lm_scores = -1 * rnn_lm_nll.sum(dim=1) + + ans: Dict[str, List[List[int]]] = {} + for n_scale in ngram_lm_scale_list: + for rnn_scale in rnn_lm_scale_list: + key = f"ngram_lm_scale_{n_scale}_rnn_lm_scale_{rnn_scale}" + tot_scores = ( + am_scores.values + n_scale * ngram_lm_scores + rnn_scale * rnn_lm_scores + ) + ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores) + max_indexes = ragged_tot_scores.argmax() + best_path = k2.index_fsa(nbest.fsa, max_indexes) + + if not return_timestamps: + ans[key] = get_texts(best_path) + else: + ans[key] = get_texts_with_timestamp(best_path) + + return ans + + +def modified_beam_search_ngram_rescoring( + model: nn.Module, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + ngram_lm: NgramLm, + ngram_lm_scale: float, + beam: int = 4, + temperature: float = 1.0, +) -> List[List[int]]: + """Beam search in batch mode with --max-sym-per-frame=1 being hardcoded. + + Args: + model: + The transducer model. + encoder_out: + Output from the encoder. Its shape is (N, T, C). + encoder_out_lens: + A 1-D tensor of shape (N,), containing number of valid frames in + encoder_out before padding. + beam: + Number of active paths during the beam search. + temperature: + Softmax temperature. + Returns: + Return a list-of-list of token IDs. ans[i] is the decoding results + for the i-th utterance. + """ + assert encoder_out.ndim == 3, encoder_out.shape + assert encoder_out.size(0) >= 1, encoder_out.size(0) + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + blank_id = model.decoder.blank_id + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + device = next(model.parameters()).device + lm_scale = ngram_lm_scale + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + B = [HypothesisList() for _ in range(N)] + for i in range(N): + B[i].add( + Hypothesis( + ys=[-1] * (context_size - 1) + [blank_id], + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + state_cost=NgramLmStateCost(ngram_lm), + ) + ) + + encoder_out = model.joiner.encoder_proj(packed_encoder_out.data) + + offset = 0 + finalized_B = [] + for batch_size in batch_size_list: + start = offset + end = offset + batch_size + current_encoder_out = encoder_out.data[start:end] + current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim) + offset = end + + finalized_B = B[batch_size:] + finalized_B + B = B[:batch_size] + + hyps_shape = get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.cat( + [ + hyp.log_prob.reshape(1, 1) + hyp.state_cost.lm_score * lm_scale + for hyps in A + for hyp in hyps + ] + ) # (num_hyps, 1) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + # decoder_out is of shape (num_hyps, 1, 1, joiner_dim) + + # Note: For torch 1.7.1 and below, it requires a torch.int64 tensor + # as index, so we use `to(torch.int64)` below. + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) # (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) + + log_probs = (logits / temperature).log_softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs.add_(ys_log_probs) + vocab_size = log_probs.size(-1) + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) + + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + new_ys = hyp.ys[:] + new_token = topk_token_indexes[k] + if new_token not in (blank_id, unk_id): + new_ys.append(new_token) + state_cost = hyp.state_cost.forward_one_step(new_token) + else: + state_cost = hyp.state_cost + + # We only keep AM scores in new_hyp.log_prob + new_log_prob = topk_log_probs[k] - hyp.state_cost.lm_score * lm_scale + + new_hyp = Hypothesis( + ys=new_ys, log_prob=new_log_prob, state_cost=state_cost + ) + B[i].add(new_hyp) + + B = B + finalized_B + best_hyps = [b.get_most_probable(length_norm=True) for b in B] + + sorted_ans = [h.ys[context_size:] for h in best_hyps] + ans = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + + return ans + + +def modified_beam_search_LODR( + model: nn.Module, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + LODR_lm: NgramLm, + LODR_lm_scale: float, + LM: LmScorer, + beam: int = 4, + context_graph: Optional[ContextGraph] = None, +) -> List[List[int]]: + """This function implements LODR (https://arxiv.org/abs/2203.16776) with + `modified_beam_search`. It uses a bi-gram language model as the estimate + of the internal language model and subtracts its score during shallow fusion + with an external language model. This implementation uses a RNNLM as the + external language model. + + Args: + model (Transducer): + The transducer model + encoder_out (torch.Tensor): + Encoder output in (N,T,C) + encoder_out_lens (torch.Tensor): + A 1-D tensor of shape (N,), containing the number of + valid frames in encoder_out before padding. + LODR_lm: + A low order n-gram LM, whose score will be subtracted during shallow fusion + LODR_lm_scale: + The scale of the LODR_lm + LM: + A neural net LM, e.g an RNNLM or transformer LM + beam (int, optional): + Beam size. Defaults to 4. + + Returns: + Return a list-of-list of token IDs. ans[i] is the decoding results + for the i-th utterance. + + """ + assert encoder_out.ndim == 3, encoder_out.shape + assert encoder_out.size(0) >= 1, encoder_out.size(0) + assert LM is not None + lm_scale = LM.lm_scale + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + blank_id = model.decoder.blank_id + sos_id = getattr(LM, "sos_id", 1) + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + device = next(model.parameters()).device + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + # get initial lm score and lm state by scoring the "sos" token + sos_token = torch.tensor([[sos_id]]).to(torch.int64).to(device) + lens = torch.tensor([1]).to(device) + init_score, init_states = LM.score_token(sos_token, lens) + + B = [HypothesisList() for _ in range(N)] + for i in range(N): + B[i].add( + Hypothesis( + ys=[-1] * (context_size - 1) + [blank_id], + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + state=init_states, # state of the NN LM + lm_score=init_score.reshape(-1), + state_cost=NgramLmStateCost( + LODR_lm + ), # state of the source domain ngram + context_state=None if context_graph is None else context_graph.root, + ) + ) + + encoder_out = model.joiner.encoder_proj(packed_encoder_out.data) + + offset = 0 + finalized_B = [] + for batch_size in batch_size_list: + start = offset + end = offset + batch_size + current_encoder_out = encoder_out.data[start:end] # get batch + current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim) + offset = end + + finalized_B = B[batch_size:] + finalized_B + B = B[:batch_size] + + hyps_shape = get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.cat( + [hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps] + ) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) # (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) + + log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs.add_(ys_log_probs) + + vocab_size = log_probs.size(-1) + + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) + """ + for all hyps with a non-blank new token, score this token. + It is a little confusing here because this for-loop + looks very similar to the one below. Here, we go through all + top-k tokens and only add the non-blanks ones to the token_list. + LM will score those tokens given the LM states. Note that + the variable `scores` is the LM score after seeing the new + non-blank token. + """ + token_list = [] + hs = [] + cs = [] + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + new_token = topk_token_indexes[k] + if new_token not in (blank_id, unk_id): + if LM.lm_type == "rnn": + token_list.append([new_token]) + # store the LSTM states + hs.append(hyp.state[0]) + cs.append(hyp.state[1]) + else: + # for transformer LM + token_list.append( + [sos_id] + hyp.ys[context_size:] + [new_token] + ) + + # forward NN LM to get new states and scores + if len(token_list) != 0: + x_lens = torch.tensor([len(tokens) for tokens in token_list]).to(device) + if LM.lm_type == "rnn": + tokens_to_score = ( + torch.tensor(token_list).to(torch.int64).to(device).reshape(-1, 1) + ) + hs = torch.cat(hs, dim=1).to(device) + cs = torch.cat(cs, dim=1).to(device) + state = (hs, cs) + else: + # for transformer LM + tokens_list = [torch.tensor(tokens) for tokens in token_list] + tokens_to_score = ( + torch.nn.utils.rnn.pad_sequence( + tokens_list, batch_first=True, padding_value=0.0 + ) + .to(device) + .to(torch.int64) + ) + + state = None + + scores, lm_states = LM.score_token(tokens_to_score, x_lens, state) + + count = 0 # index, used to locate score and lm states + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + ys = hyp.ys[:] + + # current score of hyp + lm_score = hyp.lm_score + state = hyp.state + + hyp_log_prob = topk_log_probs[k] # get score of current hyp + new_token = topk_token_indexes[k] + + context_score = 0 + new_context_state = None if context_graph is None else hyp.context_state + if new_token not in (blank_id, unk_id): + if context_graph is not None: + ( + context_score, + new_context_state, + ) = context_graph.forward_one_step(hyp.context_state, new_token) + + ys.append(new_token) + state_cost = hyp.state_cost.forward_one_step(new_token) + + # calculate the score of the latest token + current_ngram_score = state_cost.lm_score - hyp.state_cost.lm_score + + assert current_ngram_score <= 0.0, ( + state_cost.lm_score, + hyp.state_cost.lm_score, + ) + # score = score + TDLM_score - LODR_score + # LODR_LM_scale should be a negative number here + hyp_log_prob += ( + lm_score[new_token] * lm_scale + + LODR_lm_scale * current_ngram_score + + context_score + ) # add the lm score + + lm_score = scores[count] + if LM.lm_type == "rnn": + state = ( + lm_states[0][:, count, :].unsqueeze(1), + lm_states[1][:, count, :].unsqueeze(1), + ) + count += 1 + else: + state_cost = hyp.state_cost + + new_hyp = Hypothesis( + ys=ys, + log_prob=hyp_log_prob, + state=state, + lm_score=lm_score, + state_cost=state_cost, + context_state=new_context_state, + ) + B[i].add(new_hyp) + + B = B + finalized_B + + # finalize context_state, if the matched contexts do not reach final state + # we need to add the score on the corresponding backoff arc + if context_graph is not None: + finalized_B = [HypothesisList() for _ in range(len(B))] + for i, hyps in enumerate(B): + for hyp in list(hyps): + context_score, new_context_state = context_graph.finalize( + hyp.context_state + ) + finalized_B[i].add( + Hypothesis( + ys=hyp.ys, + log_prob=hyp.log_prob + context_score, + timestamp=hyp.timestamp, + context_state=new_context_state, + ) + ) + B = finalized_B + + best_hyps = [b.get_most_probable(length_norm=True) for b in B] + + sorted_ans = [h.ys[context_size:] for h in best_hyps] + ans = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + + return ans + + +def modified_beam_search_lm_shallow_fusion( + model: nn.Module, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + LM: LmScorer, + beam: int = 4, + return_timestamps: bool = False, +) -> List[List[int]]: + """Modified_beam_search + NN LM shallow fusion + + Args: + model (Transducer): + The transducer model + encoder_out (torch.Tensor): + Encoder output in (N,T,C) + encoder_out_lens (torch.Tensor): + A 1-D tensor of shape (N,), containing the number of + valid frames in encoder_out before padding. + sp: + Sentence piece generator. + LM (LmScorer): + A neural net LM, e.g RNN or Transformer + beam (int, optional): + Beam size. Defaults to 4. + + Returns: + Return a list-of-list of token IDs. ans[i] is the decoding results + for the i-th utterance. + """ + assert encoder_out.ndim == 3, encoder_out.shape + assert encoder_out.size(0) >= 1, encoder_out.size(0) + assert LM is not None + lm_scale = LM.lm_scale + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + blank_id = model.decoder.blank_id + sos_id = getattr(LM, "sos_id", 1) + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + device = next(model.parameters()).device + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + # get initial lm score and lm state by scoring the "sos" token + sos_token = torch.tensor([[sos_id]]).to(torch.int64).to(device) + lens = torch.tensor([1]).to(device) + init_score, init_states = LM.score_token(sos_token, lens) + + B = [HypothesisList() for _ in range(N)] + for i in range(N): + B[i].add( + Hypothesis( + ys=[-1] * (context_size - 1) + [blank_id], + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + state=init_states, + lm_score=init_score.reshape(-1), + timestamp=[], + ) + ) + + encoder_out = model.joiner.encoder_proj(packed_encoder_out.data) + + offset = 0 + finalized_B = [] + for t, batch_size in enumerate(batch_size_list): + start = offset + end = offset + batch_size + current_encoder_out = encoder_out.data[start:end] # get batch + current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim) + offset = end + + finalized_B = B[batch_size:] + finalized_B + B = B[:batch_size] + + hyps_shape = get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.cat( + [hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps] + ) + + lm_scores = torch.cat( + [hyp.lm_score.reshape(1, -1) for hyps in A for hyp in hyps] + ) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) # (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) + + log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs.add_(ys_log_probs) + + vocab_size = log_probs.size(-1) + + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) + """ + for all hyps with a non-blank new token, score this token. + It is a little confusing here because this for-loop + looks very similar to the one below. Here, we go through all + top-k tokens and only add the non-blanks ones to the token_list. + `LM` will score those tokens given the LM states. Note that + the variable `scores` is the LM score after seeing the new + non-blank token. + """ + token_list = [] # a list of list + hs = [] + cs = [] + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + new_token = topk_token_indexes[k] + if new_token not in (blank_id, unk_id): + if LM.lm_type == "rnn": + token_list.append([new_token]) + # store the LSTM states + hs.append(hyp.state[0]) + cs.append(hyp.state[1]) + else: + # for transformer LM + token_list.append( + [sos_id] + hyp.ys[context_size:] + [new_token] + ) + + if len(token_list) != 0: + x_lens = torch.tensor([len(tokens) for tokens in token_list]).to(device) + if LM.lm_type == "rnn": + tokens_to_score = ( + torch.tensor(token_list).to(torch.int64).to(device).reshape(-1, 1) + ) + hs = torch.cat(hs, dim=1).to(device) + cs = torch.cat(cs, dim=1).to(device) + state = (hs, cs) + else: + # for transformer LM + tokens_list = [torch.tensor(tokens) for tokens in token_list] + tokens_to_score = ( + torch.nn.utils.rnn.pad_sequence( + tokens_list, batch_first=True, padding_value=0.0 + ) + .to(device) + .to(torch.int64) + ) + + state = None + + scores, lm_states = LM.score_token(tokens_to_score, x_lens, state) + + count = 0 # index, used to locate score and lm states + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + ys = hyp.ys[:] + + lm_score = hyp.lm_score + state = hyp.state + + hyp_log_prob = topk_log_probs[k] # get score of current hyp + new_token = topk_token_indexes[k] + new_timestamp = hyp.timestamp[:] + if new_token not in (blank_id, unk_id): + ys.append(new_token) + new_timestamp.append(t) + + hyp_log_prob += lm_score[new_token] * lm_scale # add the lm score + + lm_score = scores[count] + if LM.lm_type == "rnn": + state = ( + lm_states[0][:, count, :].unsqueeze(1), + lm_states[1][:, count, :].unsqueeze(1), + ) + count += 1 + + new_hyp = Hypothesis( + ys=ys, + log_prob=hyp_log_prob, + state=state, + lm_score=lm_score, + timestamp=new_timestamp, + ) + B[i].add(new_hyp) + + B = B + finalized_B + best_hyps = [b.get_most_probable(length_norm=True) for b in B] + + sorted_ans = [h.ys[context_size:] for h in best_hyps] + sorted_timestamps = [h.timestamp for h in best_hyps] + ans = [] + ans_timestamps = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + ans_timestamps.append(sorted_timestamps[unsorted_indices[i]]) + + if not return_timestamps: + return ans + else: + return DecodingResults( + hyps=ans, + timestamps=ans_timestamps, + ) diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/decode.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/decode.py new file mode 100755 index 000000000..496f0f5b0 --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/decode.py @@ -0,0 +1,989 @@ +#!/usr/bin/env python3 +# Copyright 2024 (Author: SeungHyun Lee, Contacts: whsqkaak@naver.com) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +(1) greedy search +./pruned_transducer_stateless7_streaming/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --max-duration 600 \ + --decode-chunk-len 32 \ + --decoding-method greedy_search + +(2) beam search (not recommended) +./pruned_transducer_stateless7_streaming/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --max-duration 600 \ + --decode-chunk-len 32 \ + --decoding-method beam_search \ + --beam-size 4 + +(3) modified beam search +./pruned_transducer_stateless7_streaming/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --max-duration 600 \ + --decode-chunk-len 32 \ + --decoding-method modified_beam_search \ + --beam-size 4 + +(4) fast beam search (one best) +./pruned_transducer_stateless7_streaming/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --max-duration 600 \ + --decode-chunk-len 32 \ + --decoding-method fast_beam_search \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 + +(5) fast beam search (nbest) +./pruned_transducer_stateless7_streaming/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --max-duration 600 \ + --decode-chunk-len 32 \ + --decoding-method fast_beam_search_nbest \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 \ + --num-paths 200 \ + --nbest-scale 0.5 + +(6) fast beam search (nbest oracle WER) +./pruned_transducer_stateless7_streaming/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --max-duration 600 \ + --decode-chunk-len 32 \ + --decoding-method fast_beam_search_nbest_oracle \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 \ + --num-paths 200 \ + --nbest-scale 0.5 + +(7) fast beam search (with LG) +./pruned_transducer_stateless7_streaming/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --max-duration 600 \ + --decode-chunk-len 32 \ + --decoding-method fast_beam_search_nbest_LG \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 +""" + + +import argparse +import logging +import math +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import KsponSpeechAsrDataModule +from beam_search import ( + beam_search, + fast_beam_search_nbest, + fast_beam_search_nbest_LG, + fast_beam_search_nbest_oracle, + fast_beam_search_one_best, + greedy_search, + greedy_search_batch, + modified_beam_search, + modified_beam_search_lm_rescore, + modified_beam_search_lm_rescore_LODR, + modified_beam_search_lm_shallow_fusion, + modified_beam_search_LODR, +) +from train import add_model_arguments, get_params, get_transducer_model + +from icefall import LmScorer, NgramLm +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + +LOG_EPS = math.log(1e-10) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=9, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7_streaming/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--lang-dir", + type=Path, + default="data/lang_bpe_500", + help="The lang dir containing word table and LG graph", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - beam_search + - modified_beam_search + - fast_beam_search + - fast_beam_search_nbest + - fast_beam_search_nbest_oracle + - fast_beam_search_nbest_LG + If you use fast_beam_search_nbest_LG, you have to specify + `--lang-dir`, which should contain `LG.pt`. + """, + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An integer indicating how many candidates we will keep for each + frame. Used only when --decoding-method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=20.0, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --decoding-method is fast_beam_search, + fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle + """, + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=0.01, + help=""" + Used only when --decoding_method is fast_beam_search_nbest_LG. + It specifies the scale for n-gram LM scores. + """, + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=8, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=64, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. + Used only when --decoding_method is greedy_search""", + ) + + parser.add_argument( + "--num-paths", + type=int, + default=200, + help="""Number of paths for nbest decoding. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help="""Scale applied to lattice scores when computing nbest paths. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--use-shallow-fusion", + type=str2bool, + default=False, + help="""Use neural network LM for shallow fusion. + If you want to use LODR, you will also need to set this to true + """, + ) + + parser.add_argument( + "--lm-type", + type=str, + default="rnn", + help="Type of NN lm", + choices=["rnn", "transformer"], + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.3, + help="""The scale of the neural network LM + Used only when `--use-shallow-fusion` is set to True. + """, + ) + + parser.add_argument( + "--tokens-ngram", + type=int, + default=2, + help="""The order of the ngram lm. + """, + ) + + parser.add_argument( + "--backoff-id", + type=int, + default=500, + help="ID of the backoff symbol in the ngram LM", + ) + + add_model_arguments(parser) + + return parser + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + batch: dict, + word_table: Optional[k2.SymbolTable] = None, + decoding_graph: Optional[k2.Fsa] = None, + LM: Optional[LmScorer] = None, + ngram_lm=None, + ngram_lm_scale: float = 0.0, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: It indicates the setting used for decoding. For example, + if greedy_search is used, it would be "greedy_search" + If beam search with a beam size of 7 is used, it would be + "beam_7" + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + Args: + params: + It's the return value of :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + word_table: + The word symbol table. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + LM: + A neural network language model. + ngram_lm: + A ngram language model + ngram_lm_scale: + The scale for the ngram language model. + Returns: + Return the decoding result. See above description for the format of + the returned dict. + """ + device = next(model.parameters()).device + feature = batch["inputs"] + assert feature.ndim == 3 + + feature = feature.to(device) + # at entry, feature is (N, T, C) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + feature_lens += 30 + feature = torch.nn.functional.pad( + feature, + pad=(0, 0, 0, 30), + value=LOG_EPS, + ) + encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) + + hyps = [] + + if params.decoding_method == "fast_beam_search": + hyp_tokens = fast_beam_search_one_best( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "fast_beam_search_nbest_LG": + hyp_tokens = fast_beam_search_nbest_LG( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + nbest_scale=params.nbest_scale, + ) + for hyp in hyp_tokens: + hyps.append([word_table[i] for i in hyp]) + elif params.decoding_method == "fast_beam_search_nbest": + hyp_tokens = fast_beam_search_nbest( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + nbest_scale=params.nbest_scale, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "fast_beam_search_nbest_oracle": + hyp_tokens = fast_beam_search_nbest_oracle( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + ref_texts=sp.encode(supervisions["text"]), + nbest_scale=params.nbest_scale, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: + hyp_tokens = greedy_search_batch( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search": + hyp_tokens = modified_beam_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search_lm_shallow_fusion": + hyp_tokens = modified_beam_search_lm_shallow_fusion( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + LM=LM, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search_LODR": + hyp_tokens = modified_beam_search_LODR( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + LODR_lm=ngram_lm, + LODR_lm_scale=ngram_lm_scale, + LM=LM, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search_lm_rescore": + lm_scale_list = [0.01 * i for i in range(10, 50)] + ans_dict = modified_beam_search_lm_rescore( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + LM=LM, + lm_scale_list=lm_scale_list, + ) + elif params.decoding_method == "modified_beam_search_lm_rescore_LODR": + lm_scale_list = [0.02 * i for i in range(2, 30)] + ans_dict = modified_beam_search_lm_rescore_LODR( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + LM=LM, + LODR_lm=ngram_lm, + sp=sp, + lm_scale_list=lm_scale_list, + ) + else: + batch_size = encoder_out.size(0) + + for i in range(batch_size): + # fmt: off + encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] + # fmt: on + if params.decoding_method == "greedy_search": + hyp = greedy_search( + model=model, + encoder_out=encoder_out_i, + max_sym_per_frame=params.max_sym_per_frame, + ) + elif params.decoding_method == "beam_search": + hyp = beam_search( + model=model, + encoder_out=encoder_out_i, + beam=params.beam_size, + ) + else: + raise ValueError( + f"Unsupported decoding method: {params.decoding_method}" + ) + hyps.append(sp.decode(hyp).split()) + + if params.decoding_method == "greedy_search": + return {"greedy_search": hyps} + elif "fast_beam_search" in params.decoding_method: + key = f"beam_{params.beam}_" + key += f"max_contexts_{params.max_contexts}_" + key += f"max_states_{params.max_states}" + if "nbest" in params.decoding_method: + key += f"_num_paths_{params.num_paths}_" + key += f"nbest_scale_{params.nbest_scale}" + if "LG" in params.decoding_method: + key += f"_ngram_lm_scale_{params.ngram_lm_scale}" + + return {key: hyps} + elif params.decoding_method in ( + "modified_beam_search_lm_rescore", + "modified_beam_search_lm_rescore_LODR", + ): + ans = dict() + assert ans_dict is not None + for key, hyps in ans_dict.items(): + hyps = [sp.decode(hyp).split() for hyp in hyps] + ans[f"beam_size_{params.beam_size}_{key}"] = hyps + return ans + else: + return {f"beam_size_{params.beam_size}": hyps} + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + word_table: Optional[k2.SymbolTable] = None, + decoding_graph: Optional[k2.Fsa] = None, + LM: Optional[LmScorer] = None, + ngram_lm=None, + ngram_lm_scale: float = 0.0, +) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + word_table: + The word symbol table. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search, fast_beam_search_nbest, + fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + ngram_lm: + A n-gram LM to be used for LODR. + Returns: + Return a dict, whose key may be "greedy_search" if greedy search + is used, or it may be "beam_7" if beam size of 7 is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + if params.decoding_method == "greedy_search": + log_interval = 50 + else: + log_interval = 20 + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + + hyps_dict = decode_one_batch( + params=params, + model=model, + sp=sp, + decoding_graph=decoding_graph, + word_table=word_table, + batch=batch, + LM=LM, + ngram_lm=ngram_lm, + ngram_lm_scale=ngram_lm_scale, + ) + + for name, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): + ref_words = ref_text.split() + this_batch.append((cut_id, ref_words, hyp_words)) + + results[name].extend(this_batch) + + num_cuts += len(texts) + + if batch_idx % log_interval == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], +): + test_set_cers = dict() + for key, results in results_dict.items(): + recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt" + results = sorted(results) + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out CERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt" + with open(errs_filename, "w") as f: + cer = write_error_stats( + f, f"{test_set_name}-{key}", results, enable_log=True, compute_CER=True, + ) + test_set_cers[key] = cer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_cers = sorted(test_set_cers.items(), key=lambda x: x[1]) + errs_info = params.res_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt" + with open(errs_info, "w") as f: + print("settings\tCER", file=f) + for key, val in test_set_cers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, CER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_cers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + KsponSpeechAsrDataModule.add_arguments(parser) + LmScorer.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + assert params.decoding_method in ( + "greedy_search", + "beam_search", + "fast_beam_search", + "fast_beam_search_nbest", + "fast_beam_search_nbest_LG", + "fast_beam_search_nbest_oracle", + "modified_beam_search", + "modified_beam_search_LODR", + "modified_beam_search_lm_shallow_fusion", + "modified_beam_search_lm_rescore", + "modified_beam_search_lm_rescore_LODR", + ) + params.res_dir = params.exp_dir / params.decoding_method + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + params.suffix += f"-streaming-chunk-size-{params.decode_chunk_len}" + + if "fast_beam_search" in params.decoding_method: + params.suffix += f"-beam-{params.beam}" + params.suffix += f"-max-contexts-{params.max_contexts}" + params.suffix += f"-max-states-{params.max_states}" + if "nbest" in params.decoding_method: + params.suffix += f"-nbest-scale-{params.nbest_scale}" + params.suffix += f"-num-paths-{params.num_paths}" + if "LG" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + elif "beam_search" in params.decoding_method: + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" + else: + params.suffix += f"-context-{params.context_size}" + params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" + + if params.use_shallow_fusion: + params.suffix += f"-{params.lm_type}-lm-scale-{params.lm_scale}" + + if "LODR" in params.decoding_method: + params.suffix += ( + f"-LODR-{params.tokens_ngram}gram-scale-{params.ngram_lm_scale}" + ) + + if params.use_averaged_model: + params.suffix += "-use-averaged-model" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # and are defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + assert model.encoder.decode_chunk_size == params.decode_chunk_len // 2, ( + model.encoder.decode_chunk_size, + params.decode_chunk_len, + ) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to(device) + model.eval() + + # only load the neural network LM if required + if params.use_shallow_fusion or params.decoding_method in ( + "modified_beam_search_lm_rescore", + "modified_beam_search_lm_rescore_LODR", + "modified_beam_search_lm_shallow_fusion", + "modified_beam_search_LODR", + ): + LM = LmScorer( + lm_type=params.lm_type, + params=params, + device=device, + lm_scale=params.lm_scale, + ) + LM.to(device) + LM.eval() + else: + LM = None + + # only load N-gram LM when needed + if params.decoding_method == "modified_beam_search_lm_rescore_LODR": + try: + import kenlm + except ImportError: + print("Please install kenlm first. You can use") + print(" pip install https://github.com/kpu/kenlm/archive/master.zip") + print("to install it") + import sys + + sys.exit(-1) + ngram_file_name = str(params.lang_dir / f"{params.tokens_ngram}gram.arpa") + logging.info(f"lm filename: {ngram_file_name}") + ngram_lm = kenlm.Model(ngram_file_name) + ngram_lm_scale = None # use a list to search + + elif params.decoding_method == "modified_beam_search_LODR": + lm_filename = f"{params.tokens_ngram}gram.fst.txt" + logging.info(f"Loading token level lm: {lm_filename}") + ngram_lm = NgramLm( + str(params.lang_dir / lm_filename), + backoff_id=params.backoff_id, + is_binary=False, + ) + logging.info(f"num states: {ngram_lm.lm.num_states}") + ngram_lm_scale = params.ngram_lm_scale + else: + ngram_lm = None + ngram_lm_scale = None + + if "fast_beam_search" in params.decoding_method: + if params.decoding_method == "fast_beam_search_nbest_LG": + lexicon = Lexicon(params.lang_dir) + word_table = lexicon.word_table + lg_filename = params.lang_dir / "LG.pt" + logging.info(f"Loading {lg_filename}") + decoding_graph = k2.Fsa.from_dict( + torch.load(lg_filename, map_location=device) + ) + decoding_graph.scores *= params.ngram_lm_scale + else: + word_table = None + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + else: + decoding_graph = None + word_table = None + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + # we need cut ids to display recognition results. + args.return_cuts = True + ksponspeech = KsponSpeechAsrDataModule(args) + + eval_clean_cuts = ksponspeech.eval_clean_cuts() + eval_other_cuts = ksponspeech.eval_other_cuts() + + eval_clean_dl = ksponspeech.test_dataloaders(eval_clean_cuts) + eval_other_dl = ksponspeech.test_dataloaders(eval_other_cuts) + + test_sets = ["eval_clean", "eval_other"] + test_dl = [eval_clean_dl, eval_other_dl] + import time + + for test_set, test_dl in zip(test_sets, test_dl): + start = time.time() + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + sp=sp, + word_table=word_table, + decoding_graph=decoding_graph, + LM=LM, + ngram_lm=ngram_lm, + ngram_lm_scale=ngram_lm_scale, + ) + logging.info(f"Elasped time for {test_set}: {time.time() - start}") + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/decode_stream.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/decode_stream.py new file mode 100644 index 000000000..2c4b144fc --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/decode_stream.py @@ -0,0 +1,151 @@ +# Copyright 2022 Xiaomi Corp. (authors: Wei Kang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +from typing import List, Optional, Tuple + +import k2 +import torch +from beam_search import Hypothesis, HypothesisList + +from icefall.utils import AttributeDict + + +class DecodeStream(object): + def __init__( + self, + params: AttributeDict, + cut_id: str, + initial_states: List[torch.Tensor], + decoding_graph: Optional[k2.Fsa] = None, + device: torch.device = torch.device("cpu"), + ) -> None: + """ + Args: + initial_states: + Initial decode states of the model, e.g. the return value of + `get_init_state` in conformer.py + decoding_graph: + Decoding graph used for decoding, may be a TrivialGraph or a HLG. + Used only when decoding_method is fast_beam_search. + device: + The device to run this stream. + """ + if params.decoding_method == "fast_beam_search": + assert decoding_graph is not None + assert device == decoding_graph.device + + self.params = params + self.cut_id = cut_id + self.LOG_EPS = math.log(1e-10) + + self.states = initial_states + + # It contains a 2-D tensors representing the feature frames. + self.features: torch.Tensor = None + + self.num_frames: int = 0 + # how many frames have been processed. (before subsampling). + # we only modify this value in `func:get_feature_frames`. + self.num_processed_frames: int = 0 + + self._done: bool = False + + # The transcript of current utterance. + self.ground_truth: str = "" + + # The decoding result (partial or final) of current utterance. + self.hyp: List = [] + + # how many frames have been processed, after subsampling (i.e. a + # cumulative sum of the second return value of + # encoder.streaming_forward + self.done_frames: int = 0 + + # It has two steps of feature subsampling in zipformer: out_lens=((x_lens-7)//2+1)//2 + # 1) feature embedding: out_lens=(x_lens-7)//2 + # 2) output subsampling: out_lens=(out_lens+1)//2 + self.pad_length = 7 + + if params.decoding_method == "greedy_search": + self.hyp = [-1] * (params.context_size - 1) + [params.blank_id] + elif params.decoding_method == "modified_beam_search": + self.hyps = HypothesisList() + self.hyps.add( + Hypothesis( + ys=[-1] * (params.context_size - 1) + [params.blank_id], + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + ) + ) + elif params.decoding_method == "fast_beam_search": + # The rnnt_decoding_stream for fast_beam_search. + self.rnnt_decoding_stream: k2.RnntDecodingStream = k2.RnntDecodingStream( + decoding_graph + ) + else: + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") + + @property + def done(self) -> bool: + """Return True if all the features are processed.""" + return self._done + + @property + def id(self) -> str: + return self.cut_id + + def set_features( + self, + features: torch.Tensor, + tail_pad_len: int = 0, + ) -> None: + """Set features tensor of current utterance.""" + assert features.dim() == 2, features.dim() + self.features = torch.nn.functional.pad( + features, + (0, 0, 0, self.pad_length + tail_pad_len), + mode="constant", + value=self.LOG_EPS, + ) + self.num_frames = self.features.size(0) + + def get_feature_frames(self, chunk_size: int) -> Tuple[torch.Tensor, int]: + """Consume chunk_size frames of features""" + chunk_length = chunk_size + self.pad_length + + ret_length = min(self.num_frames - self.num_processed_frames, chunk_length) + + ret_features = self.features[ + self.num_processed_frames : self.num_processed_frames + ret_length # noqa + ] + + self.num_processed_frames += chunk_size + if self.num_processed_frames >= self.num_frames: + self._done = True + + return ret_features, ret_length + + def decoding_result(self) -> List[int]: + """Obtain current decoding result.""" + if self.params.decoding_method == "greedy_search": + return self.hyp[self.params.context_size :] # noqa + elif self.params.decoding_method == "modified_beam_search": + best_hyp = self.hyps.get_most_probable(length_norm=True) + return best_hyp.ys[self.params.context_size :] # noqa + else: + assert self.params.decoding_method == "fast_beam_search" + return self.hyp diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/decoder.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/decoder.py new file mode 100644 index 000000000..bfd019ff5 --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/decoder.py @@ -0,0 +1,109 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class Decoder(nn.Module): + """This class modifies the stateless decoder from the following paper: + + RNN-transducer with stateless prediction network + https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419 + + It removes the recurrent connection from the decoder, i.e., the prediction + network. Different from the above paper, it adds an extra Conv1d + right after the embedding layer. + + TODO: Implement https://arxiv.org/pdf/2109.07513.pdf + """ + + def __init__( + self, + vocab_size: int, + decoder_dim: int, + blank_id: int, + context_size: int, + ): + """ + Args: + vocab_size: + Number of tokens of the modeling unit including blank. + decoder_dim: + Dimension of the input embedding, and of the decoder output. + blank_id: + The ID of the blank symbol. + context_size: + Number of previous words to use to predict the next word. + 1 means bigram; 2 means trigram. n means (n+1)-gram. + """ + super().__init__() + + self.embedding = nn.Embedding( + num_embeddings=vocab_size, + embedding_dim=decoder_dim, + ) + self.blank_id = blank_id + + assert context_size >= 1, context_size + self.context_size = context_size + self.vocab_size = vocab_size + if context_size > 1: + self.conv = nn.Conv1d( + in_channels=decoder_dim, + out_channels=decoder_dim, + kernel_size=context_size, + padding=0, + groups=decoder_dim // 4, # group size == 4 + bias=False, + ) + else: + # To avoid `RuntimeError: Module 'Decoder' has no attribute 'conv'` + # when inference with torch.jit.script and context_size == 1 + self.conv = nn.Identity() + + def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor: + """ + Args: + y: + A 2-D tensor of shape (N, U). + need_pad: + True to left pad the input. Should be True during training. + False to not pad the input. Should be False during inference. + Returns: + Return a tensor of shape (N, U, decoder_dim). + """ + y = y.to(torch.int64) + # this stuff about clamp() is a temporary fix for a mismatch + # at utterance start, we use negative ids in beam_search.py + if torch.jit.is_tracing(): + # This is for exporting to PNNX via ONNX + embedding_out = self.embedding(y) + else: + embedding_out = self.embedding(y.clamp(min=0)) * (y >= 0).unsqueeze(-1) + if self.context_size > 1: + embedding_out = embedding_out.permute(0, 2, 1) + if need_pad is True: + embedding_out = F.pad(embedding_out, pad=(self.context_size - 1, 0)) + else: + # During inference time, there is no need to do extra padding + # as we only need one output + assert embedding_out.size(-1) == self.context_size + embedding_out = self.conv(embedding_out) + embedding_out = embedding_out.permute(0, 2, 1) + embedding_out = F.relu(embedding_out) + return embedding_out diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/encoder_interface.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/encoder_interface.py new file mode 100644 index 000000000..257facce4 --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/encoder_interface.py @@ -0,0 +1,43 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Tuple + +import torch +import torch.nn as nn + + +class EncoderInterface(nn.Module): + def forward( + self, x: torch.Tensor, x_lens: torch.Tensor + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Args: + x: + A tensor of shape (batch_size, input_seq_len, num_features) + containing the input features. + x_lens: + A tensor of shape (batch_size,) containing the number of frames + in `x` before padding. + Returns: + Return a tuple containing two tensors: + - encoder_out, a tensor of (batch_size, out_seq_len, output_dim) + containing unnormalized probabilities, i.e., the output of a + linear layer. + - encoder_out_lens, a tensor of shape (batch_size,) containing + the number of frames in `encoder_out` before padding. + """ + raise NotImplementedError("Please implement it in a subclass") diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/export-onnx.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/export-onnx.py new file mode 100755 index 000000000..20a77890b --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/export-onnx.py @@ -0,0 +1,653 @@ +#!/usr/bin/env python3 +# +# Copyright 2024 (Author: SeungHyun Lee, Contacts: whsqkaak@naver.com) + +""" +This script exports a transducer model from PyTorch to ONNX. + + - Export the model to ONNX + +./pruned_transducer_stateless7_streaming/export-onnx.py \ + --tokens $repo/data/lang_bpe_500/tokens.txt \ + --use-averaged-model 0 \ + --epoch 99 \ + --avg 1 \ + --decode-chunk-len 32 \ + --exp-dir $repo/exp/ + +It will generate the following 3 files in exp + + - encoder-epoch-99-avg-1.onnx + - decoder-epoch-99-avg-1.onnx + - joiner-epoch-99-avg-1.onnx + +See ./onnx_pretrained.py for how to use the exported models. +""" + +import argparse +import logging +from pathlib import Path +from typing import Dict, List, Tuple + +import k2 +import onnx +import torch +import torch.nn as nn +from decoder import Decoder +from onnxruntime.quantization import QuantType, quantize_dynamic +from scaling_converter import convert_scaled_to_non_scaled +from torch import Tensor +from train import add_model_arguments, get_params, get_transducer_model +from zipformer import Zipformer + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.utils import num_tokens, setup_logger, str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=9, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7_streaming/exp", + help="""It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--tokens", + type=str, + default="data/lang_bpe_500/tokens.txt", + help="Path to the tokens.txt.", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + add_model_arguments(parser) + + return parser + + +class OnnxEncoder(nn.Module): + """A wrapper for Zipformer and the encoder_proj from the joiner""" + + def __init__(self, encoder: Zipformer, encoder_proj: nn.Linear): + """ + Args: + encoder: + A Zipformer encoder. + encoder_proj: + The projection layer for encoder from the joiner. + """ + super().__init__() + self.encoder = encoder + self.encoder_proj = encoder_proj + + def forward(self, x: Tensor, states: List[Tensor]) -> Tuple[Tensor, List[Tensor]]: + """Please see the help information of Zipformer.streaming_forward""" + N = x.size(0) + T = x.size(1) + x_lens = torch.tensor([T] * N, device=x.device) + + output, _, new_states = self.encoder.streaming_forward( + x=x, + x_lens=x_lens, + states=states, + ) + + output = self.encoder_proj(output) + # Now output is of shape (N, T, joiner_dim) + + return output, new_states + + +class OnnxDecoder(nn.Module): + """A wrapper for Decoder and the decoder_proj from the joiner""" + + def __init__(self, decoder: Decoder, decoder_proj: nn.Linear): + super().__init__() + self.decoder = decoder + self.decoder_proj = decoder_proj + + def forward(self, y: torch.Tensor) -> torch.Tensor: + """ + Args: + y: + A 2-D tensor of shape (N, context_size). + Returns + Return a 2-D tensor of shape (N, joiner_dim) + """ + need_pad = False + decoder_output = self.decoder(y, need_pad=need_pad) + decoder_output = decoder_output.squeeze(1) + output = self.decoder_proj(decoder_output) + + return output + + +class OnnxJoiner(nn.Module): + """A wrapper for the joiner""" + + def __init__(self, output_linear: nn.Linear): + super().__init__() + self.output_linear = output_linear + + def forward( + self, + encoder_out: torch.Tensor, + decoder_out: torch.Tensor, + ) -> torch.Tensor: + """ + Args: + encoder_out: + A 2-D tensor of shape (N, joiner_dim) + decoder_out: + A 2-D tensor of shape (N, joiner_dim) + Returns: + Return a 2-D tensor of shape (N, vocab_size) + """ + logit = encoder_out + decoder_out + logit = self.output_linear(torch.tanh(logit)) + return logit + + +def add_meta_data(filename: str, meta_data: Dict[str, str]): + """Add meta data to an ONNX model. It is changed in-place. + + Args: + filename: + Filename of the ONNX model to be changed. + meta_data: + Key-value pairs. + """ + model = onnx.load(filename) + for key, value in meta_data.items(): + meta = model.metadata_props.add() + meta.key = key + meta.value = value + + onnx.save(model, filename) + + +def export_encoder_model_onnx( + encoder_model: OnnxEncoder, + encoder_filename: str, + opset_version: int = 11, +) -> None: + """ + Onnx model inputs: + - 0: src + - many state tensors (the exact number depending on the actual model) + + Onnx model outputs: + - 0: output, its shape is (N, T, joiner_dim) + - many state tensors (the exact number depending on the actual model) + + Args: + encoder_model: + The model to be exported + encoder_filename: + The filename to save the exported ONNX model. + opset_version: + The opset version to use. + """ + + encoder_model.encoder.__class__.forward = ( + encoder_model.encoder.__class__.streaming_forward + ) + + decode_chunk_len = encoder_model.encoder.decode_chunk_size * 2 + pad_length = 7 + T = decode_chunk_len + pad_length + logging.info(f"decode_chunk_len: {decode_chunk_len}") + logging.info(f"pad_length: {pad_length}") + logging.info(f"T: {T}") + + x = torch.rand(1, T, 80, dtype=torch.float32) + + init_state = encoder_model.encoder.get_init_state() + + num_encoders = encoder_model.encoder.num_encoders + logging.info(f"num_encoders: {num_encoders}") + logging.info(f"len(init_state): {len(init_state)}") + + inputs = {} + input_names = ["x"] + + outputs = {} + output_names = ["encoder_out"] + + def build_inputs_outputs(tensors, name, N): + for i, s in enumerate(tensors): + logging.info(f"{name}_{i}.shape: {s.shape}") + inputs[f"{name}_{i}"] = {N: "N"} + outputs[f"new_{name}_{i}"] = {N: "N"} + input_names.append(f"{name}_{i}") + output_names.append(f"new_{name}_{i}") + + num_encoder_layers = ",".join(map(str, encoder_model.encoder.num_encoder_layers)) + encoder_dims = ",".join(map(str, encoder_model.encoder.encoder_dims)) + attention_dims = ",".join(map(str, encoder_model.encoder.attention_dims)) + cnn_module_kernels = ",".join(map(str, encoder_model.encoder.cnn_module_kernels)) + ds = encoder_model.encoder.zipformer_downsampling_factors + left_context_len = encoder_model.encoder.left_context_len + left_context_len = [left_context_len // k for k in ds] + left_context_len = ",".join(map(str, left_context_len)) + + meta_data = { + "model_type": "zipformer", + "version": "1", + "model_author": "k2-fsa", + "decode_chunk_len": str(decode_chunk_len), # 32 + "T": str(T), # 39 + "num_encoder_layers": num_encoder_layers, + "encoder_dims": encoder_dims, + "attention_dims": attention_dims, + "cnn_module_kernels": cnn_module_kernels, + "left_context_len": left_context_len, + } + logging.info(f"meta_data: {meta_data}") + + # (num_encoder_layers, 1) + cached_len = init_state[num_encoders * 0 : num_encoders * 1] + + # (num_encoder_layers, 1, encoder_dim) + cached_avg = init_state[num_encoders * 1 : num_encoders * 2] + + # (num_encoder_layers, left_context_len, 1, attention_dim) + cached_key = init_state[num_encoders * 2 : num_encoders * 3] + + # (num_encoder_layers, left_context_len, 1, attention_dim//2) + cached_val = init_state[num_encoders * 3 : num_encoders * 4] + + # (num_encoder_layers, left_context_len, 1, attention_dim//2) + cached_val2 = init_state[num_encoders * 4 : num_encoders * 5] + + # (num_encoder_layers, 1, encoder_dim, cnn_module_kernel-1) + cached_conv1 = init_state[num_encoders * 5 : num_encoders * 6] + + # (num_encoder_layers, 1, encoder_dim, cnn_module_kernel-1) + cached_conv2 = init_state[num_encoders * 6 : num_encoders * 7] + + build_inputs_outputs(cached_len, "cached_len", 1) + build_inputs_outputs(cached_avg, "cached_avg", 1) + build_inputs_outputs(cached_key, "cached_key", 2) + build_inputs_outputs(cached_val, "cached_val", 2) + build_inputs_outputs(cached_val2, "cached_val2", 2) + build_inputs_outputs(cached_conv1, "cached_conv1", 1) + build_inputs_outputs(cached_conv2, "cached_conv2", 1) + + logging.info(inputs) + logging.info(outputs) + logging.info(input_names) + logging.info(output_names) + + torch.onnx.export( + encoder_model, + (x, init_state), + encoder_filename, + verbose=False, + opset_version=opset_version, + input_names=input_names, + output_names=output_names, + dynamic_axes={ + "x": {0: "N"}, + "encoder_out": {0: "N"}, + **inputs, + **outputs, + }, + ) + + add_meta_data(filename=encoder_filename, meta_data=meta_data) + + +def export_decoder_model_onnx( + decoder_model: nn.Module, + decoder_filename: str, + opset_version: int = 11, +) -> None: + """Export the decoder model to ONNX format. + + The exported model has one input: + + - y: a torch.int64 tensor of shape (N, context_size) + + and has one output: + + - decoder_out: a torch.float32 tensor of shape (N, joiner_dim) + + Note: The argument need_pad is fixed to False. + + Args: + decoder_model: + The decoder model to be exported. + decoder_filename: + Filename to save the exported ONNX model. + opset_version: + The opset version to use. + """ + context_size = decoder_model.decoder.context_size + vocab_size = decoder_model.decoder.vocab_size + y = torch.zeros(10, context_size, dtype=torch.int64) + decoder_model = torch.jit.script(decoder_model) + torch.onnx.export( + decoder_model, + y, + decoder_filename, + verbose=False, + opset_version=opset_version, + input_names=["y"], + output_names=["decoder_out"], + dynamic_axes={ + "y": {0: "N"}, + "decoder_out": {0: "N"}, + }, + ) + meta_data = { + "context_size": str(context_size), + "vocab_size": str(vocab_size), + } + add_meta_data(filename=decoder_filename, meta_data=meta_data) + + +def export_joiner_model_onnx( + joiner_model: nn.Module, + joiner_filename: str, + opset_version: int = 11, +) -> None: + """Export the joiner model to ONNX format. + The exported joiner model has two inputs: + + - encoder_out: a tensor of shape (N, joiner_dim) + - decoder_out: a tensor of shape (N, joiner_dim) + + and produces one output: + + - logit: a tensor of shape (N, vocab_size) + """ + joiner_dim = joiner_model.output_linear.weight.shape[1] + logging.info(f"joiner dim: {joiner_dim}") + + projected_encoder_out = torch.rand(11, joiner_dim, dtype=torch.float32) + projected_decoder_out = torch.rand(11, joiner_dim, dtype=torch.float32) + + torch.onnx.export( + joiner_model, + (projected_encoder_out, projected_decoder_out), + joiner_filename, + verbose=False, + opset_version=opset_version, + input_names=[ + "encoder_out", + "decoder_out", + ], + output_names=["logit"], + dynamic_axes={ + "encoder_out": {0: "N"}, + "decoder_out": {0: "N"}, + "logit": {0: "N"}, + }, + ) + meta_data = { + "joiner_dim": str(joiner_dim), + } + add_meta_data(filename=joiner_filename, meta_data=meta_data) + + +@torch.no_grad() +def main(): + args = get_parser().parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + setup_logger(f"{params.exp_dir}/log-export/log-export-onnx") + + logging.info(f"device: {device}") + + # Load tokens.txt here + token_table = k2.SymbolTable.from_file(params.tokens) + + # Load id of the token and the vocab size + # is defined in local/train_bpe_model.py + params.blank_id = token_table[""] + params.unk_id = token_table[""] + params.vocab_size = num_tokens(token_table) + 1 # +1 for + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + model.to(device) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to("cpu") + model.eval() + + convert_scaled_to_non_scaled(model, inplace=True) + encoder = OnnxEncoder( + encoder=model.encoder, + encoder_proj=model.joiner.encoder_proj, + ) + + decoder = OnnxDecoder( + decoder=model.decoder, + decoder_proj=model.joiner.decoder_proj, + ) + + joiner = OnnxJoiner(output_linear=model.joiner.output_linear) + + encoder_num_param = sum([p.numel() for p in encoder.parameters()]) + decoder_num_param = sum([p.numel() for p in decoder.parameters()]) + joiner_num_param = sum([p.numel() for p in joiner.parameters()]) + total_num_param = encoder_num_param + decoder_num_param + joiner_num_param + logging.info(f"encoder parameters: {encoder_num_param}") + logging.info(f"decoder parameters: {decoder_num_param}") + logging.info(f"joiner parameters: {joiner_num_param}") + logging.info(f"total parameters: {total_num_param}") + + if params.iter > 0: + suffix = f"iter-{params.iter}" + else: + suffix = f"epoch-{params.epoch}" + + suffix += f"-avg-{params.avg}" + if params.use_averaged_model: + suffix += "-with-averaged-model" + + opset_version = 13 + + logging.info("Exporting encoder") + encoder_filename = params.exp_dir / f"encoder-{suffix}.onnx" + export_encoder_model_onnx( + encoder, + encoder_filename, + opset_version=opset_version, + ) + logging.info(f"Exported encoder to {encoder_filename}") + + logging.info("Exporting decoder") + decoder_filename = params.exp_dir / f"decoder-{suffix}.onnx" + export_decoder_model_onnx( + decoder, + decoder_filename, + opset_version=opset_version, + ) + logging.info(f"Exported decoder to {decoder_filename}") + + logging.info("Exporting joiner") + joiner_filename = params.exp_dir / f"joiner-{suffix}.onnx" + export_joiner_model_onnx( + joiner, + joiner_filename, + opset_version=opset_version, + ) + logging.info(f"Exported joiner to {joiner_filename}") + + # Generate int8 quantization models + # See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection + + logging.info("Generate int8 quantization models") + + encoder_filename_int8 = params.exp_dir / f"encoder-{suffix}.int8.onnx" + quantize_dynamic( + model_input=encoder_filename, + model_output=encoder_filename_int8, + op_types_to_quantize=["MatMul"], + weight_type=QuantType.QInt8, + ) + + decoder_filename_int8 = params.exp_dir / f"decoder-{suffix}.int8.onnx" + quantize_dynamic( + model_input=decoder_filename, + model_output=decoder_filename_int8, + op_types_to_quantize=["MatMul", "Gather"], + weight_type=QuantType.QInt8, + ) + + joiner_filename_int8 = params.exp_dir / f"joiner-{suffix}.int8.onnx" + quantize_dynamic( + model_input=joiner_filename, + model_output=joiner_filename_int8, + op_types_to_quantize=["MatMul"], + weight_type=QuantType.QInt8, + ) + + +if __name__ == "__main__": + main() diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/export.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/export.py new file mode 100755 index 000000000..aa39664dd --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/export.py @@ -0,0 +1,872 @@ +#!/usr/bin/env python3 +# +# Copyright 2024 (Author: SeungHyun Lee, Contacts: whsqkaak@naver.com) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This script converts several saved checkpoints +# to a single one using model averaging. +""" + +Usage: + +(1) Export to torchscript model using torch.jit.script() + +./pruned_transducer_stateless7_streaming/export.py \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --tokens $repo/data/lang_bpe_500/tokens.txt \ + --epoch 30 \ + --avg 9 \ + --jit 1 + +It will generate a file `cpu_jit.pt` in the given `exp_dir`. You can later +load it by `torch.jit.load("cpu_jit.pt")`. + +Note `cpu` in the name `cpu_jit.pt` means the parameters when loaded into Python +are on CPU. You can use `to("cuda")` to move them to a CUDA device. + +Check +https://github.com/k2-fsa/sherpa +for how to use the exported models outside of icefall. + +(2) Export `model.state_dict()` + +./pruned_transducer_stateless7_streaming/export.py \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --tokens $repo/data/lang_bpe_500/tokens.txt \ + --epoch 20 \ + --avg 10 + +It will generate a file `pretrained.pt` in the given `exp_dir`. You can later +load it by `icefall.checkpoint.load_checkpoint()`. + +To use the generated file with `pruned_transducer_stateless7_streaming/decode.py`, +you can do: + + cd /path/to/exp_dir + ln -s pretrained.pt epoch-9999.pt + + cd /path/to/egs/ksponspeech/ASR + ./pruned_transducer_stateless7_streaming/decode.py \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --epoch 9999 \ + --avg 1 \ + --max-duration 600 \ + --decoding-method greedy_search \ + --bpe-model data/lang_bpe_500/bpe.model + +Check ./pretrained.py for its usage. + +(3) Export to ONNX format with pretrained.pt + +Assume we will export to ONNX format with `epoch-999.pt`. + +./pruned_transducer_stateless7_streaming/export.py \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --tokens $repo/data/lang_bpe_500/tokens.txt \ + --use-averaged-model False \ + --epoch 999 \ + --avg 1 \ + --fp16 \ + --onnx 1 + +It will generate the following files in the given `exp_dir`. +Check `onnx_check.py` for how to use them. + + - encoder.onnx + - decoder.onnx + - joiner.onnx + - joiner_encoder_proj.onnx + - joiner_decoder_proj.onnx + +Check +https://github.com/k2-fsa/sherpa-onnx +for how to use the exported models outside of icefall. + +(4) Export to ONNX format for triton server + +Assume we will export to ONNX format with `epoch-999.pt`. + +./pruned_transducer_stateless7_streaming/export.py \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --tokens $repo/data/lang_bpe_500/tokens.txt \ + --use-averaged-model False \ + --epoch 999 \ + --avg 1 \ + --fp16 \ + --onnx-triton 1 \ + --onnx 1 + +It will generate the following files in the given `exp_dir`. +Check `onnx_check.py` for how to use them. + + - encoder.onnx + - decoder.onnx + - joiner.onnx + +Check +https://github.com/k2-fsa/sherpa/tree/master/triton +for how to use the exported models outside of icefall. + +""" + + +import argparse +import logging +from pathlib import Path + +import k2 +import onnxruntime +import torch +import torch.nn as nn +from onnx_model_wrapper import OnnxStreamingEncoder, TritonOnnxDecoder, TritonOnnxJoiner +from scaling_converter import convert_scaled_to_non_scaled +from train import add_model_arguments, get_params, get_transducer_model +from zipformer import stack_states + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.utils import num_tokens, str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=9, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7_streaming/exp", + help="""It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--tokens", + type=str, + default="data/lang_bpe_500/tokens.txt", + help="Path to the tokens.txt", + ) + + parser.add_argument( + "--jit", + type=str2bool, + default=False, + help="""True to save a model after applying torch.jit.script. + It will generate a file named cpu_jit.pt + + Check ./jit_pretrained.py for how to use it. + """, + ) + + parser.add_argument( + "--onnx", + type=str2bool, + default=False, + help="""If True, --jit is ignored and it exports the model + to onnx format. It will generate the following files: + + - encoder.onnx + - decoder.onnx + - joiner.onnx + - joiner_encoder_proj.onnx + - joiner_decoder_proj.onnx + + Refer to ./onnx_check.py and ./onnx_pretrained.py for how to use them. + """, + ) + + parser.add_argument( + "--onnx-triton", + type=str2bool, + default=False, + help="""If True, --onnx would export model into the following files: + + - encoder.onnx + - decoder.onnx + - joiner.onnx + These files would be used for https://github.com/k2-fsa/sherpa/tree/master/triton. + """, + ) + + parser.add_argument( + "--fp16", + action="store_true", + help="whether to export fp16 onnx model, default false", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + add_model_arguments(parser) + + return parser + + +def test_acc(xlist, blist, rtol=1e-3, atol=1e-5, tolerate_small_mismatch=True): + for a, b in zip(xlist, blist): + try: + torch.testing.assert_allclose(a, b, rtol=rtol, atol=atol) + except AssertionError as error: + if tolerate_small_mismatch: + print("small mismatch detected", error) + else: + return False + return True + + +def export_encoder_model_onnx( + encoder_model: nn.Module, + encoder_filename: str, + opset_version: int = 11, +) -> None: + """Export the given encoder model to ONNX format. + The exported model has two inputs: + + - x, a tensor of shape (N, T, C); dtype is torch.float32 + - x_lens, a tensor of shape (N,); dtype is torch.int64 + + and it has two outputs: + + - encoder_out, a tensor of shape (N, T, C) + - encoder_out_lens, a tensor of shape (N,) + + Note: The warmup argument is fixed to 1. + + Args: + encoder_model: + The input encoder model + encoder_filename: + The filename to save the exported ONNX model. + opset_version: + The opset version to use. + """ + batch_size = 17 + seq_len = 101 + torch.manual_seed(0) + x = torch.rand(batch_size, seq_len, 80, dtype=torch.float32) + x_lens = torch.tensor([seq_len - i for i in range(batch_size)], dtype=torch.int64) + + # encoder_model = torch.jit.script(encoder_model) + # It throws the following error for the above statement + # + # RuntimeError: Exporting the operator __is_ to ONNX opset version + # 11 is not supported. Please feel free to request support or + # submit a pull request on PyTorch GitHub. + # + # I cannot find which statement causes the above error. + # torch.onnx.export() will use torch.jit.trace() internally, which + # works well for the current reworked model + initial_states = [encoder_model.get_init_state() for _ in range(batch_size)] + states = stack_states(initial_states) + + left_context_len = encoder_model.decode_chunk_size * encoder_model.num_left_chunks + encoder_attention_dim = encoder_model.encoders[0].attention_dim + + len_cache = torch.cat(states[: encoder_model.num_encoders]).transpose(0, 1) # B,15 + avg_cache = torch.cat( + states[encoder_model.num_encoders : 2 * encoder_model.num_encoders] + ).transpose( + 0, 1 + ) # [B,15,384] + cnn_cache = torch.cat(states[5 * encoder_model.num_encoders :]).transpose( + 0, 1 + ) # [B,2*15,384,cnn_kernel-1] + pad_tensors = [ + torch.nn.functional.pad( + tensor, + ( + 0, + encoder_attention_dim - tensor.shape[-1], + 0, + 0, + 0, + left_context_len - tensor.shape[1], + 0, + 0, + ), + ) + for tensor in states[ + 2 * encoder_model.num_encoders : 5 * encoder_model.num_encoders + ] + ] + attn_cache = torch.cat(pad_tensors).transpose(0, 2) # [B,64,15*3,192] + + encoder_model_wrapper = OnnxStreamingEncoder(encoder_model) + + torch.onnx.export( + encoder_model_wrapper, + (x, x_lens, len_cache, avg_cache, attn_cache, cnn_cache), + encoder_filename, + verbose=False, + opset_version=opset_version, + input_names=[ + "x", + "x_lens", + "len_cache", + "avg_cache", + "attn_cache", + "cnn_cache", + ], + output_names=[ + "encoder_out", + "encoder_out_lens", + "new_len_cache", + "new_avg_cache", + "new_attn_cache", + "new_cnn_cache", + ], + dynamic_axes={ + "x": {0: "N", 1: "T"}, + "x_lens": {0: "N"}, + "encoder_out": {0: "N", 1: "T"}, + "encoder_out_lens": {0: "N"}, + "len_cache": {0: "N"}, + "avg_cache": {0: "N"}, + "attn_cache": {0: "N"}, + "cnn_cache": {0: "N"}, + "new_len_cache": {0: "N"}, + "new_avg_cache": {0: "N"}, + "new_attn_cache": {0: "N"}, + "new_cnn_cache": {0: "N"}, + }, + ) + logging.info(f"Saved to {encoder_filename}") + + # Test onnx encoder with torch native encoder + encoder_model.eval() + ( + encoder_out_torch, + encoder_out_lens_torch, + new_states_torch, + ) = encoder_model.streaming_forward( + x=x, + x_lens=x_lens, + states=states, + ) + ort_session = onnxruntime.InferenceSession( + str(encoder_filename), providers=["CPUExecutionProvider"] + ) + ort_inputs = { + "x": x.numpy(), + "x_lens": x_lens.numpy(), + "len_cache": len_cache.numpy(), + "avg_cache": avg_cache.numpy(), + "attn_cache": attn_cache.numpy(), + "cnn_cache": cnn_cache.numpy(), + } + ort_outs = ort_session.run(None, ort_inputs) + + assert test_acc( + [encoder_out_torch.numpy(), encoder_out_lens_torch.numpy()], ort_outs[:2] + ) + logging.info(f"{encoder_filename} acc test succeeded.") + + +def export_decoder_model_onnx( + decoder_model: nn.Module, + decoder_filename: str, + opset_version: int = 11, +) -> None: + """Export the decoder model to ONNX format. + + The exported model has one input: + + - y: a torch.int64 tensor of shape (N, decoder_model.context_size) + + and has one output: + + - decoder_out: a torch.float32 tensor of shape (N, 1, C) + + Note: The argument need_pad is fixed to False. + + Args: + decoder_model: + The decoder model to be exported. + decoder_filename: + Filename to save the exported ONNX model. + opset_version: + The opset version to use. + """ + y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64) + need_pad = False # Always False, so we can use torch.jit.trace() here + # Note(fangjun): torch.jit.trace() is more efficient than torch.jit.script() + # in this case + torch.onnx.export( + decoder_model, + (y, need_pad), + decoder_filename, + verbose=False, + opset_version=opset_version, + input_names=["y", "need_pad"], + output_names=["decoder_out"], + dynamic_axes={ + "y": {0: "N"}, + "decoder_out": {0: "N"}, + }, + ) + logging.info(f"Saved to {decoder_filename}") + + +def export_decoder_model_onnx_triton( + decoder_model: nn.Module, + decoder_filename: str, + opset_version: int = 11, +) -> None: + """Export the decoder model to ONNX format. + + The exported model has one input: + + - y: a torch.int64 tensor of shape (N, decoder_model.context_size) + + and has one output: + + - decoder_out: a torch.float32 tensor of shape (N, 1, C) + + Note: The argument need_pad is fixed to False. + + Args: + decoder_model: + The decoder model to be exported. + decoder_filename: + Filename to save the exported ONNX model. + opset_version: + The opset version to use. + """ + y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64) + + decoder_model = TritonOnnxDecoder(decoder_model) + + torch.onnx.export( + decoder_model, + (y,), + decoder_filename, + verbose=False, + opset_version=opset_version, + input_names=["y"], + output_names=["decoder_out"], + dynamic_axes={ + "y": {0: "N"}, + "decoder_out": {0: "N"}, + }, + ) + logging.info(f"Saved to {decoder_filename}") + + +def export_joiner_model_onnx( + joiner_model: nn.Module, + joiner_filename: str, + opset_version: int = 11, +) -> None: + """Export the joiner model to ONNX format. + The exported joiner model has two inputs: + + - projected_encoder_out: a tensor of shape (N, joiner_dim) + - projected_decoder_out: a tensor of shape (N, joiner_dim) + + and produces one output: + + - logit: a tensor of shape (N, vocab_size) + + The exported encoder_proj model has one input: + + - encoder_out: a tensor of shape (N, encoder_out_dim) + + and produces one output: + + - projected_encoder_out: a tensor of shape (N, joiner_dim) + + The exported decoder_proj model has one input: + + - decoder_out: a tensor of shape (N, decoder_out_dim) + + and produces one output: + + - projected_decoder_out: a tensor of shape (N, joiner_dim) + """ + encoder_proj_filename = str(joiner_filename).replace(".onnx", "_encoder_proj.onnx") + decoder_proj_filename = str(joiner_filename).replace(".onnx", "_decoder_proj.onnx") + + encoder_out_dim = joiner_model.encoder_proj.weight.shape[1] + decoder_out_dim = joiner_model.decoder_proj.weight.shape[1] + joiner_dim = joiner_model.decoder_proj.weight.shape[0] + + projected_encoder_out = torch.rand(1, 1, 1, joiner_dim, dtype=torch.float32) + projected_decoder_out = torch.rand(1, 1, 1, joiner_dim, dtype=torch.float32) + + project_input = False + # Note: It uses torch.jit.trace() internally + torch.onnx.export( + joiner_model, + (projected_encoder_out, projected_decoder_out, project_input), + joiner_filename, + verbose=False, + opset_version=opset_version, + input_names=[ + "encoder_out", + "decoder_out", + "project_input", + ], + output_names=["logit"], + dynamic_axes={ + "encoder_out": {0: "N"}, + "decoder_out": {0: "N"}, + "logit": {0: "N"}, + }, + ) + logging.info(f"Saved to {joiner_filename}") + + encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32) + torch.onnx.export( + joiner_model.encoder_proj, + encoder_out, + encoder_proj_filename, + verbose=False, + opset_version=opset_version, + input_names=["encoder_out"], + output_names=["projected_encoder_out"], + dynamic_axes={ + "encoder_out": {0: "N"}, + "projected_encoder_out": {0: "N"}, + }, + ) + logging.info(f"Saved to {encoder_proj_filename}") + + decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32) + torch.onnx.export( + joiner_model.decoder_proj, + decoder_out, + decoder_proj_filename, + verbose=False, + opset_version=opset_version, + input_names=["decoder_out"], + output_names=["projected_decoder_out"], + dynamic_axes={ + "decoder_out": {0: "N"}, + "projected_decoder_out": {0: "N"}, + }, + ) + logging.info(f"Saved to {decoder_proj_filename}") + + +def export_joiner_model_onnx_triton( + joiner_model: nn.Module, + joiner_filename: str, + opset_version: int = 11, +) -> None: + """Export the joiner model to ONNX format. + The exported model has two inputs: + - encoder_out: a tensor of shape (N, encoder_out_dim) + - decoder_out: a tensor of shape (N, decoder_out_dim) + and has one output: + - joiner_out: a tensor of shape (N, vocab_size) + Note: The argument project_input is fixed to True. A user should not + project the encoder_out/decoder_out by himself/herself. The exported joiner + will do that for the user. + """ + encoder_out_dim = joiner_model.encoder_proj.weight.shape[1] + decoder_out_dim = joiner_model.decoder_proj.weight.shape[1] + encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32) + decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32) + + joiner_model = TritonOnnxJoiner(joiner_model) + # Note: It uses torch.jit.trace() internally + torch.onnx.export( + joiner_model, + (encoder_out, decoder_out), + joiner_filename, + verbose=False, + opset_version=opset_version, + input_names=["encoder_out", "decoder_out"], + output_names=["logit"], + dynamic_axes={ + "encoder_out": {0: "N"}, + "decoder_out": {0: "N"}, + "logit": {0: "N"}, + }, + ) + logging.info(f"Saved to {joiner_filename}") + + +@torch.no_grad() +def main(): + args = get_parser().parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + # Load tokens.txt here + token_table = k2.SymbolTable.from_file(params.tokens) + + # Load id of the token and the vocab size + # is defined in local/train_bpe_model.py + params.blank_id = token_table[""] + params.unk_id = token_table[""] + params.vocab_size = num_tokens(token_table) + 1 # +1 for + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + model.to(device) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to("cpu") + model.eval() + + if params.onnx: + convert_scaled_to_non_scaled(model, inplace=True) + opset_version = 13 + logging.info("Exporting to onnx format") + encoder_filename = params.exp_dir / "encoder.onnx" + export_encoder_model_onnx( + model.encoder, + encoder_filename, + opset_version=opset_version, + ) + if not params.onnx_triton: + decoder_filename = params.exp_dir / "decoder.onnx" + export_decoder_model_onnx( + model.decoder, + decoder_filename, + opset_version=opset_version, + ) + + joiner_filename = params.exp_dir / "joiner.onnx" + export_joiner_model_onnx( + model.joiner, + joiner_filename, + opset_version=opset_version, + ) + else: + decoder_filename = params.exp_dir / "decoder.onnx" + export_decoder_model_onnx_triton( + model.decoder, + decoder_filename, + opset_version=opset_version, + ) + + joiner_filename = params.exp_dir / "joiner.onnx" + export_joiner_model_onnx_triton( + model.joiner, + joiner_filename, + opset_version=opset_version, + ) + + if params.fp16: + try: + import onnxmltools + from onnxmltools.utils.float16_converter import convert_float_to_float16 + except ImportError: + print("Please install onnxmltools!") + import sys + + sys.exit(1) + + def export_onnx_fp16(onnx_fp32_path, onnx_fp16_path): + onnx_fp32_model = onnxmltools.utils.load_model(onnx_fp32_path) + onnx_fp16_model = convert_float_to_float16(onnx_fp32_model) + onnxmltools.utils.save_model(onnx_fp16_model, onnx_fp16_path) + + encoder_fp16_filename = params.exp_dir / "encoder_fp16.onnx" + export_onnx_fp16(encoder_filename, encoder_fp16_filename) + + decoder_fp16_filename = params.exp_dir / "decoder_fp16.onnx" + export_onnx_fp16(decoder_filename, decoder_fp16_filename) + + joiner_fp16_filename = params.exp_dir / "joiner_fp16.onnx" + export_onnx_fp16(joiner_filename, joiner_fp16_filename) + + if not params.onnx_triton: + encoder_proj_filename = str(joiner_filename).replace( + ".onnx", "_encoder_proj.onnx" + ) + encoder_proj_fp16_filename = ( + params.exp_dir / "joiner_encoder_proj_fp16.onnx" + ) + export_onnx_fp16(encoder_proj_filename, encoder_proj_fp16_filename) + + decoder_proj_filename = str(joiner_filename).replace( + ".onnx", "_decoder_proj.onnx" + ) + decoder_proj_fp16_filename = ( + params.exp_dir / "joiner_decoder_proj_fp16.onnx" + ) + export_onnx_fp16(decoder_proj_filename, decoder_proj_fp16_filename) + + elif params.jit: + convert_scaled_to_non_scaled(model, inplace=True) + # We won't use the forward() method of the model in C++, so just ignore + # it here. + # Otherwise, one of its arguments is a ragged tensor and is not + # torch scriptabe. + model.__class__.forward = torch.jit.ignore(model.__class__.forward) + model.encoder.__class__.non_streaming_forward = model.encoder.__class__.forward + model.encoder.__class__.non_streaming_forward = torch.jit.export( + model.encoder.__class__.non_streaming_forward + ) + model.encoder.__class__.forward = model.encoder.__class__.streaming_forward + logging.info("Using torch.jit.script") + model = torch.jit.script(model) + filename = params.exp_dir / "cpu_jit.pt" + model.save(str(filename)) + logging.info(f"Saved to {filename}") + else: + logging.info("Not using torchscript. Export model.state_dict()") + # Save it using a format so that it can be loaded + # by :func:`load_checkpoint` + filename = params.exp_dir / "pretrained.pt" + torch.save({"model": model.state_dict()}, str(filename)) + logging.info(f"Saved to {filename}") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/joiner.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/joiner.py new file mode 100644 index 000000000..62a4d22d6 --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/joiner.py @@ -0,0 +1,64 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch +import torch.nn as nn + + +class Joiner(nn.Module): + def __init__( + self, + encoder_dim: int, + decoder_dim: int, + joiner_dim: int, + vocab_size: int, + ): + super().__init__() + + self.encoder_proj = nn.Linear(encoder_dim, joiner_dim) + self.decoder_proj = nn.Linear(decoder_dim, joiner_dim) + self.output_linear = nn.Linear(joiner_dim, vocab_size) + + def forward( + self, + encoder_out: torch.Tensor, + decoder_out: torch.Tensor, + project_input: bool = True, + ) -> torch.Tensor: + """ + Args: + encoder_out: + Output from the encoder. Its shape is (N, T, s_range, C). + decoder_out: + Output from the decoder. Its shape is (N, T, s_range, C). + project_input: + If true, apply input projections encoder_proj and decoder_proj. + If this is false, it is the user's responsibility to do this + manually. + Returns: + Return a tensor of shape (N, T, s_range, C). + """ + assert encoder_out.ndim == decoder_out.ndim + assert encoder_out.ndim in (2, 4) + + if project_input: + logit = self.encoder_proj(encoder_out) + self.decoder_proj(decoder_out) + else: + logit = encoder_out + decoder_out + + logit = self.output_linear(torch.tanh(logit)) + + return logit diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/model.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/model.py new file mode 100644 index 000000000..add0e6a18 --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/model.py @@ -0,0 +1,198 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import random + +import k2 +import torch +import torch.nn as nn +from encoder_interface import EncoderInterface +from scaling import penalize_abs_values_gt + +from icefall.utils import add_sos + + +class Transducer(nn.Module): + """It implements https://arxiv.org/pdf/1211.3711.pdf + "Sequence Transduction with Recurrent Neural Networks" + """ + + def __init__( + self, + encoder: EncoderInterface, + decoder: nn.Module, + joiner: nn.Module, + encoder_dim: int, + decoder_dim: int, + joiner_dim: int, + vocab_size: int, + ): + """ + Args: + encoder: + It is the transcription network in the paper. Its accepts + two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,). + It returns two tensors: `logits` of shape (N, T, encoder_dm) and + `logit_lens` of shape (N,). + decoder: + It is the prediction network in the paper. Its input shape + is (N, U) and its output shape is (N, U, decoder_dim). + It should contain one attribute: `blank_id`. + joiner: + It has two inputs with shapes: (N, T, encoder_dim) and (N, U, decoder_dim). + Its output shape is (N, T, U, vocab_size). Note that its output contains + unnormalized probs, i.e., not processed by log-softmax. + """ + super().__init__() + assert isinstance(encoder, EncoderInterface), type(encoder) + assert hasattr(decoder, "blank_id") + + self.encoder = encoder + self.decoder = decoder + self.joiner = joiner + + self.simple_am_proj = nn.Linear( + encoder_dim, + vocab_size, + ) + self.simple_lm_proj = nn.Linear(decoder_dim, vocab_size) + + def forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + y: k2.RaggedTensor, + prune_range: int = 5, + am_scale: float = 0.0, + lm_scale: float = 0.0, + ) -> torch.Tensor: + """ + Args: + x: + A 3-D tensor of shape (N, T, C). + x_lens: + A 1-D tensor of shape (N,). It contains the number of frames in `x` + before padding. + y: + A ragged tensor with 2 axes [utt][label]. It contains labels of each + utterance. + prune_range: + The prune range for rnnt loss, it means how many symbols(context) + we are considering for each frame to compute the loss. + am_scale: + The scale to smooth the loss with am (output of encoder network) + part + lm_scale: + The scale to smooth the loss with lm (output of predictor network) + part + Returns: + Return the transducer loss. + + Note: + Regarding am_scale & lm_scale, it will make the loss-function one of + the form: + lm_scale * lm_probs + am_scale * am_probs + + (1-lm_scale-am_scale) * combined_probs + """ + assert x.ndim == 3, x.shape + assert x_lens.ndim == 1, x_lens.shape + assert y.num_axes == 2, y.num_axes + + assert x.size(0) == x_lens.size(0) == y.dim0 + + # x.T_dim == max(x_len) + assert x.size(1) == x_lens.max().item(), (x.shape, x_lens, x_lens.max()) + + encoder_out, x_lens = self.encoder(x, x_lens) + assert torch.all(x_lens > 0) + + # Now for the decoder, i.e., the prediction network + row_splits = y.shape.row_splits(1) + y_lens = row_splits[1:] - row_splits[:-1] + + blank_id = self.decoder.blank_id + sos_y = add_sos(y, sos_id=blank_id) + + # sos_y_padded: [B, S + 1], start with SOS. + sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id) + + # decoder_out: [B, S + 1, decoder_dim] + decoder_out = self.decoder(sos_y_padded) + + # Note: y does not start with SOS + # y_padded : [B, S] + y_padded = y.pad(mode="constant", padding_value=0) + + y_padded = y_padded.to(torch.int64) + boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device) + boundary[:, 2] = y_lens + boundary[:, 3] = x_lens + + lm = self.simple_lm_proj(decoder_out) + am = self.simple_am_proj(encoder_out) + + # if self.training and random.random() < 0.25: + # lm = penalize_abs_values_gt(lm, 100.0, 1.0e-04) + # if self.training and random.random() < 0.25: + # am = penalize_abs_values_gt(am, 30.0, 1.0e-04) + + with torch.cuda.amp.autocast(enabled=False): + simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed( + lm=lm.float(), + am=am.float(), + symbols=y_padded, + termination_symbol=blank_id, + lm_only_scale=lm_scale, + am_only_scale=am_scale, + boundary=boundary, + reduction="sum", + return_grad=True, + ) + + # ranges : [B, T, prune_range] + ranges = k2.get_rnnt_prune_ranges( + px_grad=px_grad, + py_grad=py_grad, + boundary=boundary, + s_range=prune_range, + ) + + # am_pruned : [B, T, prune_range, encoder_dim] + # lm_pruned : [B, T, prune_range, decoder_dim] + am_pruned, lm_pruned = k2.do_rnnt_pruning( + am=self.joiner.encoder_proj(encoder_out), + lm=self.joiner.decoder_proj(decoder_out), + ranges=ranges, + ) + + # logits : [B, T, prune_range, vocab_size] + + # project_input=False since we applied the decoder's input projections + # prior to do_rnnt_pruning (this is an optimization for speed). + logits = self.joiner(am_pruned, lm_pruned, project_input=False) + + with torch.cuda.amp.autocast(enabled=False): + pruned_loss = k2.rnnt_loss_pruned( + logits=logits.float(), + symbols=y_padded, + ranges=ranges, + termination_symbol=blank_id, + boundary=boundary, + reduction="sum", + ) + + return (simple_loss, pruned_loss) diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/onnx_check.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/onnx_check.py new file mode 100755 index 000000000..dbbb9081b --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/onnx_check.py @@ -0,0 +1,241 @@ +#!/usr/bin/env python3 +# +# Copyright 2024 (Author: SeungHyun Lee, Contacts: whsqkaak@naver.com) + +""" +This script checks that exported ONNX models produce the same output +with the given torchscript model for the same input. + +1. Export the model via torch.jit.trace() + +./pruned_transducer_stateless7_streaming/jit_trace_export.py \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --use-averaged-model 0 \ + --epoch 99 \ + --avg 1 \ + --decode-chunk-len 32 \ + --exp-dir $repo/exp/ + +It will generate the following 3 files inside $repo/exp + + - encoder_jit_trace.pt + - decoder_jit_trace.pt + - joiner_jit_trace.pt + +2. Export the model to ONNX + +./pruned_transducer_stateless7_streaming/export-onnx.py \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --use-averaged-model 0 \ + --epoch 99 \ + --avg 1 \ + --decode-chunk-len 32 \ + --exp-dir $repo/exp/ + +It will generate the following 3 files inside $repo/exp: + + - encoder-epoch-99-avg-1.onnx + - decoder-epoch-99-avg-1.onnx + - joiner-epoch-99-avg-1.onnx + +3. Run this file + +./pruned_transducer_stateless7_streaming/onnx_check.py \ + --jit-encoder-filename $repo/exp/encoder_jit_trace.pt \ + --jit-decoder-filename $repo/exp/decoder_jit_trace.pt \ + --jit-joiner-filename $repo/exp/joiner_jit_trace.pt \ + --onnx-encoder-filename $repo/exp/encoder-epoch-99-avg-1.onnx \ + --onnx-decoder-filename $repo/exp/decoder-epoch-99-avg-1.onnx \ + --onnx-joiner-filename $repo/exp/joiner-epoch-99-avg-1.onnx +""" + +import argparse +import logging + +import torch +from onnx_pretrained import OnnxModel +from zipformer import stack_states + +from icefall import is_module_available + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--jit-encoder-filename", + required=True, + type=str, + help="Path to the torchscript encoder model", + ) + + parser.add_argument( + "--jit-decoder-filename", + required=True, + type=str, + help="Path to the torchscript decoder model", + ) + + parser.add_argument( + "--jit-joiner-filename", + required=True, + type=str, + help="Path to the torchscript joiner model", + ) + + parser.add_argument( + "--onnx-encoder-filename", + required=True, + type=str, + help="Path to the ONNX encoder model", + ) + + parser.add_argument( + "--onnx-decoder-filename", + required=True, + type=str, + help="Path to the ONNX decoder model", + ) + + parser.add_argument( + "--onnx-joiner-filename", + required=True, + type=str, + help="Path to the ONNX joiner model", + ) + + return parser + + +def test_encoder( + torch_encoder_model: torch.jit.ScriptModule, + torch_encoder_proj_model: torch.jit.ScriptModule, + onnx_model: OnnxModel, +): + N = torch.randint(1, 100, size=(1,)).item() + T = onnx_model.segment + C = 80 + x_lens = torch.tensor([T] * N) + torch_states = [torch_encoder_model.get_init_state() for _ in range(N)] + torch_states = stack_states(torch_states) + + onnx_model.init_encoder_states(N) + + for i in range(5): + logging.info(f"test_encoder: iter {i}") + x = torch.rand(N, T, C) + torch_encoder_out, _, torch_states = torch_encoder_model( + x, x_lens, torch_states + ) + torch_encoder_out = torch_encoder_proj_model(torch_encoder_out) + + onnx_encoder_out = onnx_model.run_encoder(x) + + assert torch.allclose(torch_encoder_out, onnx_encoder_out, atol=1e-4), ( + (torch_encoder_out - onnx_encoder_out).abs().max() + ) + + +def test_decoder( + torch_decoder_model: torch.jit.ScriptModule, + torch_decoder_proj_model: torch.jit.ScriptModule, + onnx_model: OnnxModel, +): + context_size = onnx_model.context_size + vocab_size = onnx_model.vocab_size + for i in range(10): + N = torch.randint(1, 100, size=(1,)).item() + logging.info(f"test_decoder: iter {i}, N={N}") + x = torch.randint( + low=1, + high=vocab_size, + size=(N, context_size), + dtype=torch.int64, + ) + torch_decoder_out = torch_decoder_model(x, need_pad=torch.tensor([False])) + torch_decoder_out = torch_decoder_proj_model(torch_decoder_out) + torch_decoder_out = torch_decoder_out.squeeze(1) + + onnx_decoder_out = onnx_model.run_decoder(x) + assert torch.allclose(torch_decoder_out, onnx_decoder_out, atol=1e-4), ( + (torch_decoder_out - onnx_decoder_out).abs().max() + ) + + +def test_joiner( + torch_joiner_model: torch.jit.ScriptModule, + onnx_model: OnnxModel, +): + encoder_dim = torch_joiner_model.encoder_proj.weight.shape[1] + decoder_dim = torch_joiner_model.decoder_proj.weight.shape[1] + for i in range(10): + N = torch.randint(1, 100, size=(1,)).item() + logging.info(f"test_joiner: iter {i}, N={N}") + encoder_out = torch.rand(N, encoder_dim) + decoder_out = torch.rand(N, decoder_dim) + + projected_encoder_out = torch_joiner_model.encoder_proj(encoder_out) + projected_decoder_out = torch_joiner_model.decoder_proj(decoder_out) + + torch_joiner_out = torch_joiner_model(encoder_out, decoder_out) + onnx_joiner_out = onnx_model.run_joiner( + projected_encoder_out, projected_decoder_out + ) + + assert torch.allclose(torch_joiner_out, onnx_joiner_out, atol=1e-4), ( + (torch_joiner_out - onnx_joiner_out).abs().max() + ) + + +@torch.no_grad() +def main(): + args = get_parser().parse_args() + logging.info(vars(args)) + + torch_encoder_model = torch.jit.load(args.jit_encoder_filename) + torch_decoder_model = torch.jit.load(args.jit_decoder_filename) + torch_joiner_model = torch.jit.load(args.jit_joiner_filename) + + onnx_model = OnnxModel( + encoder_model_filename=args.onnx_encoder_filename, + decoder_model_filename=args.onnx_decoder_filename, + joiner_model_filename=args.onnx_joiner_filename, + ) + + logging.info("Test encoder") + # When exporting the model to onnx, we have already put the encoder_proj + # inside the encoder. + test_encoder(torch_encoder_model, torch_joiner_model.encoder_proj, onnx_model) + + logging.info("Test decoder") + # When exporting the model to onnx, we have already put the decoder_proj + # inside the decoder. + test_decoder(torch_decoder_model, torch_joiner_model.decoder_proj, onnx_model) + + logging.info("Test joiner") + test_joiner(torch_joiner_model, onnx_model) + + logging.info("Finished checking ONNX models") + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +# See https://github.com/pytorch/pytorch/issues/38342 +# and https://github.com/pytorch/pytorch/issues/33354 +# +# If we don't do this, the delay increases whenever there is +# a new request that changes the actual batch size. +# If you use `py-spy dump --pid --native`, you will +# see a lot of time is spent in re-compiling the torch script model. +torch._C._jit_set_profiling_executor(False) +torch._C._jit_set_profiling_mode(False) +torch._C._set_graph_executor_optimize(False) +if __name__ == "__main__": + torch.manual_seed(20230207) + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/onnx_model_wrapper.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/onnx_model_wrapper.py new file mode 100644 index 000000000..71a418742 --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/onnx_model_wrapper.py @@ -0,0 +1,231 @@ +from typing import Optional, Tuple + +import torch + + +class OnnxStreamingEncoder(torch.nn.Module): + """This class warps the streaming Zipformer to reduce the number of + state tensors for onnx. + https://github.com/k2-fsa/icefall/pull/831 + """ + + def __init__(self, encoder): + """ + Args: + encoder: An instance of Zipformer Class + """ + super().__init__() + self.model = encoder + + def forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + len_cache: torch.tensor, + avg_cache: torch.tensor, + attn_cache: torch.tensor, + cnn_cache: torch.tensor, + ) -> Tuple[ + torch.Tensor, + torch.Tensor, + torch.Tensor, + torch.Tensor, + torch.Tensor, + torch.Tensor, + ]: + """ + Args: + x: + The input tensor. Its shape is (batch_size, seq_len, feature_dim). + x_lens: + A tensor of shape (batch_size,) containing the number of frames in + `x` before padding. + len_cache: + The cached numbers of past frames. + avg_cache: + The cached average tensors. + attn_cache: + The cached key tensors of the first attention modules. + The cached value tensors of the first attention modules. + The cached value tensors of the second attention modules. + cnn_cache: + The cached left contexts of the first convolution modules. + The cached left contexts of the second convolution modules. + + Returns: + Return a tuple containing 2 tensors: + + """ + num_encoder_layers = [] + encoder_attention_dims = [] + states = [] + for i, encoder in enumerate(self.model.encoders): + num_encoder_layers.append(encoder.num_layers) + encoder_attention_dims.append(encoder.attention_dim) + + len_cache = len_cache.transpose(0, 1) # sum(num_encoder_layers)==15, [15, B] + offset = 0 + for num_layer in num_encoder_layers: + states.append(len_cache[offset : offset + num_layer]) + offset += num_layer + + avg_cache = avg_cache.transpose(0, 1) # [15, B, 384] + offset = 0 + for num_layer in num_encoder_layers: + states.append(avg_cache[offset : offset + num_layer]) + offset += num_layer + + attn_cache = attn_cache.transpose(0, 2) # [15*3, 64, B, 192] + left_context_len = attn_cache.shape[1] + offset = 0 + for i, num_layer in enumerate(num_encoder_layers): + ds = self.model.zipformer_downsampling_factors[i] + states.append( + attn_cache[offset : offset + num_layer, : left_context_len // ds] + ) + offset += num_layer + for i, num_layer in enumerate(num_encoder_layers): + encoder_attention_dim = encoder_attention_dims[i] + ds = self.model.zipformer_downsampling_factors[i] + states.append( + attn_cache[ + offset : offset + num_layer, + : left_context_len // ds, + :, + : encoder_attention_dim // 2, + ] + ) + offset += num_layer + for i, num_layer in enumerate(num_encoder_layers): + ds = self.model.zipformer_downsampling_factors[i] + states.append( + attn_cache[ + offset : offset + num_layer, + : left_context_len // ds, + :, + : encoder_attention_dim // 2, + ] + ) + offset += num_layer + + cnn_cache = cnn_cache.transpose(0, 1) # [30, B, 384, cnn_kernel-1] + offset = 0 + for num_layer in num_encoder_layers: + states.append(cnn_cache[offset : offset + num_layer]) + offset += num_layer + for num_layer in num_encoder_layers: + states.append(cnn_cache[offset : offset + num_layer]) + offset += num_layer + + encoder_out, encoder_out_lens, new_states = self.model.streaming_forward( + x=x, + x_lens=x_lens, + states=states, + ) + + new_len_cache = torch.cat(states[: self.model.num_encoders]).transpose( + 0, 1 + ) # [B,15] + new_avg_cache = torch.cat( + states[self.model.num_encoders : 2 * self.model.num_encoders] + ).transpose( + 0, 1 + ) # [B,15,384] + new_cnn_cache = torch.cat(states[5 * self.model.num_encoders :]).transpose( + 0, 1 + ) # [B,2*15,384,cnn_kernel-1] + assert len(set(encoder_attention_dims)) == 1 + pad_tensors = [ + torch.nn.functional.pad( + tensor, + ( + 0, + encoder_attention_dims[0] - tensor.shape[-1], + 0, + 0, + 0, + left_context_len - tensor.shape[1], + 0, + 0, + ), + ) + for tensor in states[ + 2 * self.model.num_encoders : 5 * self.model.num_encoders + ] + ] + new_attn_cache = torch.cat(pad_tensors).transpose(0, 2) # [B,64,15*3,192] + + return ( + encoder_out, + encoder_out_lens, + new_len_cache, + new_avg_cache, + new_attn_cache, + new_cnn_cache, + ) + + +class TritonOnnxDecoder(torch.nn.Module): + """This class warps the Decoder in decoder.py + to remove the scalar input "need_pad". + Triton currently doesn't support scalar input. + https://github.com/triton-inference-server/server/issues/2333 + """ + + def __init__( + self, + decoder: torch.nn.Module, + ): + """ + Args: + decoder: A instance of Decoder + """ + super().__init__() + self.model = decoder + + def forward(self, y: torch.Tensor) -> torch.Tensor: + """ + Args: + y: + A 2-D tensor of shape (N, U). + Returns: + Return a tensor of shape (N, U, decoder_dim). + """ + # False to not pad the input. Should be False during inference. + need_pad = False + return self.model(y, need_pad) + + +class TritonOnnxJoiner(torch.nn.Module): + """This class warps the Joiner in joiner.py + to remove the scalar input "project_input". + Triton currently doesn't support scalar input. + https://github.com/triton-inference-server/server/issues/2333 + "project_input" is set to True. + Triton solutions only need export joiner to a single joiner.onnx. + """ + + def __init__( + self, + joiner: torch.nn.Module, + ): + super().__init__() + self.model = joiner + + def forward( + self, + encoder_out: torch.Tensor, + decoder_out: torch.Tensor, + ) -> torch.Tensor: + """ + Args: + encoder_out: + Output from the encoder. Its shape is (N, T, s_range, C). + decoder_out: + Output from the decoder. Its shape is (N, T, s_range, C). + Returns: + Return a tensor of shape (N, T, s_range, C). + """ + # Apply input projections encoder_proj and decoder_proj. + project_input = True + return self.model(encoder_out, decoder_out, project_input) diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/onnx_pretrained.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/onnx_pretrained.py new file mode 100755 index 000000000..163e472fc --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/onnx_pretrained.py @@ -0,0 +1,497 @@ +#!/usr/bin/env python3 +# Copyright 2024 (Author: SeungHyun Lee, Contacts: whsqkaak@naver.com) + +""" +This script loads ONNX models exported by ./export-onnx.py +and uses them to decode waves. + +1. Export the model to ONNX + +./pruned_transducer_stateless7_streaming/export-onnx.py \ + --bpe-model $repo/data/lang_bpe_500/bpe.model \ + --use-averaged-model 0 \ + --epoch 99 \ + --avg 1 \ + --decode-chunk-len 32 \ + --exp-dir $repo/exp/ + +It will generate the following 3 files in $repo/exp + + - encoder-epoch-99-avg-1.onnx + - decoder-epoch-99-avg-1.onnx + - joiner-epoch-99-avg-1.onnx + +2. Run this file with the exported ONNX models + +./pruned_transducer_stateless7_streaming/onnx_pretrained.py \ + --encoder-model-filename $repo/exp/encoder-epoch-99-avg-1.onnx \ + --decoder-model-filename $repo/exp/decoder-epoch-99-avg-1.onnx \ + --joiner-model-filename $repo/exp/joiner-epoch-99-avg-1.onnx \ + --tokens $repo/data/lang_bpe_500/tokens.txt \ + $repo/test_wavs/1089-134686-0001.wav + +Note: Even though this script only supports decoding a single file, +the exported ONNX models do support batch processing. +""" + +import argparse +import logging +from typing import Dict, List, Optional, Tuple + +import k2 +import numpy as np +import onnxruntime as ort +import torch +import torchaudio +from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--encoder-model-filename", + type=str, + required=True, + help="Path to the encoder onnx model. ", + ) + + parser.add_argument( + "--decoder-model-filename", + type=str, + required=True, + help="Path to the decoder onnx model. ", + ) + + parser.add_argument( + "--joiner-model-filename", + type=str, + required=True, + help="Path to the joiner onnx model. ", + ) + + parser.add_argument( + "--tokens", + type=str, + help="""Path to tokens.txt.""", + ) + + parser.add_argument( + "sound_file", + type=str, + help="The input sound file to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + return parser + + +class OnnxModel: + def __init__( + self, + encoder_model_filename: str, + decoder_model_filename: str, + joiner_model_filename: str, + ): + session_opts = ort.SessionOptions() + session_opts.inter_op_num_threads = 1 + session_opts.intra_op_num_threads = 1 + + self.session_opts = session_opts + + self.init_encoder(encoder_model_filename) + self.init_decoder(decoder_model_filename) + self.init_joiner(joiner_model_filename) + + def init_encoder(self, encoder_model_filename: str): + self.encoder = ort.InferenceSession( + encoder_model_filename, + sess_options=self.session_opts, + providers=["CPUExecutionProvider"], + ) + self.init_encoder_states() + + def init_encoder_states(self, batch_size: int = 1): + encoder_meta = self.encoder.get_modelmeta().custom_metadata_map + + model_type = encoder_meta["model_type"] + assert model_type == "zipformer", model_type + + decode_chunk_len = int(encoder_meta["decode_chunk_len"]) + T = int(encoder_meta["T"]) + + num_encoder_layers = encoder_meta["num_encoder_layers"] + encoder_dims = encoder_meta["encoder_dims"] + attention_dims = encoder_meta["attention_dims"] + cnn_module_kernels = encoder_meta["cnn_module_kernels"] + left_context_len = encoder_meta["left_context_len"] + + def to_int_list(s): + return list(map(int, s.split(","))) + + num_encoder_layers = to_int_list(num_encoder_layers) + encoder_dims = to_int_list(encoder_dims) + attention_dims = to_int_list(attention_dims) + cnn_module_kernels = to_int_list(cnn_module_kernels) + left_context_len = to_int_list(left_context_len) + + logging.info(f"decode_chunk_len: {decode_chunk_len}") + logging.info(f"T: {T}") + logging.info(f"num_encoder_layers: {num_encoder_layers}") + logging.info(f"encoder_dims: {encoder_dims}") + logging.info(f"attention_dims: {attention_dims}") + logging.info(f"cnn_module_kernels: {cnn_module_kernels}") + logging.info(f"left_context_len: {left_context_len}") + + num_encoders = len(num_encoder_layers) + + cached_len = [] + cached_avg = [] + cached_key = [] + cached_val = [] + cached_val2 = [] + cached_conv1 = [] + cached_conv2 = [] + + N = batch_size + + for i in range(num_encoders): + cached_len.append(torch.zeros(num_encoder_layers[i], N, dtype=torch.int64)) + cached_avg.append(torch.zeros(num_encoder_layers[i], N, encoder_dims[i])) + cached_key.append( + torch.zeros( + num_encoder_layers[i], left_context_len[i], N, attention_dims[i] + ) + ) + cached_val.append( + torch.zeros( + num_encoder_layers[i], + left_context_len[i], + N, + attention_dims[i] // 2, + ) + ) + cached_val2.append( + torch.zeros( + num_encoder_layers[i], + left_context_len[i], + N, + attention_dims[i] // 2, + ) + ) + cached_conv1.append( + torch.zeros( + num_encoder_layers[i], N, encoder_dims[i], cnn_module_kernels[i] - 1 + ) + ) + cached_conv2.append( + torch.zeros( + num_encoder_layers[i], N, encoder_dims[i], cnn_module_kernels[i] - 1 + ) + ) + + self.cached_len = cached_len + self.cached_avg = cached_avg + self.cached_key = cached_key + self.cached_val = cached_val + self.cached_val2 = cached_val2 + self.cached_conv1 = cached_conv1 + self.cached_conv2 = cached_conv2 + + self.num_encoders = num_encoders + + self.segment = T + self.offset = decode_chunk_len + + def init_decoder(self, decoder_model_filename: str): + self.decoder = ort.InferenceSession( + decoder_model_filename, + sess_options=self.session_opts, + providers=["CPUExecutionProvider"], + ) + + decoder_meta = self.decoder.get_modelmeta().custom_metadata_map + self.context_size = int(decoder_meta["context_size"]) + self.vocab_size = int(decoder_meta["vocab_size"]) + + logging.info(f"context_size: {self.context_size}") + logging.info(f"vocab_size: {self.vocab_size}") + + def init_joiner(self, joiner_model_filename: str): + self.joiner = ort.InferenceSession( + joiner_model_filename, + sess_options=self.session_opts, + providers=["CPUExecutionProvider"], + ) + + joiner_meta = self.joiner.get_modelmeta().custom_metadata_map + self.joiner_dim = int(joiner_meta["joiner_dim"]) + + logging.info(f"joiner_dim: {self.joiner_dim}") + + def _build_encoder_input_output( + self, + x: torch.Tensor, + ) -> Tuple[Dict[str, np.ndarray], List[str]]: + encoder_input = {"x": x.numpy()} + encoder_output = ["encoder_out"] + + def build_states_input(states: List[torch.Tensor], name: str): + for i, s in enumerate(states): + if isinstance(s, torch.Tensor): + encoder_input[f"{name}_{i}"] = s.numpy() + else: + encoder_input[f"{name}_{i}"] = s + + encoder_output.append(f"new_{name}_{i}") + + build_states_input(self.cached_len, "cached_len") + build_states_input(self.cached_avg, "cached_avg") + build_states_input(self.cached_key, "cached_key") + build_states_input(self.cached_val, "cached_val") + build_states_input(self.cached_val2, "cached_val2") + build_states_input(self.cached_conv1, "cached_conv1") + build_states_input(self.cached_conv2, "cached_conv2") + + return encoder_input, encoder_output + + def _update_states(self, states: List[np.ndarray]): + num_encoders = self.num_encoders + + self.cached_len = states[num_encoders * 0 : num_encoders * 1] + self.cached_avg = states[num_encoders * 1 : num_encoders * 2] + self.cached_key = states[num_encoders * 2 : num_encoders * 3] + self.cached_val = states[num_encoders * 3 : num_encoders * 4] + self.cached_val2 = states[num_encoders * 4 : num_encoders * 5] + self.cached_conv1 = states[num_encoders * 5 : num_encoders * 6] + self.cached_conv2 = states[num_encoders * 6 : num_encoders * 7] + + def run_encoder(self, x: torch.Tensor) -> torch.Tensor: + """ + Args: + x: + A 3-D tensor of shape (N, T, C) + Returns: + Return a 3-D tensor of shape (N, T', joiner_dim) where + T' is usually equal to ((T-7)//2+1)//2 + """ + encoder_input, encoder_output_names = self._build_encoder_input_output(x) + out = self.encoder.run(encoder_output_names, encoder_input) + + self._update_states(out[1:]) + + return torch.from_numpy(out[0]) + + def run_decoder(self, decoder_input: torch.Tensor) -> torch.Tensor: + """ + Args: + decoder_input: + A 2-D tensor of shape (N, context_size) + Returns: + Return a 2-D tensor of shape (N, joiner_dim) + """ + out = self.decoder.run( + [self.decoder.get_outputs()[0].name], + {self.decoder.get_inputs()[0].name: decoder_input.numpy()}, + )[0] + + return torch.from_numpy(out) + + def run_joiner( + self, encoder_out: torch.Tensor, decoder_out: torch.Tensor + ) -> torch.Tensor: + """ + Args: + encoder_out: + A 2-D tensor of shape (N, joiner_dim) + decoder_out: + A 2-D tensor of shape (N, joiner_dim) + Returns: + Return a 2-D tensor of shape (N, vocab_size) + """ + out = self.joiner.run( + [self.joiner.get_outputs()[0].name], + { + self.joiner.get_inputs()[0].name: encoder_out.numpy(), + self.joiner.get_inputs()[1].name: decoder_out.numpy(), + }, + )[0] + + return torch.from_numpy(out) + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" + # We use only the first channel + ans.append(wave[0].contiguous()) + return ans + + +def create_streaming_feature_extractor() -> OnlineFeature: + """Create a CPU streaming feature extractor. + + At present, we assume it returns a fbank feature extractor with + fixed options. In the future, we will support passing in the options + from outside. + + Returns: + Return a CPU streaming feature extractor. + """ + opts = FbankOptions() + opts.device = "cpu" + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = 16000 + opts.mel_opts.num_bins = 80 + opts.mel_opts.high_freq = -400 + return OnlineFbank(opts) + + +def greedy_search( + model: OnnxModel, + encoder_out: torch.Tensor, + context_size: int, + decoder_out: Optional[torch.Tensor] = None, + hyp: Optional[List[int]] = None, +) -> List[int]: + """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. + Args: + model: + The transducer model. + encoder_out: + A 3-D tensor of shape (1, T, joiner_dim) + context_size: + The context size of the decoder model. + decoder_out: + Optional. Decoder output of the previous chunk. + hyp: + Decoding results for previous chunks. + Returns: + Return the decoded results so far. + """ + + blank_id = 0 + + if decoder_out is None: + assert hyp is None, hyp + hyp = [blank_id] * context_size + decoder_input = torch.tensor([hyp], dtype=torch.int64) + decoder_out = model.run_decoder(decoder_input) + else: + assert hyp is not None, hyp + + encoder_out = encoder_out.squeeze(0) + T = encoder_out.size(0) + for t in range(T): + cur_encoder_out = encoder_out[t : t + 1] + joiner_out = model.run_joiner(cur_encoder_out, decoder_out).squeeze(0) + y = joiner_out.argmax(dim=0).item() + if y != blank_id: + hyp.append(y) + decoder_input = hyp[-context_size:] + decoder_input = torch.tensor([decoder_input], dtype=torch.int64) + decoder_out = model.run_decoder(decoder_input) + + return hyp, decoder_out + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + logging.info(vars(args)) + + model = OnnxModel( + encoder_model_filename=args.encoder_model_filename, + decoder_model_filename=args.decoder_model_filename, + joiner_model_filename=args.joiner_model_filename, + ) + + sample_rate = 16000 + + logging.info("Constructing Fbank computer") + online_fbank = create_streaming_feature_extractor() + + logging.info(f"Reading sound files: {args.sound_file}") + waves = read_sound_files( + filenames=[args.sound_file], + expected_sample_rate=sample_rate, + )[0] + + tail_padding = torch.zeros(int(0.3 * sample_rate), dtype=torch.float32) + wave_samples = torch.cat([waves, tail_padding]) + + num_processed_frames = 0 + segment = model.segment + offset = model.offset + + context_size = model.context_size + hyp = None + decoder_out = None + + chunk = int(1 * sample_rate) # 1 second + start = 0 + while start < wave_samples.numel(): + end = min(start + chunk, wave_samples.numel()) + samples = wave_samples[start:end] + start += chunk + + online_fbank.accept_waveform( + sampling_rate=sample_rate, + waveform=samples, + ) + + while online_fbank.num_frames_ready - num_processed_frames >= segment: + frames = [] + for i in range(segment): + frames.append(online_fbank.get_frame(num_processed_frames + i)) + num_processed_frames += offset + frames = torch.cat(frames, dim=0) + frames = frames.unsqueeze(0) + encoder_out = model.run_encoder(frames) + hyp, decoder_out = greedy_search( + model, + encoder_out, + context_size, + decoder_out, + hyp, + ) + + symbol_table = k2.SymbolTable.from_file(args.tokens) + + text = "" + for i in hyp[context_size:]: + text += symbol_table[i] + text = text.replace("▁", " ").strip() + + logging.info(args.sound_file) + logging.info(text) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/optim.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/optim.py new file mode 100644 index 000000000..8ab3589da --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/optim.py @@ -0,0 +1,1098 @@ +# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey) +# +# See ../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import contextlib +import logging +import random +from collections import defaultdict +from typing import List, Optional, Tuple, Union + +import torch +from lhotse.utils import fix_random_seed +from scaling import ActivationBalancer +from torch import Tensor +from torch.optim import Optimizer + + +class BatchedOptimizer(Optimizer): + """ + This class adds to class Optimizer the capability to optimize parameters in batches: + it will stack the parameters and their grads for you so the optimizer can work + on tensors with an extra leading dimension. This is intended for speed with GPUs, + as it reduces the number of kernels launched in the optimizer. + + Args: + params: + """ + + def __init__(self, params, defaults): + super(BatchedOptimizer, self).__init__(params, defaults) + + @contextlib.contextmanager + def batched_params(self, param_group, group_params_names): + """ + This function returns (technically, yields) a list of + of tuples (p, state), where + p is a `fake` parameter that is stacked (over axis 0) from real parameters + that share the same shape, and its gradient is also stacked; + `state` is the state corresponding to this batch of parameters + (it will be physically located in the "state" for one of the real + parameters, the last one that has any particular shape and dtype). + + This function is decorated as a context manager so that it can + write parameters back to their "real" locations. + + The idea is, instead of doing: + + for p in group["params"]: + state = self.state[p] + ... + + you can do: + + with self.batched_params(group["params"]) as batches: + for p, state, p_names in batches: + ... + + + Args: + group: a parameter group, which is a list of parameters; should be + one of self.param_groups. + group_params_names: name for each parameter in group, + which is List[str]. + """ + batches = defaultdict( + list + ) # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter + batches_names = defaultdict( + list + ) # `batches` maps from tuple (dtype_as_str,*shape) to list of str + + assert len(param_group) == len(group_params_names) + for p, named_p in zip(param_group, group_params_names): + key = (str(p.dtype), *p.shape) + batches[key].append(p) + batches_names[key].append(named_p) + + batches_names_keys = list(batches_names.keys()) + sorted_idx = sorted( + range(len(batches_names)), key=lambda i: batches_names_keys[i] + ) + batches_names = [batches_names[batches_names_keys[idx]] for idx in sorted_idx] + batches = [batches[batches_names_keys[idx]] for idx in sorted_idx] + + stacked_params_dict = dict() + + # turn batches into a list, in deterministic order. + # tuples will contain tuples of (stacked_param, state, stacked_params_names), + # one for each batch in `batches`. + tuples = [] + + for batch, batch_names in zip(batches, batches_names): + p = batch[0] + # we arbitrarily store the state in the + # state corresponding to the 1st parameter in the + # group. class Optimizer will take care of saving/loading state. + state = self.state[p] + p_stacked = torch.stack(batch) + grad = torch.stack( + [torch.zeros_like(p) if p.grad is None else p.grad for p in batch] + ) + p_stacked.grad = grad + stacked_params_dict[key] = p_stacked + tuples.append((p_stacked, state, batch_names)) + + yield tuples # <-- calling code will do the actual optimization here! + + for (stacked_params, _state, _names), batch in zip(tuples, batches): + for i, p in enumerate(batch): # batch is list of Parameter + p.copy_(stacked_params[i]) + + +class ScaledAdam(BatchedOptimizer): + """ + Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update + proportional to the norm of that parameter; and also learn the scale of the parameter, + in log space, subject to upper and lower limits (as if we had factored each parameter as + param = underlying_param * log_scale.exp()) + + + Args: + params: The parameters or param_groups to optimize (like other Optimizer subclasses) + lr: The learning rate. We will typically use a learning rate schedule that starts + at 0.03 and decreases over time, i.e. much higher than other common + optimizers. + clipping_scale: (e.g. 2.0) + A scale for gradient-clipping: if specified, the normalized gradients + over the whole model will be clipped to have 2-norm equal to + `clipping_scale` times the median 2-norm over the most recent period + of `clipping_update_period` minibatches. By "normalized gradients", + we mean after multiplying by the rms parameter value for this tensor + [for non-scalars]; this is appropriate because our update is scaled + by this quantity. + betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad. + Must satisfy 0 < beta <= beta2 < 1. + scalar_lr_scale: A scaling factor on the learning rate, that we use to update the + scale of each parameter tensor and scalar parameters of the mode.. + If each parameter were decomposed + as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale + would be a the scaling factor on the learning rate of p_scale. + eps: A general-purpose epsilon to prevent division by zero + param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of + learning the scale on the parameters (we'll constrain the rms of each non-scalar + parameter tensor to be >= this value) + param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of + learning the scale on the parameters (we'll constrain the rms of each non-scalar + parameter tensor to be <= this value) + scalar_max: Maximum absolute value for scalar parameters (applicable if your + model has any parameters with numel() == 1). + size_update_period: The periodicity, in steps, with which we update the size (scale) + of the parameter tensor. This is provided to save a little time + in the update. + clipping_update_period: if clipping_scale is specified, this is the period + """ + + def __init__( + self, + params, + lr=3e-02, + clipping_scale=None, + betas=(0.9, 0.98), + scalar_lr_scale=0.1, + eps=1.0e-08, + param_min_rms=1.0e-05, + param_max_rms=3.0, + scalar_max=10.0, + size_update_period=4, + clipping_update_period=100, + parameters_names=None, + show_dominant_parameters=True, + ): + assert parameters_names is not None, ( + "Please prepare parameters_names," + "which is a List[List[str]]. Each List[str] is for a group" + "and each str is for a parameter" + ) + defaults = dict( + lr=lr, + clipping_scale=clipping_scale, + betas=betas, + scalar_lr_scale=scalar_lr_scale, + eps=eps, + param_min_rms=param_min_rms, + param_max_rms=param_max_rms, + scalar_max=scalar_max, + size_update_period=size_update_period, + clipping_update_period=clipping_update_period, + ) + + super(ScaledAdam, self).__init__(params, defaults) + assert len(self.param_groups) == len(parameters_names) + self.parameters_names = parameters_names + self.show_dominant_parameters = show_dominant_parameters + + def __setstate__(self, state): + super(ScaledAdam, self).__setstate__(state) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + batch = True + + for group, group_params_names in zip(self.param_groups, self.parameters_names): + with self.batched_params(group["params"], group_params_names) as batches: + # batches is list of pairs (stacked_param, state). stacked_param is like + # a regular parameter, and will have a .grad, but the 1st dim corresponds to + # a stacking dim, it is not a real dim. + + if ( + len(batches[0][1]) == 0 + ): # if len(first state) == 0: not yet initialized + clipping_scale = 1 + else: + clipping_scale = self._get_clipping_scale(group, batches) + + for p, state, _ in batches: + # Perform optimization step. + # grad is not going to be None, we handled that when creating the batches. + grad = p.grad + if grad.is_sparse: + raise RuntimeError( + "ScaledAdam optimizer does not support sparse gradients" + ) + # State initialization + if len(state) == 0: + self._init_state(group, p, state) + + self._step_one_batch(group, p, state, clipping_scale) + + return loss + + def _init_state(self, group: dict, p: Tensor, state: dict): + """ + Initializes state dict for parameter 'p'. Assumes that dim 0 of tensor p + is actually the batch dimension, corresponding to batched-together + parameters of a given shape. + + + Args: + group: Dict to look up configuration values. + p: The parameter that we are initializing the state for + state: Dict from string to whatever state we are initializing + """ + size_update_period = group["size_update_period"] + + state["step"] = 0 + + kwargs = {"device": p.device, "dtype": p.dtype} + + # 'delta' implements conventional momentum. There are + # several different kinds of update going on, so rather than + # compute "exp_avg" like in Adam, we store and decay a + # parameter-change "delta", which combines all forms of + # update. this is equivalent to how it's done in Adam, + # except for the first few steps. + state["delta"] = torch.zeros_like(p, memory_format=torch.preserve_format) + + batch_size = p.shape[0] + numel = p.numel() // batch_size + + if numel > 1: + # "param_rms" just periodically records the scalar root-mean-square value of + # the parameter tensor. + # it has a shape like (batch_size, 1, 1, 1, 1) + param_rms = (p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt() + state["param_rms"] = param_rms + + state["scale_exp_avg_sq"] = torch.zeros_like(param_rms) + state["scale_grads"] = torch.zeros( + size_update_period, *param_rms.shape, **kwargs + ) + + # exp_avg_sq is the weighted sum of scaled gradients. as in Adam. + state["exp_avg_sq"] = torch.zeros_like(p, memory_format=torch.preserve_format) + + def _get_clipping_scale( + self, group: dict, tuples: List[Tuple[Tensor, dict, List[str]]] + ) -> float: + """ + Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients + by this amount before applying the rest of the update. + + Args: + group: the parameter group, an item in self.param_groups + tuples: a list of tuples of (param, state, param_names) + where param is a batched set of parameters, + with a .grad (1st dim is batch dim) + and state is the state-dict where optimization parameters are kept. + param_names is a List[str] while each str is name for a parameter + in batched set of parameters "param". + """ + assert len(tuples) >= 1 + clipping_scale = group["clipping_scale"] + (first_p, first_state, _) = tuples[0] + step = first_state["step"] + if clipping_scale is None or step == 0: + # no clipping. return early on step == 0 because the other + # parameters' state won't have been initialized yet. + return 1.0 + clipping_update_period = group["clipping_update_period"] + + tot_sumsq = torch.tensor(0.0, device=first_p.device) + for p, state, param_names in tuples: + grad = p.grad + if grad.is_sparse: + raise RuntimeError( + "ScaledAdam optimizer does not support sparse gradients" + ) + if p.numel() == p.shape[0]: # a batch of scalars + tot_sumsq += (grad**2).sum() # sum() to change shape [1] to [] + else: + tot_sumsq += ((grad * state["param_rms"]) ** 2).sum() + + tot_norm = tot_sumsq.sqrt() + if "model_norms" not in first_state: + first_state["model_norms"] = torch.zeros( + clipping_update_period, device=p.device + ) + first_state["model_norms"][step % clipping_update_period] = tot_norm + + if step % clipping_update_period == 0: + # Print some stats. + # We don't reach here if step == 0 because we would have returned + # above. + sorted_norms = first_state["model_norms"].sort()[0].to("cpu") + quartiles = [] + for n in range(0, 5): + index = min( + clipping_update_period - 1, (clipping_update_period // 4) * n + ) + quartiles.append(sorted_norms[index].item()) + + median = quartiles[2] + threshold = clipping_scale * median + first_state["model_norm_threshold"] = threshold + percent_clipped = ( + first_state["num_clipped"] * 100.0 / clipping_update_period + if "num_clipped" in first_state + else 0.0 + ) + first_state["num_clipped"] = 0 + quartiles = " ".join(["%.3e" % x for x in quartiles]) + logging.info( + f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, " + f"threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}" + ) + + if step < clipping_update_period: + return 1.0 # We have not yet estimated a norm to clip to. + else: + try: + model_norm_threshold = first_state["model_norm_threshold"] + except KeyError: + logging.info( + "Warning: model_norm_threshold not in state: possibly " + "you changed config when restarting, adding clipping_scale option?" + ) + return 1.0 + ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item()) + if ans < 1.0: + first_state["num_clipped"] += 1 + if ans < 0.1: + logging.warn( + f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}" + ) + if self.show_dominant_parameters: + assert p.shape[0] == len(param_names) + self._show_gradient_dominating_parameter(tuples, tot_sumsq) + return ans + + def _show_gradient_dominating_parameter( + self, tuples: List[Tuple[Tensor, dict, List[str]]], tot_sumsq: Tensor + ): + """ + Show information of parameter wihch dominanting tot_sumsq. + + Args: + tuples: a list of tuples of (param, state, param_names) + where param is a batched set of parameters, + with a .grad (1st dim is batch dim) + and state is the state-dict where optimization parameters are kept. + param_names is a List[str] while each str is name for a parameter + in batched set of parameters "param". + tot_sumsq: sumsq of all parameters. Though it's could be calculated + from tuples, we still pass it to save some time. + """ + all_sumsq_orig = {} + for p, state, batch_param_names in tuples: + # p is a stacked batch parameters. + batch_grad = p.grad + if p.numel() == p.shape[0]: # a batch of scalars + batch_sumsq_orig = batch_grad**2 + # Dummpy values used by following `zip` statement. + batch_rms_orig = torch.ones(p.shape[0]) + else: + batch_rms_orig = state["param_rms"] + batch_sumsq_orig = ((batch_grad * batch_rms_orig) ** 2).sum( + dim=list(range(1, batch_grad.ndim)) + ) + + for name, sumsq_orig, rms, grad in zip( + batch_param_names, batch_sumsq_orig, batch_rms_orig, batch_grad + ): + proportion_orig = sumsq_orig / tot_sumsq + all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad) + + assert torch.isclose( + sum([value[0] for value in all_sumsq_orig.values()]).cpu(), + torch.tensor(1.0), + ) + sorted_by_proportion = { + k: v + for k, v in sorted( + all_sumsq_orig.items(), key=lambda item: item[1][0], reverse=True + ) + } + dominant_param_name = next(iter(sorted_by_proportion)) + ( + dominant_proportion, + dominant_sumsq, + dominant_rms, + dominant_grad, + ) = sorted_by_proportion[dominant_param_name] + logging.info( + f"Parameter Dominanting tot_sumsq {dominant_param_name}" + f" with proportion {dominant_proportion:.2f}," + f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)" + f"={dominant_sumsq:.3e}," + f" grad_sumsq = {(dominant_grad**2).sum():.3e}," + f" orig_rms_sq={(dominant_rms**2).item():.3e}" + ) + + def _step_one_batch( + self, group: dict, p: Tensor, state: dict, clipping_scale: float + ): + """ + Do the step for one parameter, which is actually going to be a batch of + `real` parameters, with dim 0 as the batch dim. + Args: + group: dict to look up configuration values + p: parameter to update (actually multiple parameters stacked together + as a batch) + state: state-dict for p, to look up the optimizer state + """ + lr = group["lr"] + size_update_period = group["size_update_period"] + beta1 = group["betas"][0] + + grad = p.grad + if clipping_scale != 1.0: + grad = grad * clipping_scale + step = state["step"] + delta = state["delta"] + + delta.mul_(beta1) + batch_size = p.shape[0] + numel = p.numel() // batch_size + if numel > 1: + # Update the size/scale of p, and set param_rms + scale_grads = state["scale_grads"] + scale_grads[step % size_update_period] = (p * grad).sum( + dim=list(range(1, p.ndim)), keepdim=True + ) + if step % size_update_period == size_update_period - 1: + param_rms = state["param_rms"] # shape: (batch_size, 1, 1, ..) + param_rms.copy_( + (p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt() + ) + if step > 0: + # self._size_update() learns the overall scale on the + # parameter, by shrinking or expanding it. + self._size_update(group, scale_grads, p, state) + + if numel == 1: + # For parameters with 1 element we just use regular Adam. + # Updates delta. + self._step_scalar(group, p, state) + else: + self._step(group, p, state) + + state["step"] = step + 1 + + def _size_update( + self, group: dict, scale_grads: Tensor, p: Tensor, state: dict + ) -> None: + """ + Called only where p.numel() > 1, this updates the scale of the parameter. + If we imagine: p = underlying_param * scale.exp(), and we are doing + gradient descent on underlying param and on scale, this function does the update + on `scale`. + + Args: + group: dict to look up configuration values + scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing + grads w.r.t. the scales. + p: The parameter to update + state: The state-dict of p + """ + + param_rms = state["param_rms"] + beta1, beta2 = group["betas"] + size_lr = group["lr"] * group["scalar_lr_scale"] + param_min_rms = group["param_min_rms"] + param_max_rms = group["param_max_rms"] + eps = group["eps"] + step = state["step"] + batch_size = p.shape[0] + + size_update_period = scale_grads.shape[0] + # correct beta2 for the size update period: we will have + # faster decay at this level. + beta2_corr = beta2**size_update_period + + scale_exp_avg_sq = state["scale_exp_avg_sq"] # shape: (batch_size, 1, 1, ..) + scale_exp_avg_sq.mul_(beta2_corr).add_( + (scale_grads**2).mean(dim=0), # mean over dim `size_update_period` + alpha=1 - beta2_corr, + ) # shape is (batch_size, 1, 1, ...) + + # The 1st time we reach here is when size_step == 1. + size_step = (step + 1) // size_update_period + bias_correction2 = 1 - beta2_corr**size_step + # we don't bother with bias_correction1; this will help prevent divergence + # at the start of training. + + denom = scale_exp_avg_sq.sqrt() + eps + + scale_step = ( + -size_lr * (bias_correction2**0.5) * scale_grads.sum(dim=0) / denom + ) + + is_too_small = param_rms < param_min_rms + is_too_large = param_rms > param_max_rms + + # when the param gets too small, just don't shrink it any further. + scale_step.masked_fill_(is_too_small, 0.0) + # when it gets too large, stop it from getting any larger. + scale_step.masked_fill_(is_too_large, -size_lr * size_update_period) + delta = state["delta"] + # the factor of (1-beta1) relates to momentum. + delta.add_(p * scale_step, alpha=(1 - beta1)) + + def _step(self, group: dict, p: Tensor, state: dict): + """ + This function does the core update of self.step(), in the case where the members of + the batch have more than 1 element. + + Args: + group: A dict which will be used to look up configuration values + p: The parameter to be updated + grad: The grad of p + state: The state-dict corresponding to parameter p + + This function modifies p. + """ + grad = p.grad + lr = group["lr"] + beta1, beta2 = group["betas"] + eps = group["eps"] + param_min_rms = group["param_min_rms"] + step = state["step"] + + exp_avg_sq = state["exp_avg_sq"] + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2)) + + this_step = state["step"] - (state["zero_step"] if "zero_step" in state else 0) + bias_correction2 = 1 - beta2 ** (this_step + 1) + if bias_correction2 < 0.99: + # note: not in-place. + exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2) + + denom = exp_avg_sq.sqrt() + denom += eps + grad = grad / denom + + alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms) + + delta = state["delta"] + delta.add_(grad * alpha) + p.add_(delta) + + def _step_scalar(self, group: dict, p: Tensor, state: dict): + """ + A simplified form of the core update for scalar tensors, where we cannot get a good + estimate of the parameter rms. + """ + beta1, beta2 = group["betas"] + scalar_max = group["scalar_max"] + eps = group["eps"] + lr = group["lr"] * group["scalar_lr_scale"] + grad = p.grad + + exp_avg_sq = state["exp_avg_sq"] # shape: (batch_size,) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + + # bias_correction2 is like in Adam. Don't bother with bias_correction1; + # slower update at the start will help stability anyway. + bias_correction2 = 1 - beta2 ** (state["step"] + 1) + denom = (exp_avg_sq / bias_correction2).sqrt() + eps + + delta = state["delta"] + delta.add_(grad / denom, alpha=-lr * (1 - beta1)) + p.clamp_(min=-scalar_max, max=scalar_max) + p.add_(delta) + + +class LRScheduler(object): + """ + Base-class for learning rate schedulers where the learning-rate depends on both the + batch and the epoch. + """ + + def __init__(self, optimizer: Optimizer, verbose: bool = False): + # Attach optimizer + if not isinstance(optimizer, Optimizer): + raise TypeError("{} is not an Optimizer".format(type(optimizer).__name__)) + self.optimizer = optimizer + self.verbose = verbose + + for group in optimizer.param_groups: + group.setdefault("base_lr", group["lr"]) + + self.base_lrs = [group["base_lr"] for group in optimizer.param_groups] + + self.epoch = 0 + self.batch = 0 + + def state_dict(self): + """Returns the state of the scheduler as a :class:`dict`. + + It contains an entry for every variable in self.__dict__ which + is not the optimizer. + """ + return { + "base_lrs": self.base_lrs, + "epoch": self.epoch, + "batch": self.batch, + } + + def load_state_dict(self, state_dict): + """Loads the schedulers state. + + Args: + state_dict (dict): scheduler state. Should be an object returned + from a call to :meth:`state_dict`. + """ + self.__dict__.update(state_dict) + + def get_last_lr(self) -> List[float]: + """Return last computed learning rate by current scheduler. Will be a list of float.""" + return self._last_lr + + def get_lr(self): + # Compute list of learning rates from self.epoch and self.batch and + # self.base_lrs; this must be overloaded by the user. + # e.g. return [some_formula(self.batch, self.epoch, base_lr) for base_lr in self.base_lrs ] + raise NotImplementedError + + def step_batch(self, batch: Optional[int] = None) -> None: + # Step the batch index, or just set it. If `batch` is specified, it + # must be the batch index from the start of training, i.e. summed over + # all epochs. + # You can call this in any order; if you don't provide 'batch', it should + # of course be called once per batch. + if batch is not None: + self.batch = batch + else: + self.batch = self.batch + 1 + self._set_lrs() + + def step_epoch(self, epoch: Optional[int] = None): + # Step the epoch index, or just set it. If you provide the 'epoch' arg, + # you should call this at the start of the epoch; if you don't provide the 'epoch' + # arg, you should call it at the end of the epoch. + if epoch is not None: + self.epoch = epoch + else: + self.epoch = self.epoch + 1 + self._set_lrs() + + def _set_lrs(self): + values = self.get_lr() + assert len(values) == len(self.optimizer.param_groups) + + for i, data in enumerate(zip(self.optimizer.param_groups, values)): + param_group, lr = data + param_group["lr"] = lr + self.print_lr(self.verbose, i, lr) + self._last_lr = [group["lr"] for group in self.optimizer.param_groups] + + def print_lr(self, is_verbose, group, lr): + """Display the current learning rate.""" + if is_verbose: + logging.info( + f"Epoch={self.epoch}, batch={self.batch}: adjusting learning rate" + f" of group {group} to {lr:.4e}." + ) + + +class Eden(LRScheduler): + """ + Eden scheduler. + The basic formula (before warmup) is: + lr = base_lr * (((batch**2 + lr_batches**2) / lr_batches**2) ** -0.25 * + (((epoch**2 + lr_epochs**2) / lr_epochs**2) ** -0.25)) * warmup + where `warmup` increases from linearly 0.5 to 1 over `warmup_batches` batches + and then stays constant at 1. + + + E.g. suggest base_lr = 0.04 (passed to optimizer) if used with ScaledAdam + + Args: + optimizer: the optimizer to change the learning rates on + lr_batches: the number of batches after which we start significantly + decreasing the learning rate, suggest 5000. + lr_epochs: the number of epochs after which we start significantly + decreasing the learning rate, suggest 6 if you plan to do e.g. + 20 to 40 epochs, but may need smaller number if dataset is huge + and you will do few epochs. + """ + + def __init__( + self, + optimizer: Optimizer, + lr_batches: Union[int, float], + lr_epochs: Union[int, float], + warmup_batches: Union[int, float] = 500.0, + verbose: bool = False, + ): + super(Eden, self).__init__(optimizer, verbose) + self.lr_batches = lr_batches + self.lr_epochs = lr_epochs + self.warmup_batches = warmup_batches + + def get_lr(self): + factor = ( + (self.batch**2 + self.lr_batches**2) / self.lr_batches**2 + ) ** -0.25 * ( + ((self.epoch**2 + self.lr_epochs**2) / self.lr_epochs**2) ** -0.25 + ) + warmup_factor = ( + 1.0 + if self.batch >= self.warmup_batches + else 0.5 + 0.5 * (self.batch / self.warmup_batches) + ) + + return [x * factor * warmup_factor for x in self.base_lrs] + + +def _test_eden(): + m = torch.nn.Linear(100, 100) + optim = ScaledAdam(m.parameters(), lr=0.03) + + scheduler = Eden(optim, lr_batches=100, lr_epochs=2, verbose=True) + + for epoch in range(10): + scheduler.step_epoch(epoch) # sets epoch to `epoch` + + for step in range(20): + x = torch.randn(200, 100).detach() + x.requires_grad = True + y = m(x) + dy = torch.randn(200, 100).detach() + f = (y * dy).sum() + f.backward() + + optim.step() + scheduler.step_batch() + optim.zero_grad() + + logging.info(f"last lr = {scheduler.get_last_lr()}") + logging.info(f"state dict = {scheduler.state_dict()}") + + +def _plot_eden_lr(): + import matplotlib.pyplot as plt + + m = torch.nn.Linear(100, 100) + parameters_names = [] + parameters_names.append( + [name_param_pair[0] for name_param_pair in m.named_parameters()] + ) + + for lr_epoch in [4, 10, 100]: + for lr_batch in [100, 400]: + optim = ScaledAdam( + m.parameters(), lr=0.03, parameters_names=parameters_names + ) + scheduler = Eden( + optim, lr_batches=lr_batch, lr_epochs=lr_epoch, verbose=True + ) + lr = [] + + for epoch in range(10): + scheduler.step_epoch(epoch) # sets epoch to `epoch` + + for step in range(500): + lr.append(scheduler.get_lr()) + + x = torch.randn(200, 100).detach() + x.requires_grad = True + y = m(x) + dy = torch.randn(200, 100).detach() + f = (y * dy).sum() + f.backward() + + optim.step() + scheduler.step_batch() + optim.zero_grad() + plt.plot(lr, label=f"lr_epoch:{lr_epoch}, lr_batch:{lr_batch}") + + plt.legend() + plt.savefig("lr.png") + + +# This is included mostly as a baseline for ScaledAdam. +class Eve(Optimizer): + """ + Implements Eve algorithm. This is a modified version of AdamW with a special + way of setting the weight-decay / shrinkage-factor, which is designed to make the + rms of the parameters approach a particular target_rms (default: 0.1). This is + for use with networks with 'scaled' versions of modules (see scaling.py), which + will be close to invariant to the absolute scale on the parameter matrix. + + The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_. + The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_. + Eve is unpublished so far. + + Arguments: + params (iterable): iterable of parameters to optimize or dicts defining + parameter groups + lr (float, optional): learning rate (default: 1e-3) + betas (Tuple[float, float], optional): coefficients used for computing + running averages of gradient and its square (default: (0.9, 0.999)) + eps (float, optional): term added to the denominator to improve + numerical stability (default: 1e-8) + weight_decay (float, optional): weight decay coefficient (default: 3e-4; + this value means that the weight would decay significantly after + about 3k minibatches. Is not multiplied by learning rate, but + is conditional on RMS-value of parameter being > target_rms. + target_rms (float, optional): target root-mean-square value of + parameters, if they fall below this we will stop applying weight decay. + + + .. _Adam: A Method for Stochastic Optimization: + https://arxiv.org/abs/1412.6980 + .. _Decoupled Weight Decay Regularization: + https://arxiv.org/abs/1711.05101 + .. _On the Convergence of Adam and Beyond: + https://openreview.net/forum?id=ryQu7f-RZ + """ + + def __init__( + self, + params, + lr=1e-3, + betas=(0.9, 0.98), + eps=1e-8, + weight_decay=1e-3, + target_rms=0.1, + ): + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + if not 0 <= weight_decay <= 0.1: + raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) + if not 0 < target_rms <= 10.0: + raise ValueError("Invalid target_rms value: {}".format(target_rms)) + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + target_rms=target_rms, + ) + super(Eve, self).__init__(params, defaults) + + def __setstate__(self, state): + super(Eve, self).__setstate__(state) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + for p in group["params"]: + if p.grad is None: + continue + + # Perform optimization step + grad = p.grad + if grad.is_sparse: + raise RuntimeError("AdamW does not support sparse gradients") + + state = self.state[p] + + # State initialization + if len(state) == 0: + state["step"] = 0 + # Exponential moving average of gradient values + state["exp_avg"] = torch.zeros_like( + p, memory_format=torch.preserve_format + ) + # Exponential moving average of squared gradient values + state["exp_avg_sq"] = torch.zeros_like( + p, memory_format=torch.preserve_format + ) + + exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] + + beta1, beta2 = group["betas"] + + state["step"] += 1 + bias_correction1 = 1 - beta1 ** state["step"] + bias_correction2 = 1 - beta2 ** state["step"] + + # Decay the first and second moment running average coefficient + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + denom = (exp_avg_sq.sqrt() * (bias_correction2**-0.5)).add_( + group["eps"] + ) + + step_size = group["lr"] / bias_correction1 + target_rms = group["target_rms"] + weight_decay = group["weight_decay"] + + if p.numel() > 1: + # avoid applying this weight-decay on "scaling factors" + # (which are scalar). + is_above_target_rms = p.norm() > (target_rms * (p.numel() ** 0.5)) + p.mul_(1 - (weight_decay * is_above_target_rms)) + + p.addcdiv_(exp_avg, denom, value=-step_size) + + if random.random() < 0.0005: + step = (exp_avg / denom) * step_size + logging.info( + f"Delta rms = {(step**2).mean().item()}, shape = {step.shape}" + ) + + return loss + + +def _test_scaled_adam(hidden_dim: int): + import timeit + + from scaling import ScaledLinear + + E = 100 + B = 4 + T = 2 + logging.info("in test_eve_cain") + # device = torch.device('cuda') + device = torch.device("cpu") + dtype = torch.float32 + + fix_random_seed(42) + # these input_magnitudes and output_magnitudes are to test that + # Abel is working as we expect and is able to adjust scales of + # different dims differently. + input_magnitudes = (1.0 * torch.randn(E, dtype=dtype, device=device)).exp() + output_magnitudes = (1.0 * torch.randn(E, dtype=dtype, device=device)).exp() + + for iter in [1, 0]: + fix_random_seed(42) + Linear = torch.nn.Linear if iter == 0 else ScaledLinear + + m = torch.nn.Sequential( + Linear(E, hidden_dim), + torch.nn.PReLU(), + Linear(hidden_dim, hidden_dim), + torch.nn.PReLU(), + Linear(hidden_dim, E), + ).to(device) + + train_pairs = [ + ( + 100.0 + * torch.randn(B, T, E, device=device, dtype=dtype) + * input_magnitudes, + torch.randn(B, T, E, device=device, dtype=dtype) * output_magnitudes, + ) + for _ in range(20) + ] + + if iter == 0: + optim = Eve(m.parameters(), lr=0.003) + elif iter == 1: + optim = ScaledAdam(m.parameters(), lr=0.03, clipping_scale=2.0) + scheduler = Eden(optim, lr_batches=200, lr_epochs=5, verbose=False) + + start = timeit.default_timer() + avg_loss = 0.0 + for epoch in range(180): + scheduler.step_epoch() + # if epoch == 100 and iter in [2,3]: + # optim.reset_speedup() # check it doesn't crash. + + # if epoch == 130: + # opts = diagnostics.TensorDiagnosticOptions( + # 512 + # ) # allow 4 megabytes per sub-module + # diagnostic = diagnostics.attach_diagnostics(m, opts) + + for n, (x, y) in enumerate(train_pairs): + y_out = m(x) + loss = ((y_out - y) ** 2).mean() * 100.0 + if epoch == 0 and n == 0: + avg_loss = loss.item() + else: + avg_loss = 0.98 * avg_loss + 0.02 * loss.item() + if n == 0 and epoch % 5 == 0: + # norm1 = '%.2e' % (m[0].weight**2).mean().sqrt().item() + # norm1b = '%.2e' % (m[0].bias**2).mean().sqrt().item() + # norm2 = '%.2e' % (m[2].weight**2).mean().sqrt().item() + # norm2b = '%.2e' % (m[2].bias**2).mean().sqrt().item() + # scale1 = '%.2e' % (m[0].weight_scale.exp().item()) + # scale1b = '%.2e' % (m[0].bias_scale.exp().item()) + # scale2 = '%.2e' % (m[2].weight_scale.exp().item()) + # scale2b = '%.2e' % (m[2].bias_scale.exp().item()) + lr = scheduler.get_last_lr()[0] + logging.info( + f"Iter {iter}, epoch {epoch}, batch {n}, avg_loss {avg_loss:.4g}, lr={lr:.4e}" + ) # , norms={norm1,norm1b,norm2,norm2b}") # scales={scale1,scale1b,scale2,scale2b} + loss.log().backward() + optim.step() + optim.zero_grad() + scheduler.step_batch() + + # diagnostic.print_diagnostics() + + stop = timeit.default_timer() + logging.info(f"Iter={iter}, Time taken: {stop - start}") + + logging.info(f"last lr = {scheduler.get_last_lr()}") + # logging.info("state dict = ", scheduler.state_dict()) + # logging.info("optim state_dict = ", optim.state_dict()) + logging.info(f"input_magnitudes = {input_magnitudes}") + logging.info(f"output_magnitudes = {output_magnitudes}") + + +if __name__ == "__main__": + torch.set_num_threads(1) + torch.set_num_interop_threads(1) + logging.getLogger().setLevel(logging.INFO) + import subprocess + + s = subprocess.check_output( + "git status -uno .; git log -1; git diff HEAD .", shell=True + ) + logging.info(s) + import sys + + if len(sys.argv) > 1: + hidden_dim = int(sys.argv[1]) + else: + hidden_dim = 200 + + # _test_scaled_adam(hidden_dim) + # _test_eden() + _plot_eden_lr() diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/pretrained.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/pretrained.py new file mode 100755 index 000000000..19b5864d7 --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/pretrained.py @@ -0,0 +1,361 @@ +#!/usr/bin/env python3 +# Copyright 2024 (Author: SeungHyun Lee, Contacts: whsqkaak@naver.com) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This script loads a checkpoint and uses it to decode waves. +You can generate the checkpoint with the following command: + +./pruned_transducer_stateless7_streaming/export.py \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --tokens data/lang_bpe_500/tokens.txt \ + --epoch 20 \ + --avg 10 + +Usage of this script: + +(1) greedy search +./pruned_transducer_stateless7_streaming/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \ + --tokens data/lang_bpe_500/tokens.txt \ + --method greedy_search \ + /path/to/foo.wav \ + /path/to/bar.wav + +(2) beam search +./pruned_transducer_stateless7_streaming/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \ + --tokens data/lang_bpe_500/tokens.txt \ + --method beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(3) modified beam search +./pruned_transducer_stateless7_streaming/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \ + --tokens data/lang_bpe_500/tokens.txt \ + --method modified_beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav + +(4) fast beam search +./pruned_transducer_stateless7_streaming/pretrained.py \ + --checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \ + --tokens data/lang_bpe_500/tokens.txt \ + --method fast_beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav + +You can also use `./pruned_transducer_stateless7_streaming/exp/epoch-xx.pt`. + +Note: ./pruned_transducer_stateless7_streaming/exp/pretrained.pt is generated by +./pruned_transducer_stateless7_streaming/export.py +""" + + +import argparse +import logging +import math +from typing import List + +import k2 +import kaldifeat +import torch +import torchaudio +from beam_search import ( + beam_search, + fast_beam_search_one_best, + greedy_search, + greedy_search_batch, + modified_beam_search, +) +from torch.nn.utils.rnn import pad_sequence +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.utils import num_tokens, str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--checkpoint", + type=str, + required=True, + help="Path to the checkpoint. " + "The checkpoint is assumed to be saved by " + "icefall.checkpoint.save_checkpoint().", + ) + + parser.add_argument( + "--tokens", + type=str, + help="""Path to tokens.txt.""", + ) + + parser.add_argument( + "--method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - beam_search + - modified_beam_search + - fast_beam_search + """, + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + parser.add_argument( + "--sample-rate", + type=int, + default=16000, + help="The sample rate of the input sound file", + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An integer indicating how many candidates we will keep for each + frame. Used only when --method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=4, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --method is fast_beam_search""", + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=4, + help="""Used only when --method is fast_beam_search""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=8, + help="""Used only when --method is fast_beam_search""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. Used only when + --method is greedy_search. + """, + ) + + add_model_arguments(parser) + + return parser + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert ( + sample_rate == expected_sample_rate + ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" + # We use only the first channel + ans.append(wave[0]) + return ans + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + + params.update(vars(args)) + + # Load tokens.txt here + token_table = k2.SymbolTable.from_file(params.tokens) + + # Load id of the token and the vocab size + # is defined in local/train_bpe_model.py + params.blank_id = token_table[""] + params.unk_id = token_table[""] + params.vocab_size = num_tokens(token_table) + 1 # +1 for + + logging.info(f"{params}") + + device = torch.device("cpu") + # if torch.cuda.is_available(): + # device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + logging.info("Creating model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + checkpoint = torch.load(args.checkpoint, map_location="cpu") + model.load_state_dict(checkpoint["model"], strict=False) + model.to(device) + model.eval() + model.device = device + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = params.sample_rate + opts.mel_opts.num_bins = params.feature_dim + opts.mel_opts.high_freq = -400 + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {params.sound_files}") + waves = read_sound_files( + filenames=params.sound_files, expected_sample_rate=params.sample_rate + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) + + feature_lengths = torch.tensor(feature_lengths, device=device) + + encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths) + + num_waves = encoder_out.size(0) + hyps = [] + msg = f"Using {params.method}" + if params.method == "beam_search": + msg += f" with beam size {params.beam_size}" + logging.info(msg) + + def token_ids_to_words(token_ids: List[int]) -> str: + text = "" + for i in token_ids: + text += token_table[i] + return text.replace("▁", " ").strip() + + if params.method == "fast_beam_search": + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + hyp_tokens = fast_beam_search_one_best( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + for hyp in hyp_tokens: + hyps.append(token_ids_to_words(hyp)) + elif params.method == "modified_beam_search": + hyp_tokens = modified_beam_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + ) + + for hyp in hyp_tokens: + hyps.append(token_ids_to_words(hyp)) + elif params.method == "greedy_search" and params.max_sym_per_frame == 1: + hyp_tokens = greedy_search_batch( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + for hyp in hyp_tokens: + hyps.append(token_ids_to_words(hyp)) + else: + for i in range(num_waves): + # fmt: off + encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] + # fmt: on + if params.method == "greedy_search": + hyp = greedy_search( + model=model, + encoder_out=encoder_out_i, + max_sym_per_frame=params.max_sym_per_frame, + ) + elif params.method == "beam_search": + hyp = beam_search( + model=model, + encoder_out=encoder_out_i, + beam=params.beam_size, + ) + else: + raise ValueError(f"Unsupported method: {params.method}") + + hyps.append(token_ids_to_words(hyp)) + + s = "\n" + for filename, hyp in zip(params.sound_files, hyps): + s += f"{filename}:\n{hyp}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/scaling.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/scaling.py new file mode 100644 index 000000000..30a737061 --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/scaling.py @@ -0,0 +1,1180 @@ +# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import collections +import logging +import random +from functools import reduce +from itertools import repeat +from typing import Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch import Tensor +from torch.nn import Embedding as ScaledEmbedding + + +class ActivationBalancerFunction(torch.autograd.Function): + @staticmethod + def forward( + ctx, + x: Tensor, + scale_factor: Tensor, + sign_factor: Optional[Tensor], + channel_dim: int, + ) -> Tensor: + if channel_dim < 0: + channel_dim += x.ndim + ctx.channel_dim = channel_dim + xgt0 = x > 0 + if sign_factor is None: + ctx.save_for_backward(xgt0, scale_factor) + else: + ctx.save_for_backward(xgt0, scale_factor, sign_factor) + return x + + @staticmethod + def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]: + if len(ctx.saved_tensors) == 3: + xgt0, scale_factor, sign_factor = ctx.saved_tensors + for _ in range(ctx.channel_dim, x_grad.ndim - 1): + scale_factor = scale_factor.unsqueeze(-1) + sign_factor = sign_factor.unsqueeze(-1) + factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5) + else: + xgt0, scale_factor = ctx.saved_tensors + for _ in range(ctx.channel_dim, x_grad.ndim - 1): + scale_factor = scale_factor.unsqueeze(-1) + factor = scale_factor * (xgt0.to(x_grad.dtype) - 0.5) + neg_delta_grad = x_grad.abs() * factor + return ( + x_grad - neg_delta_grad, + None, + None, + None, + ) + + +def _compute_scale_factor( + x: Tensor, + channel_dim: int, + min_abs: float, + max_abs: float, + gain_factor: float, + max_factor: float, +) -> Tensor: + if channel_dim < 0: + channel_dim += x.ndim + sum_dims = [d for d in range(x.ndim) if d != channel_dim] + x_abs_mean = torch.mean(x.abs(), dim=sum_dims).to(torch.float32) + + if min_abs == 0.0: + below_threshold = 0.0 + else: + # below_threshold is 0 if x_abs_mean > min_abs, can be at most max_factor if + # x_abs)_mean , min_abs. + below_threshold = ((min_abs - x_abs_mean) * (gain_factor / min_abs)).clamp( + min=0, max=max_factor + ) + + above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp( + min=0, max=max_factor + ) + + return below_threshold - above_threshold + + +def _compute_sign_factor( + x: Tensor, + channel_dim: int, + min_positive: float, + max_positive: float, + gain_factor: float, + max_factor: float, +) -> Tensor: + if channel_dim < 0: + channel_dim += x.ndim + sum_dims = [d for d in range(x.ndim) if d != channel_dim] + proportion_positive = torch.mean((x > 0).to(torch.float32), dim=sum_dims) + if min_positive == 0.0: + factor1 = 0.0 + else: + # 0 if proportion_positive >= min_positive, else can be + # as large as max_factor. + factor1 = ( + (min_positive - proportion_positive) * (gain_factor / min_positive) + ).clamp_(min=0, max=max_factor) + + if max_positive == 1.0: + factor2 = 0.0 + else: + # 0 if self.proportion_positive <= max_positive, else can be + # as large as -max_factor. + factor2 = ( + (proportion_positive - max_positive) * (gain_factor / (1.0 - max_positive)) + ).clamp_(min=0, max=max_factor) + sign_factor = factor1 - factor2 + # require min_positive != 0 or max_positive != 1: + assert not isinstance(sign_factor, float) + return sign_factor + + +class ActivationScaleBalancerFunction(torch.autograd.Function): + """ + This object is used in class ActivationBalancer when the user specified + min_positive=0, max_positive=1, so there are no constraints on the signs + of the activations and only the absolute value has a constraint. + """ + + @staticmethod + def forward( + ctx, + x: Tensor, + sign_factor: Tensor, + scale_factor: Tensor, + channel_dim: int, + ) -> Tensor: + if channel_dim < 0: + channel_dim += x.ndim + ctx.channel_dim = channel_dim + xgt0 = x > 0 + ctx.save_for_backward(xgt0, sign_factor, scale_factor) + return x + + @staticmethod + def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]: + xgt0, sign_factor, scale_factor = ctx.saved_tensors + for _ in range(ctx.channel_dim, x_grad.ndim - 1): + sign_factor = sign_factor.unsqueeze(-1) + scale_factor = scale_factor.unsqueeze(-1) + + factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5) + neg_delta_grad = x_grad.abs() * factor + return ( + x_grad - neg_delta_grad, + None, + None, + None, + ) + + +class RandomClampFunction(torch.autograd.Function): + @staticmethod + def forward( + ctx, + x: Tensor, + min: Optional[float], + max: Optional[float], + prob: float, + reflect: float, + ) -> Tensor: + x_clamped = torch.clamp(x, min=min, max=max) + mask = torch.rand_like(x) < prob + ans = torch.where(mask, x_clamped, x) + if x.requires_grad: + ctx.save_for_backward(ans == x) + ctx.reflect = reflect + if reflect != 0.0: + ans = ans * (1.0 + reflect) - (x * reflect) + return ans + + @staticmethod + def backward(ctx, ans_grad: Tensor) -> Tuple[Tensor, None, None, None, None]: + (is_same,) = ctx.saved_tensors + x_grad = ans_grad * is_same.to(ans_grad.dtype) + reflect = ctx.reflect + if reflect != 0.0: + x_grad = x_grad * (1.0 + reflect) - (ans_grad * reflect) + return x_grad, None, None, None, None + + +def random_clamp( + x: Tensor, + min: Optional[float] = None, + max: Optional[float] = None, + prob: float = 0.5, + reflect: float = 0.0, +): + return RandomClampFunction.apply(x, min, max, prob, reflect) + + +def random_cast_to_half(x: Tensor, min_abs: float = 5.0e-06) -> Tensor: + """ + A randomized way of casting a floating point value to half precision. + """ + if x.dtype == torch.float16: + return x + x_abs = x.abs() + is_too_small = x_abs < min_abs + # for elements where is_too_small is true, random_val will contain +-min_abs with + # probability (x.abs() / min_abs), and 0.0 otherwise. [so this preserves expectations, + # for those elements]. + random_val = min_abs * x.sign() * (torch.rand_like(x) * min_abs < x_abs) + return torch.where(is_too_small, random_val, x).to(torch.float16) + + +class RandomGradFunction(torch.autograd.Function): + """ + Does nothing in forward pass; in backward pass, gets rid of very small grads using + randomized approach that preserves expectations (intended to reduce roundoff). + """ + + @staticmethod + def forward(ctx, x: Tensor, min_abs: float) -> Tensor: + ctx.min_abs = min_abs + return x + + @staticmethod + def backward(ctx, ans_grad: Tensor) -> Tuple[Tensor, None]: + if ans_grad.dtype == torch.float16: + return ( + random_cast_to_half(ans_grad.to(torch.float32), min_abs=ctx.min_abs), + None, + ) + else: + return ans_grad, None + + +class RandomGrad(torch.nn.Module): + """ + Gets rid of very small gradients using an expectation-preserving method, intended to increase + accuracy of training when using amp (automatic mixed precision) + """ + + def __init__(self, min_abs: float = 5.0e-06): + super(RandomGrad, self).__init__() + self.min_abs = min_abs + + def forward(self, x: Tensor): + if torch.jit.is_scripting() or not self.training or torch.jit.is_tracing(): + return x + else: + return RandomGradFunction.apply(x, self.min_abs) + + +class SoftmaxFunction(torch.autograd.Function): + """ + Tries to handle half-precision derivatives in a randomized way that should + be more accurate for training than the default behavior. + """ + + @staticmethod + def forward(ctx, x: Tensor, dim: int): + ans = x.softmax(dim=dim) + # if x dtype is float16, x.softmax() returns a float32 because + # (presumably) that op does not support float16, and autocast + # is enabled. + if torch.is_autocast_enabled(): + ans = ans.to(torch.float16) + ctx.save_for_backward(ans) + ctx.x_dtype = x.dtype + ctx.dim = dim + return ans + + @staticmethod + def backward(ctx, ans_grad: Tensor): + (ans,) = ctx.saved_tensors + with torch.cuda.amp.autocast(enabled=False): + ans_grad = ans_grad.to(torch.float32) + ans = ans.to(torch.float32) + x_grad = ans_grad * ans + x_grad = x_grad - ans * x_grad.sum(dim=ctx.dim, keepdim=True) + return x_grad, None + + +def softmax(x: Tensor, dim: int): + if torch.jit.is_scripting() or torch.jit.is_tracing(): + return x.softmax(dim) + + return SoftmaxFunction.apply(x, dim) + + +class MaxEigLimiterFunction(torch.autograd.Function): + @staticmethod + def forward( + ctx, + x: Tensor, + coeffs: Tensor, + direction: Tensor, + channel_dim: int, + grad_scale: float, + ) -> Tensor: + ctx.channel_dim = channel_dim + ctx.grad_scale = grad_scale + ctx.save_for_backward(x.detach(), coeffs.detach(), direction.detach()) + return x + + @staticmethod + def backward(ctx, x_grad, *args): + with torch.enable_grad(): + (x_orig, coeffs, new_direction) = ctx.saved_tensors + x_orig.requires_grad = True + num_channels = x_orig.shape[ctx.channel_dim] + x = x_orig.transpose(ctx.channel_dim, -1).reshape(-1, num_channels) + new_direction.requires_grad = False + x = x - x.mean(dim=0) + x_var = (x**2).mean() + x_residual = x - coeffs * new_direction + x_residual_var = (x_residual**2).mean() + # `variance_proportion` is the proportion of the variance accounted for + # by the top eigen-direction. This is to be minimized. + variance_proportion = (x_var - x_residual_var) / (x_var + 1.0e-20) + variance_proportion.backward() + x_orig_grad = x_orig.grad + x_extra_grad = ( + x_orig.grad + * ctx.grad_scale + * x_grad.norm() + / (x_orig_grad.norm() + 1.0e-20) + ) + return x_grad + x_extra_grad.detach(), None, None, None, None + + +class BasicNorm(torch.nn.Module): + """ + This is intended to be a simpler, and hopefully cheaper, replacement for + LayerNorm. The observation this is based on, is that Transformer-type + networks, especially with pre-norm, sometimes seem to set one of the + feature dimensions to a large constant value (e.g. 50), which "defeats" + the LayerNorm because the output magnitude is then not strongly dependent + on the other (useful) features. Presumably the weight and bias of the + LayerNorm are required to allow it to do this. + + So the idea is to introduce this large constant value as an explicit + parameter, that takes the role of the "eps" in LayerNorm, so the network + doesn't have to do this trick. We make the "eps" learnable. + + Args: + num_channels: the number of channels, e.g. 512. + channel_dim: the axis/dimension corresponding to the channel, + interprted as an offset from the input's ndim if negative. + shis is NOT the num_channels; it should typically be one of + {-2, -1, 0, 1, 2, 3}. + eps: the initial "epsilon" that we add as ballast in: + scale = ((input_vec**2).mean() + epsilon)**-0.5 + Note: our epsilon is actually large, but we keep the name + to indicate the connection with conventional LayerNorm. + learn_eps: if true, we learn epsilon; if false, we keep it + at the initial value. + eps_min: float + eps_max: float + """ + + def __init__( + self, + num_channels: int, + channel_dim: int = -1, # CAUTION: see documentation. + eps: float = 0.25, + learn_eps: bool = True, + eps_min: float = -3.0, + eps_max: float = 3.0, + ) -> None: + super(BasicNorm, self).__init__() + self.num_channels = num_channels + self.channel_dim = channel_dim + if learn_eps: + self.eps = nn.Parameter(torch.tensor(eps).log().detach()) + else: + self.register_buffer("eps", torch.tensor(eps).log().detach()) + self.eps_min = eps_min + self.eps_max = eps_max + + def forward(self, x: Tensor) -> Tensor: + assert x.shape[self.channel_dim] == self.num_channels + eps = self.eps + if self.training and random.random() < 0.25: + # with probability 0.25, in training mode, clamp eps between the min + # and max; this will encourage it to learn parameters within the + # allowed range by making parameters that are outside the allowed + # range noisy. + + # gradients to allow the parameter to get back into the allowed + # region if it happens to exit it. + eps = eps.clamp(min=self.eps_min, max=self.eps_max) + scales = ( + torch.mean(x**2, dim=self.channel_dim, keepdim=True) + eps.exp() + ) ** -0.5 + return x * scales + + +def ScaledLinear(*args, initial_scale: float = 1.0, **kwargs) -> nn.Linear: + """ + Behaves like a constructor of a modified version of nn.Linear + that gives an easy way to set the default initial parameter scale. + + Args: + Accepts the standard args and kwargs that nn.Linear accepts + e.g. in_features, out_features, bias=False. + + initial_scale: you can override this if you want to increase + or decrease the initial magnitude of the module's output + (affects the initialization of weight_scale and bias_scale). + Another option, if you want to do something like this, is + to re-initialize the parameters. + """ + ans = nn.Linear(*args, **kwargs) + with torch.no_grad(): + ans.weight[:] *= initial_scale + if ans.bias is not None: + torch.nn.init.uniform_(ans.bias, -0.1 * initial_scale, 0.1 * initial_scale) + return ans + + +def ScaledConv1d(*args, initial_scale: float = 1.0, **kwargs) -> nn.Conv1d: + """ + Behaves like a constructor of a modified version of nn.Conv1d + that gives an easy way to set the default initial parameter scale. + + Args: + Accepts the standard args and kwargs that nn.Linear accepts + e.g. in_features, out_features, bias=False. + + initial_scale: you can override this if you want to increase + or decrease the initial magnitude of the module's output + (affects the initialization of weight_scale and bias_scale). + Another option, if you want to do something like this, is + to re-initialize the parameters. + """ + ans = nn.Conv1d(*args, **kwargs) + with torch.no_grad(): + ans.weight[:] *= initial_scale + if ans.bias is not None: + torch.nn.init.uniform_(ans.bias, -0.1 * initial_scale, 0.1 * initial_scale) + return ans + + +class ActivationBalancer(torch.nn.Module): + """ + Modifies the backpropped derivatives of a function to try to encourage, for + each channel, that it is positive at least a proportion `threshold` of the + time. It does this by multiplying negative derivative values by up to + (1+max_factor), and positive derivative values by up to (1-max_factor), + interpolated from 1 at the threshold to those extremal values when none + of the inputs are positive. + + Args: + num_channels: the number of channels + channel_dim: the dimension/axis corresponding to the channel, e.g. + -1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative. + min_positive: the minimum, per channel, of the proportion of the time + that (x > 0), below which we start to modify the derivatives. + max_positive: the maximum, per channel, of the proportion of the time + that (x > 0), above which we start to modify the derivatives. + max_factor: the maximum factor by which we modify the derivatives for + either the sign constraint or the magnitude constraint; + e.g. with max_factor=0.02, the the derivatives would be multiplied by + values in the range [0.98..1.02]. + sign_gain_factor: determines the 'gain' with which we increase the + change in gradient once the constraints on min_positive and max_positive + are violated. + scale_gain_factor: determines the 'gain' with which we increase the + change in gradient once the constraints on min_abs and max_abs + are violated. + min_abs: the minimum average-absolute-value difference from the mean + value per channel, which we allow, before we start to modify + the derivatives to prevent this. + max_abs: the maximum average-absolute-value difference from the mean + value per channel, which we allow, before we start to modify + the derivatives to prevent this. + min_prob: determines the minimum probability with which we modify the + gradients for the {min,max}_positive and {min,max}_abs constraints, + on each forward(). This is done randomly to prevent all layers + from doing it at the same time. Early in training we may use + higher probabilities than this; it will decay to this value. + """ + + def __init__( + self, + num_channels: int, + channel_dim: int, + min_positive: float = 0.05, + max_positive: float = 0.95, + max_factor: float = 0.04, + sign_gain_factor: float = 0.01, + scale_gain_factor: float = 0.02, + min_abs: float = 0.2, + max_abs: float = 100.0, + min_prob: float = 0.1, + ): + super(ActivationBalancer, self).__init__() + self.num_channels = num_channels + self.channel_dim = channel_dim + self.min_positive = min_positive + self.max_positive = max_positive + self.max_factor = max_factor + self.min_abs = min_abs + self.max_abs = max_abs + self.min_prob = min_prob + self.sign_gain_factor = sign_gain_factor + self.scale_gain_factor = scale_gain_factor + + # count measures how many times the forward() function has been called. + # We occasionally sync this to a tensor called `count`, that exists to + # make sure it is synced to disk when we load and save the model. + self.cpu_count = 0 + self.register_buffer("count", torch.tensor(0, dtype=torch.int64)) + + def forward(self, x: Tensor) -> Tensor: + if torch.jit.is_scripting() or not x.requires_grad or torch.jit.is_tracing(): + return _no_op(x) + + count = self.cpu_count + self.cpu_count += 1 + + if random.random() < 0.01: + # Occasionally sync self.cpu_count with self.count. + # count affects the decay of 'prob'. don't do this on every iter, + # because syncing with the GPU is slow. + self.cpu_count = max(self.cpu_count, self.count.item()) + self.count.fill_(self.cpu_count) + + # the prob of doing some work exponentially decreases from 0.5 till it hits + # a floor at min_prob (==0.1, by default) + prob = max(self.min_prob, 0.5 ** (1 + (count / 4000.0))) + + if random.random() < prob: + sign_gain_factor = 0.5 + if self.min_positive != 0.0 or self.max_positive != 1.0: + sign_factor = _compute_sign_factor( + x, + self.channel_dim, + self.min_positive, + self.max_positive, + gain_factor=self.sign_gain_factor / prob, + max_factor=self.max_factor, + ) + else: + sign_factor = None + + scale_factor = _compute_scale_factor( + x.detach(), + self.channel_dim, + min_abs=self.min_abs, + max_abs=self.max_abs, + gain_factor=self.scale_gain_factor / prob, + max_factor=self.max_factor, + ) + return ActivationBalancerFunction.apply( + x, + scale_factor, + sign_factor, + self.channel_dim, + ) + else: + return _no_op(x) + + +def penalize_abs_values_gt(x: Tensor, limit: float, penalty: float) -> Tensor: + """ + Returns x unmodified, but in backprop will put a penalty for the excess of + the absolute values of elements of x over the limit "limit". E.g. if + limit == 10.0, then if x has any values over 10 it will get a penalty. + + Caution: the value of this penalty will be affected by grad scaling used + in automatic mixed precision training. For this reasons we use this, + it shouldn't really matter, or may even be helpful; we just use this + to disallow really implausible values of scores to be given to softmax. + """ + x_sign = x.sign() + over_limit = (x.abs() - limit) > 0 + # The following is a memory efficient way to penalize the absolute values of + # x that's over the limit. (The memory efficiency comes when you think + # about which items torch needs to cache for the autograd, and which ones it + # can throw away). The numerical value of aux_loss as computed here will + # actually be larger than it should be, by limit * over_limit.sum(), but it + # has the same derivative as the real aux_loss which is penalty * (x.abs() - + # limit).relu(). + aux_loss = penalty * ((x_sign * over_limit).to(torch.int8) * x) + # note: we don't do sum() here on aux)_loss, but it's as if we had done + # sum() due to how with_loss() works. + x = with_loss(x, aux_loss) + # you must use x for something, or this will be ineffective. + return x + + +def _diag(x: Tensor): # like .diag(), but works for tensors with 3 dims. + if x.ndim == 2: + return x.diag() + else: + (batch, dim, dim) = x.shape + x = x.reshape(batch, dim * dim) + x = x[:, :: dim + 1] + assert x.shape == (batch, dim) + return x + + +def _whitening_metric(x: Tensor, num_groups: int): + """ + Computes the "whitening metric", a value which will be 1.0 if all the eigenvalues of + of the centered feature covariance are the same within each group's covariance matrix + and also between groups. + Args: + x: a Tensor of shape (*, num_channels) + num_groups: the number of groups of channels, a number >=1 that divides num_channels + Returns: + Returns a scalar Tensor that will be 1.0 if the data is "perfectly white" and + greater than 1.0 otherwise. + """ + assert x.dtype != torch.float16 + x = x.reshape(-1, x.shape[-1]) + (num_frames, num_channels) = x.shape + assert num_channels % num_groups == 0 + channels_per_group = num_channels // num_groups + x = x.reshape(num_frames, num_groups, channels_per_group).transpose(0, 1) + # x now has shape (num_groups, num_frames, channels_per_group) + # subtract the mean so we use the centered, not uncentered, covariance. + # My experience has been that when we "mess with the gradients" like this, + # it's better not do anything that tries to move the mean around, because + # that can easily cause instability. + x = x - x.mean(dim=1, keepdim=True) + # x_covar: (num_groups, channels_per_group, channels_per_group) + x_covar = torch.matmul(x.transpose(1, 2), x) + x_covar_mean_diag = _diag(x_covar).mean() + # the following expression is what we'd get if we took the matrix product + # of each covariance and measured the mean of its trace, i.e. + # the same as _diag(torch.matmul(x_covar, x_covar)).mean(). + x_covarsq_mean_diag = (x_covar**2).sum() / (num_groups * channels_per_group) + # this metric will be >= 1.0; the larger it is, the less 'white' the data was. + metric = x_covarsq_mean_diag / (x_covar_mean_diag**2 + 1.0e-20) + return metric + + +class WhiteningPenaltyFunction(torch.autograd.Function): + @staticmethod + def forward( + ctx, x: Tensor, num_groups: int, whitening_limit: float, grad_scale: float + ) -> Tensor: + ctx.save_for_backward(x) + ctx.num_groups = num_groups + ctx.whitening_limit = whitening_limit + ctx.grad_scale = grad_scale + return x + + @staticmethod + def backward(ctx, x_grad: Tensor): + (x_orig,) = ctx.saved_tensors + with torch.enable_grad(): + with torch.cuda.amp.autocast(enabled=False): + x_detached = x_orig.to(torch.float32).detach() + x_detached.requires_grad = True + + metric = _whitening_metric(x_detached, ctx.num_groups) + + if random.random() < 0.005 or __name__ == "__main__": + logging.info( + f"Whitening: num_groups={ctx.num_groups}, num_channels={x_orig.shape[-1]}, " + f"metric={metric.item():.2f} vs. limit={ctx.whitening_limit}" + ) + + (metric - ctx.whitening_limit).relu().backward() + penalty_grad = x_detached.grad + scale = ctx.grad_scale * ( + x_grad.to(torch.float32).norm() / (penalty_grad.norm() + 1.0e-20) + ) + penalty_grad = penalty_grad * scale + return x_grad + penalty_grad.to(x_grad.dtype), None, None, None + + +class Whiten(nn.Module): + def __init__( + self, + num_groups: int, + whitening_limit: float, + prob: Union[float, Tuple[float, float]], + grad_scale: float, + ): + """ + Args: + num_groups: the number of groups to divide the channel dim into before + whitening. We will attempt to make the feature covariance + within each group, after mean subtraction, as "white" as possible, + while having the same trace across all groups. + whitening_limit: a value greater than 1.0, that dictates how much + freedom we have to violate the constraints. 1.0 would mean perfectly + white, with exactly the same trace across groups; larger values + give more freedom. E.g. 2.0. + prob: the probability with which we apply the gradient modification + (also affects the grad scale). May be supplied as a float, + or as a pair (min_prob, max_prob) + + grad_scale: determines the scale on the gradient term from this object, + relative to the rest of the gradient on the attention weights. + E.g. 0.02 (you may want to use smaller values than this if prob is large) + """ + super(Whiten, self).__init__() + assert num_groups >= 1 + assert whitening_limit >= 1 + assert grad_scale >= 0 + self.num_groups = num_groups + self.whitening_limit = whitening_limit + if isinstance(prob, float): + assert 0 < prob <= 1 + self.prob = prob + else: + (self.min_prob, self.max_prob) = prob + assert 0 < self.min_prob < self.max_prob <= 1 + self.prob = self.max_prob + + self.grad_scale = grad_scale + + def forward(self, x: Tensor) -> Tensor: + """ + In the forward pass, this function just returns the input unmodified. + In the backward pass, it will modify the gradients to ensure that the + distribution in each group has close to (lambda times I) as the covariance + after mean subtraction, with the same lambda across groups. + For whitening_limit > 1, there will be more freedom to violate this + constraint. + + Args: + x: the input of shape (*, num_channels) + + Returns: + x, unmodified. You should make sure + you use the returned value, or the graph will be freed + and nothing will happen in backprop. + """ + if not x.requires_grad or random.random() > self.prob or self.grad_scale == 0: + return _no_op(x) + else: + if hasattr(self, "min_prob") and random.random() < 0.25: + # occasionally switch between min_prob and max_prob, based on whether + # we are above or below the threshold. + if ( + _whitening_metric(x.to(torch.float32), self.num_groups) + > self.whitening_limit + ): + # there would be a change to the grad. + self.prob = self.max_prob + else: + self.prob = self.min_prob + + return WhiteningPenaltyFunction.apply( + x, self.num_groups, self.whitening_limit, self.grad_scale + ) + + +class WithLoss(torch.autograd.Function): + @staticmethod + def forward(ctx, x: Tensor, y: Tensor): + ctx.y_shape = y.shape + return x + + @staticmethod + def backward(ctx, ans_grad: Tensor): + return ( + ans_grad, + torch.ones(ctx.y_shape, dtype=ans_grad.dtype, device=ans_grad.device), + ) + + +def with_loss(x, y): + if torch.jit.is_scripting() or torch.jit.is_tracing(): + return x + # returns x but adds y.sum() to the loss function. + return WithLoss.apply(x, y) + + +def _no_op(x: Tensor) -> Tensor: + if torch.jit.is_scripting() or torch.jit.is_tracing(): + return x + else: + # a no-op function that will have a node in the autograd graph, + # to avoid certain bugs relating to backward hooks + return x.chunk(1, dim=-1)[0] + + +class Identity(torch.nn.Module): + def __init__(self): + super(Identity, self).__init__() + + def forward(self, x): + return _no_op(x) + + +class MaxEig(torch.nn.Module): + """ + Modifies the backpropped derivatives of a function to try to discourage + that any given direction in activation space accounts for more than + a specified proportion of the covariance (e.g. 0.2). + + + Args: + num_channels: the number of channels + channel_dim: the dimension/axis corresponding to the channel, e.g. + -1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative. + max_var_per_eig: the maximum proportion of the variance of the + features/channels, after mean subtraction, that can come from + any given eigenvalue. + min_prob: the minimum probability with which we apply this during any invocation + of forward(), assuming last time we applied the constraint it was + not active; supplied for speed. + scale: determines the scale with which we modify the gradients, relative + to the existing / unmodified gradients + """ + + def __init__( + self, + num_channels: int, + channel_dim: int, + max_var_per_eig: float = 0.2, + min_prob: float = 0.01, + scale: float = 0.01, + ): + super(MaxEig, self).__init__() + self.num_channels = num_channels + self.channel_dim = channel_dim + self.scale = scale + assert max_var_per_eig == 0.0 or max_var_per_eig > 1.0 / num_channels + self.max_var_per_eig = max_var_per_eig + + # we figure out the dominant direction using the power method: starting with + # a random vector, keep multiplying by the covariance and renormalizing. + with torch.no_grad(): + # arbitrary.. would use randn() but want to leave the rest of the model's + # random parameters unchanged for comparison + direction = torch.arange(num_channels).to(torch.float) + direction = direction / direction.norm() + self.register_buffer("max_eig_direction", direction) + + self.min_prob = min_prob + # cur_prob is the current probability we'll use to apply the ActivationBalancer. + # We'll regress this towards prob, each tiem we try to apply it and it is not + # active. + self.cur_prob = 1.0 + + def forward(self, x: Tensor) -> Tensor: + if ( + torch.jit.is_scripting() + or self.max_var_per_eig <= 0 + or random.random() > self.cur_prob + or torch.jit.is_tracing() + ): + return _no_op(x) + + with torch.cuda.amp.autocast(enabled=False): + eps = 1.0e-20 + orig_x = x + x = x.to(torch.float32) + with torch.no_grad(): + x = x.transpose(self.channel_dim, -1).reshape(-1, self.num_channels) + x = x - x.mean(dim=0) + new_direction, coeffs = self._find_direction_coeffs( + x, self.max_eig_direction + ) + x_var = (x**2).mean() + x_residual = x - coeffs * new_direction + x_residual_var = (x_residual**2).mean() + + # `variance_proportion` is the proportion of the variance accounted for + # by the top eigen-direction. + variance_proportion = (x_var - x_residual_var) / (x_var + 1.0e-20) + + # ensure new direction is nonzero even if x == 0, by including `direction`. + self._set_direction(0.1 * self.max_eig_direction + new_direction) + + if random.random() < 0.01 or __name__ == "__main__": + logging.info( + f"variance_proportion = {variance_proportion.item()}, shape={tuple(orig_x.shape)}, cur_prob={self.cur_prob}" + ) + + if variance_proportion >= self.max_var_per_eig: + # The constraint is active. Note, we should quite rarely + # reach here, only near the beginning of training if we are + # starting to diverge, should this constraint be active. + cur_prob = self.cur_prob + self.cur_prob = 1.0 # next time, do the update with probability 1.0. + return MaxEigLimiterFunction.apply( + orig_x, coeffs, new_direction, self.channel_dim, self.scale + ) + else: + # let self.cur_prob exponentially approach self.min_prob, as + # long as the constraint is inactive. + self.cur_prob = 0.75 * self.cur_prob + 0.25 * self.min_prob + return orig_x + + def _set_direction(self, direction: Tensor): + """ + Sets self.max_eig_direction to a normalized version of `direction` + """ + direction = direction.detach() + direction = direction / direction.norm() + direction_sum = direction.sum().item() + if direction_sum - direction_sum == 0: # no inf/nan + self.max_eig_direction[:] = direction + else: + logging.info( + f"Warning: sum of direction in MaxEig is {direction_sum}, " + "num_channels={self.num_channels}, channel_dim={self.channel_dim}" + ) + + def _find_direction_coeffs( + self, x: Tensor, prev_direction: Tensor + ) -> Tuple[Tensor, Tensor, Tensor]: + """ + Figure out (an approximation to) the proportion of the variance of a set of + feature vectors that can be attributed to the top eigen-direction. + Args: + x: a Tensor of shape (num_frames, num_channels), with num_frames > 1. + prev_direction: a Tensor of shape (num_channels,), that is our previous estimate + of the top eigen-direction, or a random direction if this is the first + iteration. Does not have to be normalized, but should be nonzero. + + Returns: (cur_direction, coeffs), where: + cur_direction: a Tensor of shape (num_channels,) that is the current + estimate of the top eigen-direction. + coeffs: a Tensor of shape (num_frames, 1) that minimizes, or + approximately minimizes, (x - coeffs * cur_direction).norm() + """ + (num_frames, num_channels) = x.shape + assert num_channels > 1 and num_frames > 1 + assert prev_direction.shape == (num_channels,) + # `coeffs` are the coefficients of `prev_direction` in x. + # actually represent the coeffs up to a constant positive factor. + coeffs = (x * prev_direction).sum(dim=1, keepdim=True) + 1.0e-10 + cur_direction = (x * coeffs).sum(dim=0) / ((coeffs**2).sum() + 1.0e-20) + return cur_direction, coeffs + + +class DoubleSwishFunction(torch.autograd.Function): + """ + double_swish(x) = x * torch.sigmoid(x-1) + This is a definition, originally motivated by its close numerical + similarity to swish(swish(x)), where swish(x) = x * sigmoid(x). + + Memory-efficient derivative computation: + double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1) + double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x). + Now, s'(x) = s(x) * (1-s(x)). + double_swish'(x) = x * s'(x) + s(x). + = x * s(x) * (1-s(x)) + s(x). + = double_swish(x) * (1-s(x)) + s(x) + ... so we just need to remember s(x) but not x itself. + """ + + @staticmethod + def forward(ctx, x: Tensor) -> Tensor: + requires_grad = x.requires_grad + x_dtype = x.dtype + if x.dtype == torch.float16: + x = x.to(torch.float32) + + s = torch.sigmoid(x - 1.0) + y = x * s + + if requires_grad: + deriv = y * (1 - s) + s + # notes on derivative of x * sigmoid(x - 1): + # https://www.wolframalpha.com/input?i=d%2Fdx+%28x+*+sigmoid%28x-1%29%29 + # min \simeq -0.043638. Take floor as -0.043637 so it's a lower bund + # max \simeq 1.1990. Take ceil to be 1.2 so it's an upper bound. + # the combination of "+ torch.rand_like(deriv)" and casting to torch.uint8 (which + # floors), should be expectation-preserving. + floor = -0.043637 + ceil = 1.2 + d_scaled = (deriv - floor) * (255.0 / (ceil - floor)) + torch.rand_like( + deriv + ) + if __name__ == "__main__": + # for self-testing only. + assert d_scaled.min() >= 0.0 + assert d_scaled.max() < 256.0 + d_int = d_scaled.to(torch.uint8) + ctx.save_for_backward(d_int) + if x.dtype == torch.float16 or torch.is_autocast_enabled(): + y = y.to(torch.float16) + return y + + @staticmethod + def backward(ctx, y_grad: Tensor) -> Tensor: + (d,) = ctx.saved_tensors + # the same constants as used in forward pass. + floor = -0.043637 + ceil = 1.2 + d = d * ((ceil - floor) / 255.0) + floor + return y_grad * d + + +class DoubleSwish(torch.nn.Module): + def forward(self, x: Tensor) -> Tensor: + """Return double-swish activation function which is an approximation to Swish(Swish(x)), + that we approximate closely with x * sigmoid(x-1). + """ + if torch.jit.is_scripting() or torch.jit.is_tracing(): + return x * torch.sigmoid(x - 1.0) + return DoubleSwishFunction.apply(x) + + +def _test_max_eig(): + for proportion in [0.1, 0.5, 10.0]: + logging.info(f"proportion = {proportion}") + x = torch.randn(100, 128) + direction = torch.randn(128) + coeffs = torch.randn(100, 1) + x += proportion * direction * coeffs + + x.requires_grad = True + + num_channels = 128 + m = MaxEig( + num_channels, 1, 0.5, scale=0.1 # channel_dim # max_var_per_eig + ) # grad_scale + + for _ in range(4): + y = m(x) + + y_grad = torch.randn_like(x) + y.backward(gradient=y_grad) + + if proportion < 0.2: + assert torch.allclose(x.grad, y_grad, atol=1.0e-02) + elif proportion > 1.0: + assert not torch.allclose(x.grad, y_grad) + + +def _test_whiten(): + for proportion in [0.1, 0.5, 10.0]: + logging.info(f"_test_whiten(): proportion = {proportion}") + x = torch.randn(100, 128) + direction = torch.randn(128) + coeffs = torch.randn(100, 1) + x += proportion * direction * coeffs + + x.requires_grad = True + + num_channels = 128 + m = Whiten( + 1, 5.0, prob=1.0, grad_scale=0.1 # num_groups # whitening_limit, + ) # grad_scale + + for _ in range(4): + y = m(x) + + y_grad = torch.randn_like(x) + y.backward(gradient=y_grad) + + if proportion < 0.2: + assert torch.allclose(x.grad, y_grad) + elif proportion > 1.0: + assert not torch.allclose(x.grad, y_grad) + + +def _test_activation_balancer_sign(): + probs = torch.arange(0, 1, 0.01) + N = 1000 + x = 1.0 * ((2.0 * (torch.rand(probs.numel(), N) < probs.unsqueeze(-1))) - 1.0) + x = x.detach() + x.requires_grad = True + m = ActivationBalancer( + probs.numel(), + channel_dim=0, + min_positive=0.05, + max_positive=0.95, + max_factor=0.2, + min_abs=0.0, + ) + + y_grad = torch.sign(torch.randn(probs.numel(), N)) + + y = m(x) + y.backward(gradient=y_grad) + print("_test_activation_balancer_sign: x = ", x) + print("_test_activation_balancer_sign: y grad = ", y_grad) + print("_test_activation_balancer_sign: x grad = ", x.grad) + + +def _test_activation_balancer_magnitude(): + magnitudes = torch.arange(0, 1, 0.01) + N = 1000 + x = torch.sign(torch.randn(magnitudes.numel(), N)) * magnitudes.unsqueeze(-1) + x = x.detach() + x.requires_grad = True + m = ActivationBalancer( + magnitudes.numel(), + channel_dim=0, + min_positive=0.0, + max_positive=1.0, + max_factor=0.2, + min_abs=0.2, + max_abs=0.8, + min_prob=1.0, + ) + + y_grad = torch.sign(torch.randn(magnitudes.numel(), N)) + + y = m(x) + y.backward(gradient=y_grad) + print("_test_activation_balancer_magnitude: x = ", x) + print("_test_activation_balancer_magnitude: y grad = ", y_grad) + print("_test_activation_balancer_magnitude: x grad = ", x.grad) + + +def _test_basic_norm(): + num_channels = 128 + m = BasicNorm(num_channels=num_channels, channel_dim=1) + + x = torch.randn(500, num_channels) + + y = m(x) + + assert y.shape == x.shape + x_rms = (x**2).mean().sqrt() + y_rms = (y**2).mean().sqrt() + print("x rms = ", x_rms) + print("y rms = ", y_rms) + assert y_rms < x_rms + assert y_rms > 0.5 * x_rms + + +def _test_double_swish_deriv(): + x = torch.randn(10, 12, dtype=torch.double) * 3.0 + x.requires_grad = True + m = DoubleSwish() + + tol = (1.2 - (-0.043637)) / 255.0 + torch.autograd.gradcheck(m, x, atol=tol) + + # for self-test. + x = torch.randn(1000, 1000, dtype=torch.double) * 3.0 + x.requires_grad = True + y = m(x) + + +def _test_softmax(): + a = torch.randn(2, 10, dtype=torch.float64) + b = a.clone() + a.requires_grad = True + b.requires_grad = True + a.softmax(dim=1)[:, 0].sum().backward() + print("a grad = ", a.grad) + softmax(b, dim=1)[:, 0].sum().backward() + print("b grad = ", b.grad) + assert torch.allclose(a.grad, b.grad) + + +if __name__ == "__main__": + logging.getLogger().setLevel(logging.INFO) + torch.set_num_threads(1) + torch.set_num_interop_threads(1) + _test_softmax() + _test_whiten() + _test_max_eig() + _test_activation_balancer_sign() + _test_activation_balancer_magnitude() + _test_basic_norm() + _test_double_swish_deriv() diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/scaling_converter.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/scaling_converter.py new file mode 100644 index 000000000..86067b04f --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/scaling_converter.py @@ -0,0 +1,214 @@ +# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +""" +This file replaces various modules in a model. +Specifically, ActivationBalancer is replaced with an identity operator; +Whiten is also replaced with an identity operator; +BasicNorm is replaced by a module with `exp` removed. +""" + +import copy +from typing import List, Tuple + +import torch +import torch.nn as nn +from scaling import ActivationBalancer, BasicNorm, Whiten +from zipformer import PoolingModule + + +class PoolingModuleNoProj(nn.Module): + def forward( + self, + x: torch.Tensor, + cached_len: torch.Tensor, + cached_avg: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Args: + x: + A tensor of shape (T, N, C) + cached_len: + A tensor of shape (N,) + cached_avg: + A tensor of shape (N, C) + Returns: + Return a tuple containing: + - new_x + - new_cached_len + - new_cached_avg + """ + x = x.cumsum(dim=0) # (T, N, C) + x = x + (cached_avg * cached_len.unsqueeze(1)).unsqueeze(0) + # Cumulated numbers of frames from start + cum_mask = torch.arange(1, x.size(0) + 1, device=x.device) + cum_mask = cum_mask.unsqueeze(1) + cached_len.unsqueeze(0) # (T, N) + pooling_mask = (1.0 / cum_mask).unsqueeze(2) + # now pooling_mask: (T, N, 1) + x = x * pooling_mask # (T, N, C) + + cached_len = cached_len + x.size(0) + cached_avg = x[-1] + + return x, cached_len, cached_avg + + +class PoolingModuleWithProj(nn.Module): + def __init__(self, proj: torch.nn.Module): + super().__init__() + self.proj = proj + self.pooling = PoolingModuleNoProj() + + def forward( + self, + x: torch.Tensor, + cached_len: torch.Tensor, + cached_avg: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Args: + x: + A tensor of shape (T, N, C) + cached_len: + A tensor of shape (N,) + cached_avg: + A tensor of shape (N, C) + Returns: + Return a tuple containing: + - new_x + - new_cached_len + - new_cached_avg + """ + x, cached_len, cached_avg = self.pooling(x, cached_len, cached_avg) + return self.proj(x), cached_len, cached_avg + + def streaming_forward( + self, + x: torch.Tensor, + cached_len: torch.Tensor, + cached_avg: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Args: + x: + A tensor of shape (T, N, C) + cached_len: + A tensor of shape (N,) + cached_avg: + A tensor of shape (N, C) + Returns: + Return a tuple containing: + - new_x + - new_cached_len + - new_cached_avg + """ + x, cached_len, cached_avg = self.pooling(x, cached_len, cached_avg) + return self.proj(x), cached_len, cached_avg + + +class NonScaledNorm(nn.Module): + """See BasicNorm for doc""" + + def __init__( + self, + num_channels: int, + eps_exp: float, + channel_dim: int = -1, # CAUTION: see documentation. + ): + super().__init__() + self.num_channels = num_channels + self.channel_dim = channel_dim + self.eps_exp = eps_exp + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if not torch.jit.is_tracing(): + assert x.shape[self.channel_dim] == self.num_channels + scales = ( + torch.mean(x * x, dim=self.channel_dim, keepdim=True) + self.eps_exp + ).pow(-0.5) + return x * scales + + +def convert_basic_norm(basic_norm: BasicNorm) -> NonScaledNorm: + assert isinstance(basic_norm, BasicNorm), type(basic_norm) + norm = NonScaledNorm( + num_channels=basic_norm.num_channels, + eps_exp=basic_norm.eps.data.exp().item(), + channel_dim=basic_norm.channel_dim, + ) + return norm + + +def convert_pooling_module(pooling: PoolingModule) -> PoolingModuleWithProj: + assert isinstance(pooling, PoolingModule), type(pooling) + return PoolingModuleWithProj(proj=pooling.proj) + + +# Copied from https://pytorch.org/docs/1.9.0/_modules/torch/nn/modules/module.html#Module.get_submodule # noqa +# get_submodule was added to nn.Module at v1.9.0 +def get_submodule(model, target): + if target == "": + return model + atoms: List[str] = target.split(".") + mod: torch.nn.Module = model + for item in atoms: + if not hasattr(mod, item): + raise AttributeError( + mod._get_name() + " has no " "attribute `" + item + "`" + ) + mod = getattr(mod, item) + if not isinstance(mod, torch.nn.Module): + raise AttributeError("`" + item + "` is not " "an nn.Module") + return mod + + +def convert_scaled_to_non_scaled( + model: nn.Module, + inplace: bool = False, + is_pnnx: bool = False, +): + """ + Args: + model: + The model to be converted. + inplace: + If True, the input model is modified inplace. + If False, the input model is copied and we modify the copied version. + is_pnnx: + True if we are going to export the model for PNNX. + Return: + Return a model without scaled layers. + """ + if not inplace: + model = copy.deepcopy(model) + + d = {} + for name, m in model.named_modules(): + if isinstance(m, BasicNorm): + d[name] = convert_basic_norm(m) + elif isinstance(m, (ActivationBalancer, Whiten)): + d[name] = nn.Identity() + elif isinstance(m, PoolingModule) and is_pnnx: + d[name] = convert_pooling_module(m) + + for k, v in d.items(): + if "." in k: + parent, child = k.rsplit(".", maxsplit=1) + setattr(get_submodule(model, parent), child, v) + else: + setattr(model, k, v) + + return model diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/streaming_beam_search.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/streaming_beam_search.py new file mode 100644 index 000000000..e6e0fb1c8 --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/streaming_beam_search.py @@ -0,0 +1,282 @@ +# Copyright 2022 Xiaomi Corp. (authors: Wei Kang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import warnings +from typing import List + +import k2 +import torch +import torch.nn as nn +from beam_search import Hypothesis, HypothesisList, get_hyps_shape +from decode_stream import DecodeStream + +from icefall.decode import one_best_decoding +from icefall.utils import get_texts + + +def greedy_search( + model: nn.Module, + encoder_out: torch.Tensor, + streams: List[DecodeStream], +) -> None: + """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. + + Args: + model: + The transducer model. + encoder_out: + Output from the encoder. Its shape is (N, T, C), where N >= 1. + streams: + A list of Stream objects. + """ + assert len(streams) == encoder_out.size(0) + assert encoder_out.ndim == 3 + + blank_id = model.decoder.blank_id + context_size = model.decoder.context_size + device = model.device + T = encoder_out.size(1) + + decoder_input = torch.tensor( + [stream.hyp[-context_size:] for stream in streams], + device=device, + dtype=torch.int64, + ) + # decoder_out is of shape (N, 1, decoder_out_dim) + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + + for t in range(T): + # current_encoder_out's shape: (batch_size, 1, encoder_out_dim) + current_encoder_out = encoder_out[:, t : t + 1, :] # noqa + + logits = model.joiner( + current_encoder_out.unsqueeze(2), + decoder_out.unsqueeze(1), + project_input=False, + ) + # logits'shape (batch_size, vocab_size) + logits = logits.squeeze(1).squeeze(1) + + assert logits.ndim == 2, logits.shape + y = logits.argmax(dim=1).tolist() + emitted = False + for i, v in enumerate(y): + if v != blank_id: + streams[i].hyp.append(v) + emitted = True + if emitted: + # update decoder output + decoder_input = torch.tensor( + [stream.hyp[-context_size:] for stream in streams], + device=device, + dtype=torch.int64, + ) + decoder_out = model.decoder( + decoder_input, + need_pad=False, + ) + decoder_out = model.joiner.decoder_proj(decoder_out) + + +def modified_beam_search( + model: nn.Module, + encoder_out: torch.Tensor, + streams: List[DecodeStream], + num_active_paths: int = 4, +) -> None: + """Beam search in batch mode with --max-sym-per-frame=1 being hardcoded. + + Args: + model: + The RNN-T model. + encoder_out: + A 3-D tensor of shape (N, T, encoder_out_dim) containing the output of + the encoder model. + streams: + A list of stream objects. + num_active_paths: + Number of active paths during the beam search. + """ + assert encoder_out.ndim == 3, encoder_out.shape + assert len(streams) == encoder_out.size(0) + + blank_id = model.decoder.blank_id + context_size = model.decoder.context_size + device = next(model.parameters()).device + batch_size = len(streams) + T = encoder_out.size(1) + + B = [stream.hyps for stream in streams] + + for t in range(T): + current_encoder_out = encoder_out[:, t].unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim) + + hyps_shape = get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.stack( + [hyp.log_prob.reshape(1) for hyps in A for hyp in hyps], dim=0 + ) # (num_hyps, 1) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + # decoder_out is of shape (num_hyps, 1, 1, decoder_output_dim) + + # Note: For torch 1.7.1 and below, it requires a torch.int64 tensor + # as index, so we use `to(torch.int64)` below. + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, encoder_out_dim) + + logits = model.joiner(current_encoder_out, decoder_out, project_input=False) + # logits is of shape (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) + + log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs.add_(ys_log_probs) + + vocab_size = log_probs.size(-1) + + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) + + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(num_active_paths) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + new_ys = hyp.ys[:] + new_token = topk_token_indexes[k] + if new_token != blank_id: + new_ys.append(new_token) + + new_log_prob = topk_log_probs[k] + new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob) + B[i].add(new_hyp) + + for i in range(batch_size): + streams[i].hyps = B[i] + + +def fast_beam_search_one_best( + model: nn.Module, + encoder_out: torch.Tensor, + processed_lens: torch.Tensor, + streams: List[DecodeStream], + beam: float, + max_states: int, + max_contexts: int, +) -> None: + """It limits the maximum number of symbols per frame to 1. + + A lattice is first generated by Fsa-based beam search, then we get the + recognition by applying shortest path on the lattice. + + Args: + model: + An instance of `Transducer`. + encoder_out: + A tensor of shape (N, T, C) from the encoder. + processed_lens: + A tensor of shape (N,) containing the number of processed frames + in `encoder_out` before padding. + streams: + A list of stream objects. + beam: + Beam value, similar to the beam used in Kaldi.. + max_states: + Max states per stream per frame. + max_contexts: + Max contexts pre stream per frame. + """ + assert encoder_out.ndim == 3 + B, T, C = encoder_out.shape + assert B == len(streams) + + context_size = model.decoder.context_size + vocab_size = model.decoder.vocab_size + + config = k2.RnntDecodingConfig( + vocab_size=vocab_size, + decoder_history_len=context_size, + beam=beam, + max_contexts=max_contexts, + max_states=max_states, + ) + individual_streams = [] + for i in range(B): + individual_streams.append(streams[i].rnnt_decoding_stream) + decoding_streams = k2.RnntDecodingStreams(individual_streams, config) + + for t in range(T): + # shape is a RaggedShape of shape (B, context) + # contexts is a Tensor of shape (shape.NumElements(), context_size) + shape, contexts = decoding_streams.get_contexts() + # `nn.Embedding()` in torch below v1.7.1 supports only torch.int64 + contexts = contexts.to(torch.int64) + # decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim) + decoder_out = model.decoder(contexts, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + # current_encoder_out is of shape + # (shape.NumElements(), 1, joiner_dim) + # fmt: off + current_encoder_out = torch.index_select( + encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64) + ) + # fmt: on + logits = model.joiner( + current_encoder_out.unsqueeze(2), + decoder_out.unsqueeze(1), + project_input=False, + ) + logits = logits.squeeze(1).squeeze(1) + log_probs = logits.log_softmax(dim=-1) + decoding_streams.advance(log_probs) + + decoding_streams.terminate_and_flush_to_streams() + + lattice = decoding_streams.format_output(processed_lens.tolist()) + best_path = one_best_decoding(lattice) + hyp_tokens = get_texts(best_path) + + for i in range(B): + streams[i].hyp = hyp_tokens[i] diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/streaming_decode.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/streaming_decode.py new file mode 100755 index 000000000..ea08656bb --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/streaming_decode.py @@ -0,0 +1,616 @@ +#!/usr/bin/env python3 +# Copyright 2024 (Author: SeungHyun Lee, Contacts: whsqkaak@naver.com) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +""" +Usage: +./pruned_transducer_stateless7_streaming/streaming_decode.py \ + --epoch 28 \ + --avg 15 \ + --decode-chunk-len 32 \ + --exp-dir ./pruned_transducer_stateless7_streaming/exp \ + --decoding-method greedy_search \ + --num-decode-streams 2000 +""" + +import argparse +import logging +import math +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import numpy as np +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import KsponSpeechAsrDataModule +from decode_stream import DecodeStream +from lhotse import CutSet, Fbank, FbankConfig +from streaming_beam_search import ( + fast_beam_search_one_best, + greedy_search, + modified_beam_search, +) +from torch.nn.utils.rnn import pad_sequence +from train import add_model_arguments, get_params, get_transducer_model +from zipformer import stack_states, unstack_states + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.utils import ( + AttributeDict, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + +LOG_EPS = math.log(1e-10) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=28, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=15, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7_streaming/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="greedy_search", + help="""Supported decoding methods are: + greedy_search + modified_beam_search + fast_beam_search + """, + ) + + parser.add_argument( + "--num_active_paths", + type=int, + default=4, + help="""An interger indicating how many candidates we will keep for each + frame. Used only when --decoding-method is modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=4, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --decoding-method is fast_beam_search""", + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=4, + help="""Used only when --decoding-method is + fast_beam_search""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=32, + help="""Used only when --decoding-method is + fast_beam_search""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + parser.add_argument( + "--num-decode-streams", + type=int, + default=2000, + help="The number of streams that can be decoded parallel.", + ) + + add_model_arguments(parser) + + return parser + + +def decode_one_chunk( + params: AttributeDict, + model: nn.Module, + decode_streams: List[DecodeStream], +) -> List[int]: + """Decode one chunk frames of features for each decode_streams and + return the indexes of finished streams in a List. + + Args: + params: + It's the return value of :func:`get_params`. + model: + The neural model. + decode_streams: + A List of DecodeStream, each belonging to a utterance. + Returns: + Return a List containing which DecodeStreams are finished. + """ + device = model.device + + features = [] + feature_lens = [] + states = [] + processed_lens = [] + + for stream in decode_streams: + feat, feat_len = stream.get_feature_frames(params.decode_chunk_len) + features.append(feat) + feature_lens.append(feat_len) + states.append(stream.states) + processed_lens.append(stream.done_frames) + + feature_lens = torch.tensor(feature_lens, device=device) + features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS) + + # We subsample features with ((x_len - 7) // 2 + 1) // 2 and the max downsampling + # factor in encoders is 8. + # After feature embedding (x_len - 7) // 2, we have (23 - 7) // 2 = 8. + tail_length = 23 + if features.size(1) < tail_length: + pad_length = tail_length - features.size(1) + feature_lens += pad_length + features = torch.nn.functional.pad( + features, + (0, 0, 0, pad_length), + mode="constant", + value=LOG_EPS, + ) + + states = stack_states(states) + processed_lens = torch.tensor(processed_lens, device=device) + + encoder_out, encoder_out_lens, new_states = model.encoder.streaming_forward( + x=features, + x_lens=feature_lens, + states=states, + ) + + encoder_out = model.joiner.encoder_proj(encoder_out) + + if params.decoding_method == "greedy_search": + greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams) + elif params.decoding_method == "fast_beam_search": + processed_lens = processed_lens + encoder_out_lens + fast_beam_search_one_best( + model=model, + encoder_out=encoder_out, + processed_lens=processed_lens, + streams=decode_streams, + beam=params.beam, + max_states=params.max_states, + max_contexts=params.max_contexts, + ) + elif params.decoding_method == "modified_beam_search": + modified_beam_search( + model=model, + streams=decode_streams, + encoder_out=encoder_out, + num_active_paths=params.num_active_paths, + ) + else: + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") + + states = unstack_states(new_states) + + finished_streams = [] + for i in range(len(decode_streams)): + decode_streams[i].states = states[i] + decode_streams[i].done_frames += encoder_out_lens[i] + if decode_streams[i].done: + finished_streams.append(i) + + return finished_streams + + +def decode_dataset( + cuts: CutSet, + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[List[str], List[str]]]]: + """Decode dataset. + + Args: + cuts: + Lhotse Cutset containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search. + Returns: + Return a dict, whose key may be "greedy_search" if greedy search + is used, or it may be "beam_7" if beam size of 7 is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + device = model.device + + opts = FbankConfig( + device=device, + dither=0.0, + snip_edges=False, + sampling_rate=16000, + num_mel_bins=80, + high_freq=-400.0, + ) + + + log_interval = 50 + + decode_results = [] + # Contain decode streams currently running. + decode_streams = [] + for num, cut in enumerate(cuts): + # each utterance has a DecodeStream. + initial_states = model.encoder.get_init_state(device=device) + decode_stream = DecodeStream( + params=params, + cut_id=cut.id, + initial_states=initial_states, + decoding_graph=decoding_graph, + device=device, + ) + + audio: np.ndarray = cut.load_audio() + # audio.shape: (1, num_samples) + assert len(audio.shape) == 2 + assert audio.shape[0] == 1, "Should be single channel" + assert audio.dtype == np.float32, audio.dtype + + # The trained model is using normalized samples + # - this is to avoid sending [-32k,+32k] signal in... + # - some lhotse AudioTransform classes can make the signal + # be out of range [-1, 1], hence the tolerance 10 + assert ( + np.abs(audio).max() <= 10 + ), "Should be normalized to [-1, 1], 10 for tolerance..." + + samples = torch.from_numpy(audio).squeeze(0) + + fbank = Fbank(opts) + feature = fbank.extract(samples.to(device), sampling_rate=16000) + decode_stream.set_features(feature, tail_pad_len=params.decode_chunk_len) + decode_stream.ground_truth = cut.supervisions[0].text + + decode_streams.append(decode_stream) + + while len(decode_streams) >= params.num_decode_streams: + finished_streams = decode_one_chunk( + params=params, model=model, decode_streams=decode_streams + ) + for i in sorted(finished_streams, reverse=True): + decode_results.append( + ( + decode_streams[i].id, + decode_streams[i].ground_truth.split(), + sp.decode(decode_streams[i].decoding_result()).split(), + ) + ) + del decode_streams[i] + + if num % log_interval == 0: + logging.info(f"Cuts processed until now is {num}.") + + # decode final chunks of last sequences + while len(decode_streams): + finished_streams = decode_one_chunk( + params=params, model=model, decode_streams=decode_streams + ) + for i in sorted(finished_streams, reverse=True): + decode_results.append( + ( + decode_streams[i].id, + decode_streams[i].ground_truth.split(), + sp.decode(decode_streams[i].decoding_result()).split(), + ) + ) + del decode_streams[i] + + if params.decoding_method == "greedy_search": + key = "greedy_search" + elif params.decoding_method == "fast_beam_search": + key = ( + f"beam_{params.beam}_" + f"max_contexts_{params.max_contexts}_" + f"max_states_{params.max_states}" + ) + elif params.decoding_method == "modified_beam_search": + key = f"num_active_paths_{params.num_active_paths}" + else: + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") + return {key: decode_results} + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[List[str], List[str]]]], +): + test_set_cers = dict() + for key, results in results_dict.items(): + recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt" + results = sorted(results) + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out CERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt" + with open(errs_filename, "w") as f: + cer = write_error_stats( + f, f"{test_set_name}-{key}", results, enable_log=True, compute_CER=True, + ) + test_set_cers[key] = cer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_cers = sorted(test_set_cers.items(), key=lambda x: x[1]) + errs_info = params.res_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt" + with open(errs_info, "w") as f: + print("settings\tCER", file=f) + for key, val in test_set_cers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, CER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_cers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + KsponSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + params.res_dir = params.exp_dir / "streaming" / params.decoding_method + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + # for streaming + params.suffix += f"-streaming-chunk-size-{params.decode_chunk_len}" + + # for fast_beam_search + if params.decoding_method == "fast_beam_search": + params.suffix += f"-beam-{params.beam}" + params.suffix += f"-max-contexts-{params.max_contexts}" + params.suffix += f"-max-states-{params.max_states}" + + if params.use_averaged_model: + params.suffix += "-use-averaged-model" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # and is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if start >= 0: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to(device) + model.eval() + model.device = device + + decoding_graph = None + if params.decoding_method == "fast_beam_search": + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + ksponspeech = KsponSpeechAsrDataModule(args) + + eval_clean_cuts = ksponspeech.eval_clean_cuts() + eval_other_cuts = ksponspeech.eval_other_cuts() + + test_sets = ["eval_clean", "eval_other"] + test_cuts = [eval_clean_cuts, eval_other_cuts] + + for test_set, test_cut in zip(test_sets, test_cuts): + results_dict = decode_dataset( + cuts=test_cut, + params=params, + model=model, + sp=sp, + decoding_graph=decoding_graph, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/test_model.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/test_model.py new file mode 100755 index 000000000..a465758f5 --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/test_model.py @@ -0,0 +1,187 @@ +#!/usr/bin/env python3 +# Copyright 2024 (Author: SeungHyun Lee, Contacts: whsqkaak@naver.com) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +To run this file, do: + + cd icefall/egs/ksponspeech/ASR + python ./pruned_transducer_stateless7_streaming/test_model.py +""" + +import torch +from scaling_converter import convert_scaled_to_non_scaled +from train import get_params, get_transducer_model + + +def test_model(): + params = get_params() + params.vocab_size = 500 + params.blank_id = 0 + params.context_size = 2 + params.num_encoder_layers = "2,4,3,2,4" + params.feedforward_dims = "1024,1024,2048,2048,1024" + params.nhead = "8,8,8,8,8" + params.encoder_dims = "384,384,384,384,384" + params.attention_dims = "192,192,192,192,192" + params.encoder_unmasked_dims = "256,256,256,256,256" + params.zipformer_downsampling_factors = "1,2,4,8,2" + params.cnn_module_kernels = "31,31,31,31,31" + params.decoder_dim = 512 + params.joiner_dim = 512 + params.num_left_chunks = 4 + params.short_chunk_size = 50 + params.decode_chunk_len = 32 + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + print(f"Number of model parameters: {num_param}") + + # Test jit script + convert_scaled_to_non_scaled(model, inplace=True) + # We won't use the forward() method of the model in C++, so just ignore + # it here. + # Otherwise, one of its arguments is a ragged tensor and is not + # torch scriptabe. + model.__class__.forward = torch.jit.ignore(model.__class__.forward) + print("Using torch.jit.script") + model = torch.jit.script(model) + + +def test_model_small(): + params = get_params() + params.vocab_size = 500 + params.blank_id = 0 + params.context_size = 2 + params.num_encoder_layers = "2,2,2,2,2" + params.feedforward_dims = "256,256,512,512,256" + params.nhead = "4,4,4,4,4" + params.encoder_dims = "128,128,128,128,128" + params.attention_dims = "96,96,96,96,96" + params.encoder_unmasked_dims = "96,96,96,96,96" + params.zipformer_downsampling_factors = "1,2,4,8,2" + params.cnn_module_kernels = "31,31,31,31,31" + params.decoder_dim = 320 + params.joiner_dim = 320 + params.num_left_chunks = 4 + params.short_chunk_size = 50 + params.decode_chunk_len = 32 + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + print(f"Number of model parameters: {num_param}") + import pdb + + pdb.set_trace() + + # Test jit script + convert_scaled_to_non_scaled(model, inplace=True) + # We won't use the forward() method of the model in C++, so just ignore + # it here. + # Otherwise, one of its arguments is a ragged tensor and is not + # torch scriptabe. + model.__class__.forward = torch.jit.ignore(model.__class__.forward) + print("Using torch.jit.script") + model = torch.jit.script(model) + + +def test_model_jit_trace(): + params = get_params() + params.vocab_size = 500 + params.blank_id = 0 + params.context_size = 2 + params.num_encoder_layers = "2,4,3,2,4" + params.feedforward_dims = "1024,1024,2048,2048,1024" + params.nhead = "8,8,8,8,8" + params.encoder_dims = "384,384,384,384,384" + params.attention_dims = "192,192,192,192,192" + params.encoder_unmasked_dims = "256,256,256,256,256" + params.zipformer_downsampling_factors = "1,2,4,8,2" + params.cnn_module_kernels = "31,31,31,31,31" + params.decoder_dim = 512 + params.joiner_dim = 512 + params.num_left_chunks = 4 + params.short_chunk_size = 50 + params.decode_chunk_len = 32 + model = get_transducer_model(params) + model.eval() + + num_param = sum([p.numel() for p in model.parameters()]) + print(f"Number of model parameters: {num_param}") + + convert_scaled_to_non_scaled(model, inplace=True) + + # Test encoder + def _test_encoder(): + encoder = model.encoder + assert encoder.decode_chunk_size == params.decode_chunk_len // 2, ( + encoder.decode_chunk_size, + params.decode_chunk_len, + ) + T = params.decode_chunk_len + 7 + + x = torch.zeros(1, T, 80, dtype=torch.float32) + x_lens = torch.full((1,), T, dtype=torch.int32) + states = encoder.get_init_state(device=x.device) + encoder.__class__.forward = encoder.__class__.streaming_forward + traced_encoder = torch.jit.trace(encoder, (x, x_lens, states)) + + states1 = encoder.get_init_state(device=x.device) + states2 = traced_encoder.get_init_state(device=x.device) + for i in range(5): + x = torch.randn(1, T, 80, dtype=torch.float32) + x_lens = torch.full((1,), T, dtype=torch.int32) + y1, _, states1 = encoder.streaming_forward(x, x_lens, states1) + y2, _, states2 = traced_encoder(x, x_lens, states2) + assert torch.allclose(y1, y2, atol=1e-6), (i, (y1 - y2).abs().mean()) + + # Test decoder + def _test_decoder(): + decoder = model.decoder + y = torch.zeros(10, decoder.context_size, dtype=torch.int64) + need_pad = torch.tensor([False]) + + traced_decoder = torch.jit.trace(decoder, (y, need_pad)) + d1 = decoder(y, need_pad) + d2 = traced_decoder(y, need_pad) + assert torch.equal(d1, d2), (d1 - d2).abs().mean() + + # Test joiner + def _test_joiner(): + joiner = model.joiner + encoder_out_dim = joiner.encoder_proj.weight.shape[1] + decoder_out_dim = joiner.decoder_proj.weight.shape[1] + encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32) + decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32) + + traced_joiner = torch.jit.trace(joiner, (encoder_out, decoder_out)) + j1 = joiner(encoder_out, decoder_out) + j2 = traced_joiner(encoder_out, decoder_out) + assert torch.equal(j1, j2), (j1 - j2).abs().mean() + + _test_encoder() + _test_decoder() + _test_joiner() + + +def main(): + test_model_small() + test_model_jit_trace() + + +if __name__ == "__main__": + main() diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/train.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/train.py new file mode 100755 index 000000000..9e8432ff3 --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/train.py @@ -0,0 +1,1243 @@ +#!/usr/bin/env python3 +# Copyright 2024 (Author: SeungHyun Lee, Contacts: whsqkaak@naver.com) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +./pruned_transducer_stateless7_streaming/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --exp-dir pruned_transducer_stateless7_streaming/exp \ + --max-duration 300 + +# For mix precision training: + +./pruned_transducer_stateless7_streaming/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --use-fp16 1 \ + --exp-dir pruned_transducer_stateless7_streaming/exp \ + --max-duration 550 +""" + + +import argparse +import copy +import logging +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, Optional, Tuple, Union + +import k2 +import optim +import sentencepiece as spm +import torch +import torch.multiprocessing as mp +import torch.nn as nn +from asr_datamodule import KsponSpeechAsrDataModule +from decoder import Decoder +from joiner import Joiner +from lhotse.cut import Cut +from lhotse.dataset.sampling.base import CutSampler +from lhotse.utils import fix_random_seed +from model import Transducer +from optim import Eden, ScaledAdam +from torch import Tensor +from torch.cuda.amp import GradScaler +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.utils.tensorboard import SummaryWriter +from zipformer import Zipformer + +from icefall import diagnostics +from icefall.checkpoint import load_checkpoint, remove_checkpoints +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.checkpoint import ( + save_checkpoint_with_global_batch_idx, + update_averaged_model, +) +from icefall.dist import cleanup_dist, setup_dist +from icefall.env import get_env_info +from icefall.err import raise_grad_scale_is_too_small_error +from icefall.hooks import register_inf_check_hooks +from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool + +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] + + +def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None: + if isinstance(model, DDP): + # get underlying nn.Module + model = model.module + for module in model.modules(): + if hasattr(module, "batch_count"): + module.batch_count = batch_count + + +def add_model_arguments(parser: argparse.ArgumentParser): + parser.add_argument( + "--num-encoder-layers", + type=str, + default="2,4,3,2,4", + help="Number of zipformer encoder layers, comma separated.", + ) + + parser.add_argument( + "--feedforward-dims", + type=str, + default="1024,1024,2048,2048,1024", + help="Feedforward dimension of the zipformer encoder layers, comma separated.", + ) + + parser.add_argument( + "--nhead", + type=str, + default="8,8,8,8,8", + help="Number of attention heads in the zipformer encoder layers.", + ) + + parser.add_argument( + "--encoder-dims", + type=str, + default="384,384,384,384,384", + help="Embedding dimension in the 2 blocks of zipformer encoder layers, comma separated", + ) + + parser.add_argument( + "--attention-dims", + type=str, + default="192,192,192,192,192", + help="""Attention dimension in the 2 blocks of zipformer encoder layers, comma separated; + not the same as embedding dimension.""", + ) + + parser.add_argument( + "--encoder-unmasked-dims", + type=str, + default="256,256,256,256,256", + help="Unmasked dimensions in the encoders, relates to augmentation during training. " + "Must be <= each of encoder_dims. Empirically, less than 256 seems to make performance " + " worse.", + ) + + parser.add_argument( + "--zipformer-downsampling-factors", + type=str, + default="1,2,4,8,2", + help="Downsampling factor for each stack of encoder layers.", + ) + + parser.add_argument( + "--cnn-module-kernels", + type=str, + default="31,31,31,31,31", + help="Sizes of kernels in convolution modules", + ) + + parser.add_argument( + "--decoder-dim", + type=int, + default=512, + help="Embedding dimension in the decoder model.", + ) + + parser.add_argument( + "--joiner-dim", + type=int, + default=512, + help="""Dimension used in the joiner model. + Outputs from the encoder and decoder model are projected + to this dimension before adding. + """, + ) + + parser.add_argument( + "--short-chunk-size", + type=int, + default=50, + help="""Chunk length of dynamic training, the chunk size would be either + max sequence length of current batch or uniformly sampled from (1, short_chunk_size). + """, + ) + + parser.add_argument( + "--num-left-chunks", + type=int, + default=4, + help="How many left context can be seen in chunks when calculating attention.", + ) + + parser.add_argument( + "--decode-chunk-len", + type=int, + default=32, + help="The chunk size for decoding (in frames before subsampling)", + ) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=30, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=1, + help="""Resume training from this epoch. It should be positive. + If larger than 1, it will load checkpoint from + exp-dir/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--start-batch", + type=int, + default=0, + help="""If positive, --start-epoch is ignored and + it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7_streaming/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--base-lr", type=float, default=0.05, help="The base learning rate." + ) + + parser.add_argument( + "--lr-batches", + type=float, + default=5000, + help="""Number of steps that affects how rapidly the learning rate + decreases. We suggest not to change this.""", + ) + + parser.add_argument( + "--lr-epochs", + type=float, + default=3.5, + help="""Number of epochs that affects how rapidly the learning rate decreases. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + parser.add_argument( + "--prune-range", + type=int, + default=5, + help="The prune range for rnnt loss, it means how many symbols(context)" + "we are using to compute the loss", + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.25, + help="The scale to smooth the loss with lm " + "(output of prediction network) part.", + ) + + parser.add_argument( + "--am-scale", + type=float, + default=0.0, + help="The scale to smooth the loss with am (output of encoder network) part.", + ) + + parser.add_argument( + "--simple-loss-scale", + type=float, + default=0.5, + help="To get pruning ranges, we will calculate a simple version" + "loss(joiner is just addition), this simple loss also uses for" + "training (as a regularization item). We will scale the simple loss" + "with this parameter before adding to the final loss.", + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--print-diagnostics", + type=str2bool, + default=False, + help="Accumulate stats on activations, print them and exit.", + ) + + parser.add_argument( + "--inf-check", + type=str2bool, + default=False, + help="Add hooks to check for infinite module outputs and gradients.", + ) + + parser.add_argument( + "--save-every-n", + type=int, + default=2000, + help="""Save checkpoint after processing this number of batches" + periodically. We save checkpoint to exp-dir/ whenever + params.batch_idx_train % save_every_n == 0. The checkpoint filename + has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt' + Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the + end of each epoch where `xxx` is the epoch number counting from 1. + """, + ) + + parser.add_argument( + "--keep-last-k", + type=int, + default=30, + help="""Only keep this number of checkpoints on disk. + For instance, if it is 3, there are only 3 checkpoints + in the exp-dir with filenames `checkpoint-xxx.pt`. + It does not affect checkpoints with name `epoch-xxx.pt`. + """, + ) + + parser.add_argument( + "--average-period", + type=int, + default=200, + help="""Update the averaged model, namely `model_avg`, after processing + this number of batches. `model_avg` is a separate version of model, + in which each floating-point parameter is the average of all the + parameters from the start of training. Each time we take the average, + we do: `model_avg = model * (average_period / batch_idx_train) + + model_avg * ((batch_idx_train - average_period) / batch_idx_train)`. + """, + ) + + parser.add_argument( + "--use-fp16", + type=str2bool, + default=False, + help="Whether to use half precision training.", + ) + + add_model_arguments(parser) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval is 0 + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - subsampling_factor: The subsampling factor for the model. + + - encoder_dim: Hidden dim for multi-head attention model. + + - num_decoder_layers: Number of decoder layer of transformer decoder. + + - warm_step: The warmup period that dictates the decay of the + scale on "simple" (un-pruned) loss. + """ + params = AttributeDict( + { + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 50, + "reset_interval": 200, + "valid_interval": 3000, # For the 100h subset, use 800 + # parameters for zipformer + "feature_dim": 80, + "subsampling_factor": 4, # not passed in, this is fixed. + "warm_step": 2000, + "env_info": get_env_info(), + } + ) + + return params + + +def get_encoder_model(params: AttributeDict) -> nn.Module: + # TODO: We can add an option to switch between Zipformer and Transformer + def to_int_tuple(s: str): + return tuple(map(int, s.split(","))) + + encoder = Zipformer( + num_features=params.feature_dim, + output_downsampling_factor=2, + zipformer_downsampling_factors=to_int_tuple( + params.zipformer_downsampling_factors + ), + encoder_dims=to_int_tuple(params.encoder_dims), + attention_dim=to_int_tuple(params.attention_dims), + encoder_unmasked_dims=to_int_tuple(params.encoder_unmasked_dims), + nhead=to_int_tuple(params.nhead), + feedforward_dim=to_int_tuple(params.feedforward_dims), + cnn_module_kernels=to_int_tuple(params.cnn_module_kernels), + num_encoder_layers=to_int_tuple(params.num_encoder_layers), + num_left_chunks=params.num_left_chunks, + short_chunk_size=params.short_chunk_size, + decode_chunk_size=params.decode_chunk_len // 2, + ) + return encoder + + +def get_decoder_model(params: AttributeDict) -> nn.Module: + decoder = Decoder( + vocab_size=params.vocab_size, + decoder_dim=params.decoder_dim, + blank_id=params.blank_id, + context_size=params.context_size, + ) + return decoder + + +def get_joiner_model(params: AttributeDict) -> nn.Module: + joiner = Joiner( + encoder_dim=int(params.encoder_dims.split(",")[-1]), + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return joiner + + +def get_transducer_model(params: AttributeDict) -> nn.Module: + encoder = get_encoder_model(params) + decoder = get_decoder_model(params) + joiner = get_joiner_model(params) + + model = Transducer( + encoder=encoder, + decoder=decoder, + joiner=joiner, + encoder_dim=int(params.encoder_dims.split(",")[-1]), + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return model + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + model_avg: nn.Module = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, +) -> Optional[Dict[str, Any]]: + """Load checkpoint from file. + + If params.start_batch is positive, it will load the checkpoint from + `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if + params.start_epoch is larger than 1, it will load the checkpoint from + `params.start_epoch - 1`. + + Apart from loading state dict for `model` and `optimizer` it also updates + `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer that we are using. + scheduler: + The scheduler that we are using. + Returns: + Return a dict containing previously saved training info. + """ + if params.start_batch > 0: + filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" + elif params.start_epoch > 1: + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + else: + return None + + assert filename.is_file(), f"{filename} does not exist!" + + saved_params = load_checkpoint( + filename, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + if params.start_batch > 0: + if "cur_epoch" in saved_params: + params["start_epoch"] = saved_params["cur_epoch"] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: Union[nn.Module, DDP], + model_avg: Optional[nn.Module] = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, + sampler: Optional[CutSampler] = None, + scaler: Optional[GradScaler] = None, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer used in the training. + sampler: + The sampler for the training dataset. + scaler: + The scaler used for mix precision training. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=sampler, + scaler=scaler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + batch: dict, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute transducer loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of Zipformer in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + warmup: a floating point value which increases throughout training; + values >= 1.0 are fully warmed up and have all modules present. + """ + device = model.device if isinstance(model, DDP) else next(model.parameters()).device + feature = batch["inputs"] + # at entry, feature is (N, T, C) + assert feature.ndim == 3 + feature = feature.to(device) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + batch_idx_train = params.batch_idx_train + warm_step = params.warm_step + + texts = batch["supervisions"]["text"] + y = sp.encode(texts, out_type=int) + y = k2.RaggedTensor(y).to(device) + + with torch.set_grad_enabled(is_training): + simple_loss, pruned_loss = model( + x=feature, + x_lens=feature_lens, + y=y, + prune_range=params.prune_range, + am_scale=params.am_scale, + lm_scale=params.lm_scale, + ) + + s = params.simple_loss_scale + # take down the scale on the simple loss from 1.0 at the start + # to params.simple_loss scale by warm_step. + simple_loss_scale = ( + s + if batch_idx_train >= warm_step + else 1.0 - (batch_idx_train / warm_step) * (1.0 - s) + ) + pruned_loss_scale = ( + 1.0 + if batch_idx_train >= warm_step + else 0.1 + 0.9 * (batch_idx_train / warm_step) + ) + + loss = simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss + + assert loss.requires_grad == is_training + + info = MetricsTracker() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + info["simple_loss"] = simple_loss.detach().cpu().item() + info["pruned_loss"] = pruned_loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: Union[nn.Module, DDP], + optimizer: torch.optim.Optimizer, + scheduler: LRSchedulerType, + sp: spm.SentencePieceProcessor, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + scaler: GradScaler, + model_avg: Optional[nn.Module] = None, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + scheduler: + The learning rate scheduler, we call step() every step. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + scaler: + The scaler used for mix precision training. + model_avg: + The stored model averaged from the start of training. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(train_dl): + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + scaler.scale(loss).backward() + set_batch_count(model, params.batch_idx_train) + scheduler.step_batch(params.batch_idx_train) + + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + except: # noqa + display_and_save_batch(batch, params=params, sp=sp) + raise + + if params.print_diagnostics and batch_idx == 5: + return + + if ( + rank == 0 + and params.batch_idx_train > 0 + and params.batch_idx_train % params.average_period == 0 + ): + update_averaged_model( + params=params, + model_cur=model, + model_avg=model_avg, + ) + + if ( + params.batch_idx_train > 0 + and params.batch_idx_train % params.save_every_n == 0 + ): + save_checkpoint_with_global_batch_idx( + out_dir=params.exp_dir, + global_batch_idx=params.batch_idx_train, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + remove_checkpoints( + out_dir=params.exp_dir, + topk=params.keep_last_k, + rank=rank, + ) + + if batch_idx % 100 == 0 and params.use_fp16: + # If the grad scale was less than 1, try increasing it. The _growth_interval + # of the grad scaler is configurable, but we can't configure it to have different + # behavior depending on the current grad scale. + cur_grad_scale = scaler._scale.item() + if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0): + scaler.update(cur_grad_scale * 2.0) + if cur_grad_scale < 0.01: + logging.warning(f"Grad scale is small: {cur_grad_scale}") + if cur_grad_scale < 1.0e-05: + raise_grad_scale_is_too_small_error(cur_grad_scale) + + if batch_idx % params.log_interval == 0: + cur_lr = scheduler.get_last_lr()[0] + cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0 + + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}, " + f"lr: {cur_lr:.2e}, " + + (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "") + ) + + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) + if params.use_fp16: + tb_writer.add_scalar( + "train/grad_scale", + cur_grad_scale, + params.batch_idx_train, + ) + + if batch_idx % params.valid_interval == 0 and not params.print_diagnostics: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + model=model, + sp=sp, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + + fix_random_seed(params.seed) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + assert params.save_every_n >= params.average_period + model_avg: Optional[nn.Module] = None + if rank == 0: + # model_avg is only used with rank 0 + model_avg = copy.deepcopy(model).to(torch.float64) + + assert params.start_epoch > 0, params.start_epoch + checkpoints = load_checkpoint_if_available( + params=params, model=model, model_avg=model_avg + ) + + model.to(device) + if world_size > 1: + logging.info("Using DDP") + model = DDP(model, device_ids=[rank], find_unused_parameters=True) + + parameters_names = [] + parameters_names.append( + [name_param_pair[0] for name_param_pair in model.named_parameters()] + ) + optimizer = ScaledAdam( + model.parameters(), + lr=params.base_lr, + clipping_scale=2.0, + parameters_names=parameters_names, + ) + + scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) + + if checkpoints and "optimizer" in checkpoints: + logging.info("Loading optimizer state dict") + optimizer.load_state_dict(checkpoints["optimizer"]) + + if ( + checkpoints + and "scheduler" in checkpoints + and checkpoints["scheduler"] is not None + ): + logging.info("Loading scheduler state dict") + scheduler.load_state_dict(checkpoints["scheduler"]) + + if params.print_diagnostics: + opts = diagnostics.TensorDiagnosticOptions( + 512 + ) # allow 4 megabytes per sub-module + diagnostic = diagnostics.attach_diagnostics(model, opts) + + if params.inf_check: + register_inf_check_hooks(model) + + ksponspeech = KsponSpeechAsrDataModule(args) + + train_cuts = ksponspeech.train_cuts() + + def remove_short_and_long_utt(c: Cut): + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ../local/display_manifest_statistics.py + # + # You should use ../local/display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + if c.duration < 1.0 or c.duration > 32.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./zipformer.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 7) // 2 + 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True + + # train_cuts = train_cuts.filter(remove_short_and_long_utt) + + if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: + # We only load the sampler's state dict when it loads a checkpoint + # saved in the middle of an epoch + sampler_state_dict = checkpoints["sampler"] + else: + sampler_state_dict = None + + train_dl = ksponspeech.train_dataloaders( + train_cuts, sampler_state_dict=sampler_state_dict + ) + + valid_cuts = ksponspeech.dev_cuts() + + # valid_cuts = valid_cuts.filter(remove_short_and_long_utt) + valid_dl = ksponspeech.valid_dataloaders(valid_cuts) + + # if not params.print_diagnostics: + # scan_pessimistic_batches_for_oom( + # model=model, + # train_dl=train_dl, + # optimizer=optimizer, + # sp=sp, + # params=params, + # ) + + scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0) + if checkpoints and "grad_scaler" in checkpoints: + logging.info("Loading grad scaler state dict") + scaler.load_state_dict(checkpoints["grad_scaler"]) + + for epoch in range(params.start_epoch, params.num_epochs + 1): + scheduler.step_epoch(epoch - 1) + fix_random_seed(params.seed + epoch - 1) + train_dl.sampler.set_epoch(epoch - 1) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sp=sp, + train_dl=train_dl, + valid_dl=valid_dl, + scaler=scaler, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + if params.print_diagnostics: + diagnostic.print_diagnostics() + break + + save_checkpoint( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + + logging.info("Done!") + + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def display_and_save_batch( + batch: dict, + params: AttributeDict, + sp: spm.SentencePieceProcessor, +) -> None: + """Display the batch statistics and save the batch into disk. + + Args: + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + params: + Parameters for training. See :func:`get_params`. + sp: + The BPE model. + """ + from lhotse.utils import uuid4 + + filename = f"{params.exp_dir}/batch-{uuid4()}.pt" + logging.info(f"Saving batch to {filename}") + torch.save(batch, filename) + + supervisions = batch["supervisions"] + features = batch["inputs"] + + logging.info(f"features shape: {features.shape}") + + y = sp.encode(supervisions["text"], out_type=int) + num_tokens = sum(len(i) for i in y) + logging.info(f"num tokens: {num_tokens}") + + +def scan_pessimistic_batches_for_oom( + model: Union[nn.Module, DDP], + train_dl: torch.utils.data.DataLoader, + optimizer: torch.optim.Optimizer, + sp: spm.SentencePieceProcessor, + params: AttributeDict, +): + from lhotse.dataset import find_pessimistic_batches + + logging.info( + "Sanity check -- see if any of the batches in epoch 1 would cause OOM." + ) + batches, crit_values = find_pessimistic_batches(train_dl.sampler) + for criterion, cuts in batches.items(): + batch = train_dl.dataset[cuts] + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, _ = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + loss.backward() + optimizer.zero_grad() + except Exception as e: + if "CUDA out of memory" in str(e): + logging.error( + "Your GPU ran out of memory with the current " + "max_duration setting. We recommend decreasing " + "max_duration and trying again.\n" + f"Failing criterion: {criterion} " + f"(={crit_values[criterion]}) ..." + ) + display_and_save_batch(batch, params=params, sp=sp) + raise + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + + +def main(): + parser = get_parser() + KsponSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/zipformer.py b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/zipformer.py new file mode 100644 index 000000000..c7e45564f --- /dev/null +++ b/egs/ksponspeech/ASR/pruned_transducer_stateless7_streaming/zipformer.py @@ -0,0 +1,2891 @@ +#!/usr/bin/env python3 +# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey,) +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import copy +import itertools +import logging +import math +import random +import warnings +from typing import List, Optional, Tuple, Union + +import torch +from encoder_interface import EncoderInterface +from scaling import ( + ScaledLinear, # not as in other dirs.. just scales down initial parameter values. +) +from scaling import ( + ActivationBalancer, + BasicNorm, + DoubleSwish, + Identity, + MaxEig, + ScaledConv1d, + Whiten, + _diag, + penalize_abs_values_gt, + random_clamp, + softmax, +) +from torch import Tensor, nn + +from icefall.utils import make_pad_mask, subsequent_chunk_mask + + +def stack_states(state_list: List[List[Tensor]]) -> List[Tensor]: + """Stack list of zipformer states that correspond to separate utterances + into a single emformer state, so that it can be used as an input for + zipformer when those utterances are formed into a batch. + + Note: + It is the inverse of :func:`unstack_states`. + + Args: + state_list: + Each element in state_list corresponding to the internal state + of the zipformer model for a single utterance. + ``states[i]`` is a list of 7 * num_encoders elements of i-th utterance. + ``states[i][0:num_encoders]`` is the cached numbers of past frames. + ``states[i][num_encoders:2*num_encoders]`` is the cached average tensors. + ``states[i][2*num_encoders:3*num_encoders]`` is the cached key tensors of the first attention modules. + ``states[i][3*num_encoders:4*num_encoders]`` is the cached value tensors of the first attention modules. + ``states[i][4*num_encoders:5*num_encoders]`` is the cached value tensors of the second attention modules. + ``states[i][5*num_encoders:6*num_encoders]`` is the cached left contexts of the first convolution modules. + ``states[i][6*num_encoders:7*num_encoders]`` is the cached left contexts of the second convolution modules. + + Returns: + A new state corresponding to a batch of utterances. + See the input argument of :func:`unstack_states` for the meaning + of the returned tensor. + """ + batch_size = len(state_list) + assert len(state_list[0]) % 7 == 0, len(state_list[0]) + num_encoders = len(state_list[0]) // 7 + + cached_len = [] + cached_avg = [] + cached_key = [] + cached_val = [] + cached_val2 = [] + cached_conv1 = [] + cached_conv2 = [] + + # For cached_len + len_list = [state_list[n][0:num_encoders] for n in range(batch_size)] + for i in range(num_encoders): + # len_avg: (num_layers, batch_size) + len_avg = torch.cat([len_list[n][i] for n in range(batch_size)], dim=1) + cached_len.append(len_avg) + + # For cached_avg + avg_list = [ + state_list[n][num_encoders : 2 * num_encoders] for n in range(batch_size) + ] + for i in range(num_encoders): + # avg: (num_layers, batch_size, D) + avg = torch.cat([avg_list[n][i] for n in range(batch_size)], dim=1) + cached_avg.append(avg) + + # For cached_key + key_list = [ + state_list[n][2 * num_encoders : 3 * num_encoders] for n in range(batch_size) + ] + for i in range(num_encoders): + # key: (num_layers, left_context_size, batch_size, D) + key = torch.cat([key_list[n][i] for n in range(batch_size)], dim=2) + cached_key.append(key) + + # For cached_val + val_list = [ + state_list[n][3 * num_encoders : 4 * num_encoders] for n in range(batch_size) + ] + for i in range(num_encoders): + # val: (num_layers, left_context_size, batch_size, D) + val = torch.cat([val_list[n][i] for n in range(batch_size)], dim=2) + cached_val.append(val) + + # For cached_val2 + val2_list = [ + state_list[n][4 * num_encoders : 5 * num_encoders] for n in range(batch_size) + ] + for i in range(num_encoders): + # val2: (num_layers, left_context_size, batch_size, D) + val2 = torch.cat([val2_list[n][i] for n in range(batch_size)], dim=2) + cached_val2.append(val2) + + # For cached_conv1 + conv1_list = [ + state_list[n][5 * num_encoders : 6 * num_encoders] for n in range(batch_size) + ] + for i in range(num_encoders): + # conv1: (num_layers, batch_size, D, kernel-1) + conv1 = torch.cat([conv1_list[n][i] for n in range(batch_size)], dim=1) + cached_conv1.append(conv1) + + # For cached_conv2 + conv2_list = [ + state_list[n][6 * num_encoders : 7 * num_encoders] for n in range(batch_size) + ] + for i in range(num_encoders): + # conv2: (num_layers, batch_size, D, kernel-1) + conv2 = torch.cat([conv2_list[n][i] for n in range(batch_size)], dim=1) + cached_conv2.append(conv2) + + states = ( + cached_len + + cached_avg + + cached_key + + cached_val + + cached_val2 + + cached_conv1 + + cached_conv2 + ) + return states + + +def unstack_states(states: List[Tensor]) -> List[List[Tensor]]: + """Unstack the zipformer state corresponding to a batch of utterances + into a list of states, where the i-th entry is the state from the i-th + utterance in the batch. + + Note: + It is the inverse of :func:`stack_states`. + + Args: + states: + A list of 7 * num_encoders elements: + ``states[0:num_encoders]`` is the cached numbers of past frames. + ``states[num_encoders:2*num_encoders]`` is the cached average tensors. + ``states[2*num_encoders:3*num_encoders]`` is the cached key tensors of the first attention modules. + ``states[3*num_encoders:4*num_encoders]`` is the cached value tensors of the first attention modules. + ``states[4*num_encoders:5*num_encoders]`` is the cached value tensors of the second attention modules. + ``states[5*num_encoders:6*num_encoders]`` is the cached left contexts of the first convolution modules. + ``states[6*num_encoders:7*num_encoders]`` is the cached left contexts of the second convolution modules. + + Returns: + A list of states. + ``states[i]`` is a list of 7 * num_encoders elements of i-th utterance. + """ + assert len(states) % 7 == 0, len(states) + num_encoders = len(states) // 7 + ( + cached_len, + cached_avg, + cached_key, + cached_val, + cached_val2, + cached_conv1, + cached_conv2, + ) = (states[i * num_encoders : (i + 1) * num_encoders] for i in range(7)) + + batch_size = cached_len[0].shape[1] + + len_list = [[] for _ in range(batch_size)] + for i in range(num_encoders): + # cached_len[i]: (num_layers, batch_size) + len_avg = cached_len[i].chunk(chunks=batch_size, dim=1) + for n in range(batch_size): + len_list[n].append(len_avg[n]) + + avg_list = [[] for _ in range(batch_size)] + for i in range(num_encoders): + # cached_avg[i]: (num_layers, batch_size, D) + avg = cached_avg[i].chunk(chunks=batch_size, dim=1) + for n in range(batch_size): + avg_list[n].append(avg[n]) + + key_list = [[] for _ in range(batch_size)] + for i in range(num_encoders): + # cached_key[i]: (num_layers, left_context, batch_size, D) + key = cached_key[i].chunk(chunks=batch_size, dim=2) + for n in range(batch_size): + key_list[n].append(key[n]) + + val_list = [[] for _ in range(batch_size)] + for i in range(num_encoders): + # cached_val[i]: (num_layers, left_context, batch_size, D) + val = cached_val[i].chunk(chunks=batch_size, dim=2) + for n in range(batch_size): + val_list[n].append(val[n]) + + val2_list = [[] for _ in range(batch_size)] + for i in range(num_encoders): + # cached_val2[i]: (num_layers, left_context, batch_size, D) + val2 = cached_val2[i].chunk(chunks=batch_size, dim=2) + for n in range(batch_size): + val2_list[n].append(val2[n]) + + conv1_list = [[] for _ in range(batch_size)] + for i in range(num_encoders): + # cached_conv1[i]: (num_layers, batch_size, D, kernel-1) + conv1 = cached_conv1[i].chunk(chunks=batch_size, dim=1) + for n in range(batch_size): + conv1_list[n].append(conv1[n]) + + conv2_list = [[] for _ in range(batch_size)] + for i in range(num_encoders): + # cached_conv2[i]: (num_layers, batch_size, D, kernel-1) + conv2 = cached_conv2[i].chunk(chunks=batch_size, dim=1) + for n in range(batch_size): + conv2_list[n].append(conv2[n]) + + state_list = [ + ( + len_list[i] + + avg_list[i] + + key_list[i] + + val_list[i] + + val2_list[i] + + conv1_list[i] + + conv2_list[i] + ) + for i in range(batch_size) + ] + return state_list + + +class Zipformer(EncoderInterface): + """ + Args: + num_features (int): Number of input features + d_model: (int,int): embedding dimension of 2 encoder stacks + attention_dim: (int,int): attention dimension of 2 encoder stacks + nhead (int, int): number of heads + dim_feedforward (int, int): feedforward dimension in 2 encoder stacks + num_encoder_layers (int): number of encoder layers + dropout (float): dropout rate + cnn_module_kernels (int): Kernel size of convolution module + warmup_batches (float): number of batches to warm up over + """ + + def __init__( + self, + num_features: int, + output_downsampling_factor: int = 2, + encoder_dims: Tuple[int] = (384, 384), + attention_dim: Tuple[int] = (256, 256), + encoder_unmasked_dims: Tuple[int] = (256, 256), + zipformer_downsampling_factors: Tuple[int] = (2, 4), + nhead: Tuple[int] = (8, 8), + feedforward_dim: Tuple[int] = (1536, 2048), + num_encoder_layers: Tuple[int] = (12, 12), + dropout: float = 0.1, + cnn_module_kernels: Tuple[int] = (31, 31), + pos_dim: int = 4, + num_left_chunks: int = 4, + short_chunk_threshold: float = 0.75, + short_chunk_size: int = 50, + decode_chunk_size: int = 16, + warmup_batches: float = 4000.0, + ) -> None: + super(Zipformer, self).__init__() + + self.num_features = num_features + assert 0 < encoder_dims[0] <= encoder_dims[1] + self.encoder_dims = encoder_dims + self.encoder_unmasked_dims = encoder_unmasked_dims + self.zipformer_downsampling_factors = zipformer_downsampling_factors + self.output_downsampling_factor = output_downsampling_factor + + self.num_left_chunks = num_left_chunks + self.short_chunk_threshold = short_chunk_threshold + self.short_chunk_size = short_chunk_size + + # Used in decoding + self.decode_chunk_size = decode_chunk_size + + self.left_context_len = self.decode_chunk_size * self.num_left_chunks + + # will be written to, see set_batch_count() + self.batch_count = 0 + self.warmup_end = warmup_batches + + for u, d in zip(encoder_unmasked_dims, encoder_dims): + assert u <= d, (u, d) + + # self.encoder_embed converts the input of shape (N, T, num_features) + # to the shape (N, (T - 7)//2, encoder_dims). + # That is, it does two things simultaneously: + # (1) subsampling: T -> (T - 7)//2 + # (2) embedding: num_features -> encoder_dims + self.encoder_embed = Conv2dSubsampling( + num_features, encoder_dims[0], dropout=dropout + ) + + # each one will be ZipformerEncoder or DownsampledZipformerEncoder + encoders = [] + + self.num_encoder_layers = num_encoder_layers + self.num_encoders = len(encoder_dims) + self.attention_dims = attention_dim + self.cnn_module_kernels = cnn_module_kernels + for i in range(self.num_encoders): + encoder_layer = ZipformerEncoderLayer( + encoder_dims[i], + attention_dim[i], + nhead[i], + feedforward_dim[i], + dropout, + cnn_module_kernels[i], + pos_dim, + ) + + # For the segment of the warmup period, we let the Conv2dSubsampling + # layer learn something. Then we start to warm up the other encoders. + encoder = ZipformerEncoder( + encoder_layer, + num_encoder_layers[i], + dropout, + warmup_begin=warmup_batches * (i + 1) / (self.num_encoders + 1), + warmup_end=warmup_batches * (i + 2) / (self.num_encoders + 1), + ) + + if zipformer_downsampling_factors[i] != 1: + encoder = DownsampledZipformerEncoder( + encoder, + input_dim=encoder_dims[i - 1] if i > 0 else encoder_dims[0], + output_dim=encoder_dims[i], + downsample=zipformer_downsampling_factors[i], + ) + encoders.append(encoder) + self.encoders = nn.ModuleList(encoders) + + # initializes self.skip_layers and self.skip_modules + self._init_skip_modules() + + self.downsample_output = AttentionDownsample( + encoder_dims[-1], encoder_dims[-1], downsample=output_downsampling_factor + ) + + def _get_layer_skip_dropout_prob(self): + if not self.training: + return 0.0 + batch_count = self.batch_count + min_dropout_prob = 0.025 + + if batch_count > self.warmup_end: + return min_dropout_prob + else: + return 0.5 - (batch_count / self.warmup_end) * (0.5 - min_dropout_prob) + + def _init_skip_modules(self): + """ + If self.zipformer_downsampling_factors = (1, 2, 4, 8, 4, 2), then at the input of layer + indexed 4 (in zero indexing), which has subsampling_factor=4, we combine the output of + layers 2 and 3; and at the input of layer indexed 5, which has subsampling_factor=2, + we combine the outputs of layers 1 and 4. + """ + skip_layers = [] + skip_modules = [] + z = self.zipformer_downsampling_factors + for i in range(len(z)): + if i <= 1 or z[i - 1] <= z[i]: + skip_layers.append(None) + skip_modules.append(SimpleCombinerIdentity()) + else: + # TEMP + for j in range(i - 2, -1, -1): + if z[j] <= z[i] or j == 0: + # TEMP logging statement. + logging.info( + f"At encoder stack {i}, which has downsampling_factor={z[i]}, we will " + f"combine the outputs of layers {j} and {i-1}, with downsampling_factors={z[j]} and {z[i-1]}." + ) + skip_layers.append(j) + skip_modules.append( + SimpleCombiner( + self.encoder_dims[j], + self.encoder_dims[i - 1], + min_weight=(0.0, 0.25), + ) + ) + break + self.skip_layers = skip_layers + self.skip_modules = nn.ModuleList(skip_modules) + + def get_feature_masks(self, x: torch.Tensor) -> List[float]: + # Note: The actual return type is Union[List[float], List[Tensor]], + # but to make torch.jit.script() work, we use List[float] + """ + In eval mode, returns [1.0] * num_encoders; in training mode, returns a number of + randomized feature masks, one per encoder. + On e.g. 15% of frames, these masks will zero out all encoder dims larger than + some supplied number, e.g. >256, so in effect on those frames we are using + a smaller encoder dim. + + We generate the random masks at this level because we want the 2 masks to 'agree' + all the way up the encoder stack. This will mean that the 1st mask will have + mask values repeated self.zipformer_downsampling_factors times. + + Args: + x: the embeddings (needed for the shape and dtype and device), of shape + (num_frames, batch_size, encoder_dims0) + """ + num_encoders = len(self.encoder_dims) + if torch.jit.is_scripting() or not self.training: + return [1.0] * num_encoders + + (num_frames0, batch_size, _encoder_dims0) = x.shape + + assert self.encoder_dims[0] == _encoder_dims0, ( + self.encoder_dims, + _encoder_dims0, + ) + + max_downsampling_factor = max(self.zipformer_downsampling_factors) + + num_frames_max = num_frames0 + max_downsampling_factor - 1 + + feature_mask_dropout_prob = 0.15 + + # frame_mask_max shape: (num_frames_max, batch_size, 1) + frame_mask_max = ( + torch.rand(num_frames_max, batch_size, 1, device=x.device) + > feature_mask_dropout_prob + ).to(x.dtype) + + feature_masks = [] + for i in range(num_encoders): + ds = self.zipformer_downsampling_factors[i] + upsample_factor = max_downsampling_factor // ds + + frame_mask = ( + frame_mask_max.unsqueeze(1) + .expand(num_frames_max, upsample_factor, batch_size, 1) + .reshape(num_frames_max * upsample_factor, batch_size, 1) + ) + num_frames = (num_frames0 + ds - 1) // ds + frame_mask = frame_mask[:num_frames] + feature_mask = torch.ones( + num_frames, + batch_size, + self.encoder_dims[i], + dtype=x.dtype, + device=x.device, + ) + u = self.encoder_unmasked_dims[i] + feature_mask[:, :, u:] *= frame_mask + feature_masks.append(feature_mask) + + return feature_masks + + def forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Args: + x: + The input tensor. Its shape is (batch_size, seq_len, feature_dim). + x_lens: + A tensor of shape (batch_size,) containing the number of frames in + `x` before padding. + chunk_size: + The chunk size used in evaluation mode. + Returns: + Return a tuple containing 2 tensors: + - embeddings: its shape is (batch_size, output_seq_len, encoder_dims[-1]) + - lengths, a tensor of shape (batch_size,) containing the number + of frames in `embeddings` before padding. + """ + x = self.encoder_embed(x) + + x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) + + lengths = (x_lens - 7) >> 1 + assert x.size(0) == lengths.max().item(), (x.shape, lengths, lengths.max()) + mask = make_pad_mask(lengths) + + outputs = [] + feature_masks = self.get_feature_masks(x) + + if self.training: + # Training mode + max_ds = max(self.zipformer_downsampling_factors) + # Generate dynamic chunk-wise attention mask during training + max_len = x.size(0) // max_ds + short_chunk_size = self.short_chunk_size // max_ds + chunk_size = torch.randint(1, max_len, (1,)).item() + if chunk_size > (max_len * self.short_chunk_threshold): + # Full attention + chunk_size = x.size(0) + else: + # Chunk-wise attention + chunk_size = chunk_size % short_chunk_size + 1 + chunk_size *= max_ds + else: + chunk_size = self.decode_chunk_size + # Evaluation mode + for ds in self.zipformer_downsampling_factors: + assert chunk_size % ds == 0, (chunk_size, ds) + + attn_mask = ~subsequent_chunk_mask( + size=x.size(0), + chunk_size=chunk_size, + num_left_chunks=self.num_left_chunks, + device=x.device, + ) + + for i, (module, skip_module) in enumerate( + zip(self.encoders, self.skip_modules) + ): + ds = self.zipformer_downsampling_factors[i] + k = self.skip_layers[i] + if isinstance(k, int): + layer_skip_dropout_prob = self._get_layer_skip_dropout_prob() + if torch.jit.is_scripting(): + x = skip_module(outputs[k], x) + elif (not self.training) or random.random() > layer_skip_dropout_prob: + x = skip_module(outputs[k], x) + x = module( + x, + feature_mask=feature_masks[i], + src_key_padding_mask=None if mask is None else mask[..., ::ds], + attn_mask=attn_mask[::ds, ::ds], + ) + outputs.append(x) + + x = self.downsample_output(x) + # class Downsample has this rounding behavior.. + assert self.output_downsampling_factor == 2, self.output_downsampling_factor + lengths = (lengths + 1) >> 1 + + x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C) + + return x, lengths + + def streaming_forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + states: List[Tensor], + ) -> Tuple[Tensor, Tensor, List[Tensor]]: + """ + Args: + x: + The input tensor. Its shape is (batch_size, seq_len, feature_dim). + seq_len is the input chunk length. + x_lens: + A tensor of shape (batch_size,) containing the number of frames in + `x` before padding. + states: + A list of 7 * num_encoders elements: + ``states[0:num_encoders]`` is the cached numbers of past frames. + ``states[num_encoders:2*num_encoders]`` is the cached average tensors. + ``states[2*num_encoders:3*num_encoders]`` is the cached key tensors of the first attention modules. + ``states[3*num_encoders:4*num_encoders]`` is the cached value tensors of the first attention modules. + ``states[4*num_encoders:5*num_encoders]`` is the cached value tensors of the second attention modules. + ``states[5*num_encoders:6*num_encoders]`` is the cached left contexts of the first convolution modules. + ``states[6*num_encoders:7*num_encoders]`` is the cached left contexts of the second convolution modules. + + Returns: + Return a tuple containing 3 tensors: + - embeddings: its shape is (batch_size, output_seq_len, encoder_dims[-1]) + - lengths, a tensor of shape (batch_size,) containing the number + of frames in `embeddings` before padding. + - updated states. + """ + assert len(states) == 7 * self.num_encoders, (len(states), self.num_encoders) + + cached_len = states[: self.num_encoders] + cached_avg = states[self.num_encoders : 2 * self.num_encoders] + cached_key = states[2 * self.num_encoders : 3 * self.num_encoders] + cached_val = states[3 * self.num_encoders : 4 * self.num_encoders] + cached_val2 = states[4 * self.num_encoders : 5 * self.num_encoders] + cached_conv1 = states[5 * self.num_encoders : 6 * self.num_encoders] + cached_conv2 = states[6 * self.num_encoders : 7 * self.num_encoders] + + x = self.encoder_embed(x) + x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) + lengths = (x_lens - 7) >> 1 + assert x.size(0) == lengths.max().item(), (x.shape, lengths, lengths.max()) + + outputs = [] + new_cached_len = [] + new_cached_avg = [] + new_cached_key = [] + new_cached_val = [] + new_cached_val2 = [] + new_cached_conv1 = [] + new_cached_conv2 = [] + + for i, (module, skip_module) in enumerate( + zip(self.encoders, self.skip_modules) + ): + k = self.skip_layers[i] + if isinstance(k, int): + x = skip_module(outputs[k], x) + x, len_avg, avg, key, val, val2, conv1, conv2 = module.streaming_forward( + x, + cached_len=cached_len[i], + cached_avg=cached_avg[i], + cached_key=cached_key[i], + cached_val=cached_val[i], + cached_val2=cached_val2[i], + cached_conv1=cached_conv1[i], + cached_conv2=cached_conv2[i], + ) + outputs.append(x) + # Update caches + new_cached_len.append(len_avg) + new_cached_avg.append(avg) + new_cached_key.append(key) + new_cached_val.append(val) + new_cached_val2.append(val2) + new_cached_conv1.append(conv1) + new_cached_conv2.append(conv2) + + x = self.downsample_output(x) + # class Downsample has this rounding behavior.. + assert self.output_downsampling_factor == 2, self.output_downsampling_factor + lengths = (lengths + 1) >> 1 + + x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C) + + new_states = ( + new_cached_len + + new_cached_avg + + new_cached_key + + new_cached_val + + new_cached_val2 + + new_cached_conv1 + + new_cached_conv2 + ) + return x, lengths, new_states + + @torch.jit.export + def get_init_state( + self, + device: torch.device = torch.device("cpu"), + ) -> List[Tensor]: + """Get initial states. + A list of 7 * num_encoders elements: + ``states[0:num_encoders]`` is the cached numbers of past frames. + ``states[num_encoders:2*num_encoders]`` is the cached average tensors. + ``states[2*num_encoders:3*num_encoders]`` is the cached key tensors of the first attention modules. + ``states[3*num_encoders:4*num_encoders]`` is the cached value tensors of the first attention modules. + ``states[4*num_encoders:5*num_encoders]`` is the cached value tensors of the second attention modules. + ``states[5*num_encoders:6*num_encoders]`` is the cached left contexts of the first convolution modules. + ``states[6*num_encoders:7*num_encoders]`` is the cached left contexts of the second convolution modules. + """ + cached_len = [] + cached_avg = [] + cached_key = [] + cached_val = [] + cached_val2 = [] + cached_conv1 = [] + cached_conv2 = [] + + left_context_len = self.decode_chunk_size * self.num_left_chunks + + for i, encoder in enumerate(self.encoders): + num_layers = encoder.num_layers + ds = self.zipformer_downsampling_factors[i] + + len_avg = torch.zeros(num_layers, 1, dtype=torch.int64, device=device) + cached_len.append(len_avg) + + avg = torch.zeros(num_layers, 1, encoder.d_model, device=device) + cached_avg.append(avg) + + key = torch.zeros( + num_layers, + left_context_len // ds, + 1, + encoder.attention_dim, + device=device, + ) + cached_key.append(key) + + val = torch.zeros( + num_layers, + left_context_len // ds, + 1, + encoder.attention_dim // 2, + device=device, + ) + cached_val.append(val) + + val2 = torch.zeros( + num_layers, + left_context_len // ds, + 1, + encoder.attention_dim // 2, + device=device, + ) + cached_val2.append(val2) + + conv1 = torch.zeros( + num_layers, + 1, + encoder.d_model, + encoder.cnn_module_kernel - 1, + device=device, + ) + cached_conv1.append(conv1) + + conv2 = torch.zeros( + num_layers, + 1, + encoder.d_model, + encoder.cnn_module_kernel - 1, + device=device, + ) + cached_conv2.append(conv2) + + states = ( + cached_len + + cached_avg + + cached_key + + cached_val + + cached_val2 + + cached_conv1 + + cached_conv2 + ) + return states + + +class ZipformerEncoderLayer(nn.Module): + """ + ZipformerEncoderLayer is made up of self-attn, feedforward and convolution networks. + + Args: + d_model: the number of expected features in the input (required). + nhead: the number of heads in the multiheadattention models (required). + feedforward_dim: the dimension of the feedforward network model (default=2048). + dropout: the dropout value (default=0.1). + cnn_module_kernel (int): Kernel size of convolution module. + + Examples:: + >>> encoder_layer = ZipformerEncoderLayer(d_model=512, nhead=8) + >>> src = torch.rand(10, 32, 512) + >>> pos_emb = torch.rand(32, 19, 512) + >>> out = encoder_layer(src, pos_emb) + """ + + def __init__( + self, + d_model: int, + attention_dim: int, + nhead: int, + feedforward_dim: int = 2048, + dropout: float = 0.1, + cnn_module_kernel: int = 31, + pos_dim: int = 4, + ) -> None: + super(ZipformerEncoderLayer, self).__init__() + + self.d_model = d_model + self.attention_dim = attention_dim + self.cnn_module_kernel = cnn_module_kernel + + # will be written to, see set_batch_count() + self.batch_count = 0 + + self.self_attn = RelPositionMultiheadAttention( + d_model, + attention_dim, + nhead, + pos_dim, + dropout=0.0, + ) + + self.pooling = PoolingModule(d_model) + + self.feed_forward1 = FeedforwardModule(d_model, feedforward_dim, dropout) + + self.feed_forward2 = FeedforwardModule(d_model, feedforward_dim, dropout) + + self.feed_forward3 = FeedforwardModule(d_model, feedforward_dim, dropout) + + self.conv_module1 = ConvolutionModule(d_model, cnn_module_kernel) + + self.conv_module2 = ConvolutionModule(d_model, cnn_module_kernel) + + self.norm_final = BasicNorm(d_model) + + self.bypass_scale = nn.Parameter(torch.tensor(0.5)) + + # try to ensure the output is close to zero-mean (or at least, zero-median). + self.balancer = ActivationBalancer( + d_model, + channel_dim=-1, + min_positive=0.45, + max_positive=0.55, + max_abs=6.0, + ) + self.whiten = Whiten( + num_groups=1, whitening_limit=5.0, prob=(0.025, 0.25), grad_scale=0.01 + ) + + def get_bypass_scale(self): + if torch.jit.is_scripting() or not self.training: + return self.bypass_scale + if random.random() < 0.1: + # ensure we get grads if self.bypass_scale becomes out of range + return self.bypass_scale + # hardcode warmup period for bypass scale + warmup_period = 20000.0 + initial_clamp_min = 0.75 + final_clamp_min = 0.25 + if self.batch_count > warmup_period: + clamp_min = final_clamp_min + else: + clamp_min = initial_clamp_min - (self.batch_count / warmup_period) * ( + initial_clamp_min - final_clamp_min + ) + return self.bypass_scale.clamp(min=clamp_min, max=1.0) + + def get_dynamic_dropout_rate(self): + # return dropout rate for the dynamic modules (self_attn, pooling, convolution); this + # starts at 0.2 and rapidly decreases to 0. Its purpose is to keep the training stable + # at the beginning, by making the network focus on the feedforward modules. + if torch.jit.is_scripting() or not self.training: + return 0.0 + warmup_period = 2000.0 + initial_dropout_rate = 0.2 + final_dropout_rate = 0.0 + if self.batch_count > warmup_period: + return final_dropout_rate + else: + return initial_dropout_rate - ( + initial_dropout_rate - final_dropout_rate + ) * (self.batch_count / warmup_period) + + def forward( + self, + src: Tensor, + pos_emb: Tensor, + attn_mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + ) -> Tensor: + """ + Pass the input through the encoder layer. + + Args: + src: the sequence to the encoder layer (required). + pos_emb: Positional embedding tensor (required). + src_mask: the mask for the src sequence (optional). + src_key_padding_mask: the mask for the src keys per batch (optional). + batch_split: if not None, this layer will only be applied to + + Shape: + src: (S, N, E). + pos_emb: (N, 2*S-1, E) + src_mask: (S, S). + src_key_padding_mask: (N, S). + S is the source sequence length, N is the batch size, E is the feature number + """ + src_orig = src + + # macaron style feed forward module + src = src + self.feed_forward1(src) + + # dropout rate for submodules that interact with time. + dynamic_dropout = self.get_dynamic_dropout_rate() + + # pooling module + if torch.jit.is_scripting(): + src = src + self.pooling(src, src_key_padding_mask=src_key_padding_mask) + elif random.random() >= dynamic_dropout: + src = src + self.pooling(src, src_key_padding_mask=src_key_padding_mask) + + if torch.jit.is_scripting(): + src_att, attn_weights = self.self_attn( + src, + pos_emb=pos_emb, + attn_mask=attn_mask, + key_padding_mask=src_key_padding_mask, + ) + src = src + src_att + + src = src + self.conv_module1( + src, src_key_padding_mask=src_key_padding_mask + ) + + src = src + self.feed_forward2(src) + + src = src + self.self_attn.forward2(src, attn_weights) + + src = src + self.conv_module2( + src, src_key_padding_mask=src_key_padding_mask + ) + else: + use_self_attn = random.random() >= dynamic_dropout + if use_self_attn: + src_att, attn_weights = self.self_attn( + src, + pos_emb=pos_emb, + attn_mask=attn_mask, + key_padding_mask=src_key_padding_mask, + ) + src = src + src_att + + if random.random() >= dynamic_dropout: + src = src + self.conv_module1( + src, src_key_padding_mask=src_key_padding_mask + ) + + src = src + self.feed_forward2(src) + + if use_self_attn: + src = src + self.self_attn.forward2(src, attn_weights) + + if random.random() >= dynamic_dropout: + src = src + self.conv_module2( + src, src_key_padding_mask=src_key_padding_mask + ) + + src = src + self.feed_forward3(src) + + src = self.norm_final(self.balancer(src)) + + delta = src - src_orig + + src = src_orig + delta * self.get_bypass_scale() + + return self.whiten(src) + + def streaming_forward( + self, + src: Tensor, + pos_emb: Tensor, + cached_len: Tensor, + cached_avg: Tensor, + cached_key: Tensor, + cached_val: Tensor, + cached_val2: Tensor, + cached_conv1: Tensor, + cached_conv2: Tensor, + ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]: + """ + Pass the input through the encoder layer. + + Args: + src: the sequence to the encoder layer (required). + pos_emb: Positional embedding tensor (required). + cached_len: processed number of past frames. + cached_avg: cached average of past frames. + cached_key: cached key tensor of left context for the first attention module. + cached_val: cached value tensor of left context for the first attention module. + cached_val2: cached value tensor of left context for the second attention module. + cached_conv1: cached left context for the first convolution module. + cached_conv2: cached left context for the second convolution module. + + Shape: + src: (S, N, E). + pos_emb: (N, left_context_len+2*S-1, E) + cached_len: (N,) + N is the batch size. + cached_avg: (N, C). + N is the batch size, C is the feature dimension. + cached_key: (left_context_len, N, K). + N is the batch size, K is the key dimension. + cached_val: (left_context_len, N, V). + N is the batch size, V is the key dimension. + cached_val2: (left_context_len, N, V). + N is the batch size, V is the key dimension. + cached_conv1: (N, C, kernel_size-1). + N is the batch size, C is the convolution channels. + cached_conv2: (N, C, kernel_size-1). + N is the batch size, C is the convolution channels. + """ + src_orig = src + + # macaron style feed forward module + src = src + self.feed_forward1(src) + + src_pool, cached_len, cached_avg = self.pooling.streaming_forward( + src, + cached_len=cached_len, + cached_avg=cached_avg, + ) + src = src + src_pool + + ( + src_attn, + attn_weights, + cached_key, + cached_val, + ) = self.self_attn.streaming_forward( + src, + pos_emb=pos_emb, + cached_key=cached_key, + cached_val=cached_val, + ) + src = src + src_attn + + src_conv, cached_conv1 = self.conv_module1.streaming_forward( + src, + cache=cached_conv1, + ) + src = src + src_conv + + src = src + self.feed_forward2(src) + + src_attn, cached_val2 = self.self_attn.streaming_forward2( + src, + attn_weights, + cached_val=cached_val2, + ) + src = src + src_attn + + src_conv, cached_conv2 = self.conv_module2.streaming_forward( + src, + cache=cached_conv2, + ) + src = src + src_conv + + src = src + self.feed_forward3(src) + + src = self.norm_final(self.balancer(src)) + + delta = src - src_orig + + src = src_orig + delta * self.bypass_scale + + return ( + src, + cached_len, + cached_avg, + cached_key, + cached_val, + cached_val2, + cached_conv1, + cached_conv2, + ) + + +class ZipformerEncoder(nn.Module): + r"""ZipformerEncoder is a stack of N encoder layers + + Args: + encoder_layer: an instance of the ZipformerEncoderLayer() class (required). + num_layers: the number of sub-encoder-layers in the encoder (required). + + Examples:: + >>> encoder_layer = ZipformerEncoderLayer(d_model=512, nhead=8) + >>> zipformer_encoder = ZipformerEncoder(encoder_layer, num_layers=6) + >>> src = torch.rand(10, 32, 512) + >>> out = zipformer_encoder(src) + """ + + def __init__( + self, + encoder_layer: nn.Module, + num_layers: int, + dropout: float, + warmup_begin: float, + warmup_end: float, + ) -> None: + super().__init__() + # will be written to, see set_batch_count() Note: in inference time this + # may be zero but should be treated as large, we can check if + # self.training is true. + self.batch_count = 0 + self.warmup_begin = warmup_begin + self.warmup_end = warmup_end + # module_seed is for when we need a random number that is unique to the module but + # shared across jobs. It's used to randomly select how many layers to drop, + # so that we can keep this consistent across worker tasks (for efficiency). + self.module_seed = torch.randint(0, 1000, ()).item() + + self.encoder_pos = RelPositionalEncoding(encoder_layer.d_model, dropout) + + self.layers = nn.ModuleList( + [copy.deepcopy(encoder_layer) for i in range(num_layers)] + ) + self.num_layers = num_layers + + self.d_model = encoder_layer.d_model + self.attention_dim = encoder_layer.attention_dim + self.cnn_module_kernel = encoder_layer.cnn_module_kernel + + assert 0 <= warmup_begin <= warmup_end, (warmup_begin, warmup_end) + + delta = (1.0 / num_layers) * (warmup_end - warmup_begin) + cur_begin = warmup_begin + for i in range(num_layers): + self.layers[i].warmup_begin = cur_begin + cur_begin += delta + self.layers[i].warmup_end = cur_begin + + def get_layers_to_drop(self, rnd_seed: int): + ans = set() + if not self.training: + return ans + + batch_count = self.batch_count + num_layers = len(self.layers) + + def get_layerdrop_prob(layer: int) -> float: + layer_warmup_begin = self.layers[layer].warmup_begin + layer_warmup_end = self.layers[layer].warmup_end + + initial_layerdrop_prob = 0.5 + final_layerdrop_prob = 0.05 + + if batch_count == 0: + # As a special case, if batch_count == 0, return 0 (drop no + # layers). This is rather ugly, I'm afraid; it is intended to + # enable our scan_pessimistic_batches_for_oom() code to work correctly + # so if we are going to get OOM it will happen early. + # also search for 'batch_count' with quotes in this file to see + # how we initialize the warmup count to a random number between + # 0 and 10. + return 0.0 + elif batch_count < layer_warmup_begin: + return initial_layerdrop_prob + elif batch_count > layer_warmup_end: + return final_layerdrop_prob + else: + # linearly interpolate + t = (batch_count - layer_warmup_begin) / layer_warmup_end + assert 0.0 <= t < 1.001, t + return initial_layerdrop_prob + t * ( + final_layerdrop_prob - initial_layerdrop_prob + ) + + shared_rng = random.Random(batch_count + self.module_seed) + independent_rng = random.Random(rnd_seed) + + layerdrop_probs = [get_layerdrop_prob(i) for i in range(num_layers)] + tot = sum(layerdrop_probs) + # Instead of drawing the samples independently, we first randomly decide + # how many layers to drop out, using the same random number generator between + # jobs so that all jobs drop out the same number (this is for speed). + # Then we use an approximate approach to drop out the individual layers + # with their specified probs while reaching this exact target. + num_to_drop = int(tot) + int(shared_rng.random() < (tot - int(tot))) + + layers = list(range(num_layers)) + independent_rng.shuffle(layers) + + # go through the shuffled layers until we get the required number of samples. + if num_to_drop > 0: + for layer in itertools.cycle(layers): + if independent_rng.random() < layerdrop_probs[layer]: + ans.add(layer) + if len(ans) == num_to_drop: + break + if shared_rng.random() < 0.005 or __name__ == "__main__": + logging.info( + f"warmup_begin={self.warmup_begin:.1f}, warmup_end={self.warmup_end:.1f}, " + f"batch_count={batch_count:.1f}, num_to_drop={num_to_drop}, layers_to_drop={ans}" + ) + return ans + + def forward( + self, + src: Tensor, + # Note: The type of feature_mask should be Union[float, Tensor], + # but to make torch.jit.script() work, we use `float` here + feature_mask: float = 1.0, + attn_mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + ) -> Tensor: + r"""Pass the input through the encoder layers in turn. + + Args: + src: the sequence to the encoder (required). + feature_mask: something that broadcasts with src, that we'll multiply `src` + by at every layer. + mask: the mask for the src sequence (optional). + src_key_padding_mask: the mask for the src keys per batch (optional). + + Shape: + src: (S, N, E). + pos_emb: (N, 2*S-1, E) + mask: (S, S). + src_key_padding_mask: (N, S). + S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number + + Returns: (x, x_no_combine), both of shape (S, N, E) + """ + pos_emb = self.encoder_pos(src) + output = src + + if torch.jit.is_scripting(): + layers_to_drop = [] + else: + rnd_seed = src.numel() + random.randint(0, 1000) + layers_to_drop = self.get_layers_to_drop(rnd_seed) + + output = output * feature_mask + + for i, mod in enumerate(self.layers): + if not torch.jit.is_scripting(): + if i in layers_to_drop: + continue + output = mod( + output, + pos_emb, + attn_mask=attn_mask, + src_key_padding_mask=src_key_padding_mask, + ) + + output = output * feature_mask + + return output + + @torch.jit.export + def streaming_forward( + self, + src: Tensor, + cached_len: Tensor, + cached_avg: Tensor, + cached_key: Tensor, + cached_val: Tensor, + cached_val2: Tensor, + cached_conv1: Tensor, + cached_conv2: Tensor, + ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]: + r"""Pass the input through the encoder layers in turn. + + Args: + src: the sequence to the encoder (required). + cached_len: number of past frames. + cached_avg: cached average of past frames. + cached_key: cached key tensor for first attention module. + cached_val: cached value tensor for first attention module. + cached_val2: cached value tensor for second attention module. + cached_conv1: cached left contexts for the first convolution module. + cached_conv2: cached left contexts for the second convolution module. + + Shape: + src: (S, N, E). + cached_len: (num_layers,) + cached_avg: (num_layers, N, C). + N is the batch size, C is the feature dimension. + cached_key: (num_layers, left_context_len, N, K). + N is the batch size, K is the key dimension. + cached_val: (num_layers, left_context_len, N, V). + N is the batch size, V is the key dimension. + cached_val2: (num_layers, left_context_len, N, V). + N is the batch size, V is the key dimension. + cached_conv1: (num_layers, N, C, kernel_size-1). + N is the batch size, C is the convolution channels. + cached_conv2: (num_layers, N, C, kernel_size-1). + N is the batch size, C is the convolution channels. + + Returns: A tuple of 8 tensors: + - output tensor + - updated cached number of past frames. + - updated cached average of past frames. + - updated cached key tensor of of the first attention module. + - updated cached value tensor of of the first attention module. + - updated cached value tensor of of the second attention module. + - updated cached left contexts of the first convolution module. + - updated cached left contexts of the second convolution module. + """ + assert cached_len.size(0) == self.num_layers, ( + cached_len.size(0), + self.num_layers, + ) + assert cached_avg.size(0) == self.num_layers, ( + cached_avg.size(0), + self.num_layers, + ) + assert cached_key.size(0) == self.num_layers, ( + cached_key.size(0), + self.num_layers, + ) + assert cached_val.size(0) == self.num_layers, ( + cached_val.size(0), + self.num_layers, + ) + assert cached_val2.size(0) == self.num_layers, ( + cached_val2.size(0), + self.num_layers, + ) + assert cached_conv1.size(0) == self.num_layers, ( + cached_conv1.size(0), + self.num_layers, + ) + assert cached_conv2.size(0) == self.num_layers, ( + cached_conv2.size(0), + self.num_layers, + ) + + left_context_len = cached_key.shape[1] + pos_emb = self.encoder_pos(src, left_context_len) + output = src + + new_cached_len = [] + new_cached_avg = [] + new_cached_key = [] + new_cached_val = [] + new_cached_val2 = [] + new_cached_conv1 = [] + new_cached_conv2 = [] + for i, mod in enumerate(self.layers): + output, len_avg, avg, key, val, val2, conv1, conv2 = mod.streaming_forward( + output, + pos_emb, + cached_len=cached_len[i], + cached_avg=cached_avg[i], + cached_key=cached_key[i], + cached_val=cached_val[i], + cached_val2=cached_val2[i], + cached_conv1=cached_conv1[i], + cached_conv2=cached_conv2[i], + ) + # Update caches + new_cached_len.append(len_avg) + new_cached_avg.append(avg) + new_cached_key.append(key) + new_cached_val.append(val) + new_cached_val2.append(val2) + new_cached_conv1.append(conv1) + new_cached_conv2.append(conv2) + + return ( + output, + torch.stack(new_cached_len, dim=0), + torch.stack(new_cached_avg, dim=0), + torch.stack(new_cached_key, dim=0), + torch.stack(new_cached_val, dim=0), + torch.stack(new_cached_val2, dim=0), + torch.stack(new_cached_conv1, dim=0), + torch.stack(new_cached_conv2, dim=0), + ) + + +class DownsampledZipformerEncoder(nn.Module): + r""" + DownsampledZipformerEncoder is a zipformer encoder evaluated at a reduced frame rate, + after convolutional downsampling, and then upsampled again at the output, and combined + with the origin input, so that the output has the same shape as the input. + """ + + def __init__( + self, encoder: nn.Module, input_dim: int, output_dim: int, downsample: int + ): + super(DownsampledZipformerEncoder, self).__init__() + self.downsample_factor = downsample + self.downsample = AttentionDownsample(input_dim, output_dim, downsample) + self.encoder = encoder + self.num_layers = encoder.num_layers + self.d_model = encoder.d_model + self.attention_dim = encoder.attention_dim + self.cnn_module_kernel = encoder.cnn_module_kernel + self.upsample = SimpleUpsample(output_dim, downsample) + self.out_combiner = SimpleCombiner( + input_dim, output_dim, min_weight=(0.0, 0.25) + ) + + def forward( + self, + src: Tensor, + # Note: the type of feature_mask should be Unino[float, Tensor], + # but to make torch.jit.script() happ, we use float here + feature_mask: float = 1.0, + attn_mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + ) -> Tensor: + r"""Downsample, go through encoder, upsample. + + Args: + src: the sequence to the encoder (required). + feature_mask: something that broadcasts with src, that we'll multiply `src` + by at every layer. feature_mask is expected to be already downsampled by + self.downsample_factor. + attn_mask: attention mask (optional). Should be downsampled already. + src_key_padding_mask: the mask for the src keys per batch (optional). Should be downsampled already. + + Shape: + src: (S, N, E). + attn_mask: (S, S). + src_key_padding_mask: (N, S). + S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number + + Returns: output of shape (S, N, F) where F is the number of output features + (output_dim to constructor) + """ + src_orig = src + src = self.downsample(src) + + src = self.encoder( + src, + feature_mask=feature_mask, + attn_mask=attn_mask, + src_key_padding_mask=src_key_padding_mask, + ) + src = self.upsample(src) + # remove any extra frames that are not a multiple of downsample_factor + src = src[: src_orig.shape[0]] + + return self.out_combiner(src_orig, src) + + def streaming_forward( + self, + src: Tensor, + cached_len: Tensor, + cached_avg: Tensor, + cached_key: Tensor, + cached_val: Tensor, + cached_val2: Tensor, + cached_conv1: Tensor, + cached_conv2: Tensor, + ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]: + r"""Downsample, go through encoder, upsample. + + Args: + src: the sequence to the encoder (required). + cached_avg: cached average value of past frames. + cached_len: length of past frames. + cached_key: cached key tensor for the first attention module. + cached_val: cached value tensor for the first attention module. + cached_val2: cached value tensor for the second attention module. + cached_conv1: cached left context for the first convolution module. + cached_conv2: cached left context for the second convolution module. + + Shape: + src: (S, N, E). + cached_len: (N,) + N is the batch size. + cached_avg: (num_layers, N, C). + N is the batch size, C is the feature dimension. + cached_key: (num_layers, left_context_len, N, K). + N is the batch size, K is the key dimension. + cached_val: (num_layers, left_context_len, N, V). + N is the batch size, V is the key dimension. + cached_val2: (num_layers, left_context_len, N, V). + N is the batch size, V is the key dimension. + cached_conv1: (num_layers, N, C, kernel_size-1). + N is the batch size, C is the convolution channels. + cached_conv2: (num_layers, N, C, kernel_size-1). + N is the batch size, C is the convolution channels. + Returns: output of shape (S, N, F) where F is the number of output features + (output_dim to constructor) + """ + src_orig = src + src = self.downsample(src) + + ( + src, + cached_len, + cached_avg, + cached_key, + cached_val, + cached_val2, + cached_conv1, + cached_conv2, + ) = self.encoder.streaming_forward( + src, + cached_len=cached_len, + cached_avg=cached_avg, + cached_key=cached_key, + cached_val=cached_val, + cached_val2=cached_val2, + cached_conv1=cached_conv1, + cached_conv2=cached_conv2, + ) + src = self.upsample(src) + # remove any extra frames that are not a multiple of downsample_factor + src = src[: src_orig.shape[0]] + + return ( + self.out_combiner(src_orig, src), + cached_len, + cached_avg, + cached_key, + cached_val, + cached_val2, + cached_conv1, + cached_conv2, + ) + + +class AttentionDownsample(torch.nn.Module): + """ + Does downsampling with attention, by weighted sum, and a projection.. + """ + + def __init__(self, in_channels: int, out_channels: int, downsample: int): + super(AttentionDownsample, self).__init__() + self.query = nn.Parameter(torch.randn(in_channels) * (in_channels**-0.5)) + + # fill in the extra dimensions with a projection of the input + if out_channels > in_channels: + self.extra_proj = nn.Linear( + in_channels * downsample, out_channels - in_channels, bias=False + ) + else: + self.extra_proj = None + self.downsample = downsample + + def forward(self, src: Tensor) -> Tensor: + """ + x: (seq_len, 1, in_channels) + Returns a tensor of shape + ( (seq_len+downsample-1)//downsample, batch_size, out_channels) + """ + (seq_len, batch_size, in_channels) = src.shape + ds = self.downsample + d_seq_len = (seq_len + ds - 1) // ds + + # Pad to an exact multiple of self.downsample + if seq_len != d_seq_len * ds: + # right-pad src, repeating the last element. + pad = d_seq_len * ds - seq_len + src_extra = src[src.shape[0] - 1 :].expand(pad, src.shape[1], src.shape[2]) + src = torch.cat((src, src_extra), dim=0) + assert src.shape[0] == d_seq_len * ds, (src.shape[0], d_seq_len, ds) + + src = src.reshape(d_seq_len, ds, batch_size, in_channels) + scores = (src * self.query).sum(dim=-1, keepdim=True) + + if not torch.jit.is_scripting() and not torch.jit.is_tracing(): + scores = penalize_abs_values_gt(scores, limit=10.0, penalty=1.0e-04) + + weights = scores.softmax(dim=1) + + # ans1 is the first `in_channels` channels of the output + ans = (src * weights).sum(dim=1) + src = src.permute(0, 2, 1, 3).reshape(d_seq_len, batch_size, ds * in_channels) + + if self.extra_proj is not None: + ans2 = self.extra_proj(src) + ans = torch.cat((ans, ans2), dim=2) + return ans + + +class SimpleUpsample(torch.nn.Module): + """ + A very simple form of upsampling that mostly just repeats the input, but + also adds a position-specific bias. + """ + + def __init__(self, num_channels: int, upsample: int): + super(SimpleUpsample, self).__init__() + self.bias = nn.Parameter(torch.randn(upsample, num_channels) * 0.01) + + def forward(self, src: Tensor) -> Tensor: + """ + x: (seq_len, batch_size, num_channels) + Returns a tensor of shape + ( (seq_len*upsample), batch_size, num_channels) + """ + upsample = self.bias.shape[0] + (seq_len, batch_size, num_channels) = src.shape + src = src.unsqueeze(1).expand(seq_len, upsample, batch_size, num_channels) + src = src + self.bias.unsqueeze(1) + src = src.reshape(seq_len * upsample, batch_size, num_channels) + return src + + +class SimpleCombinerIdentity(nn.Module): + def __init__(self, *args, **kwargs): + super().__init__() + + def forward(self, src1: Tensor, src2: Tensor) -> Tensor: + return src1 + + +class SimpleCombiner(torch.nn.Module): + """ + A very simple way of combining 2 vectors of 2 different dims, via a + learned weighted combination in the shared part of the dim. + Args: + dim1: the dimension of the first input, e.g. 256 + dim2: the dimension of the second input, e.g. 384. + The output will have the same dimension as dim2. + """ + + def __init__(self, dim1: int, dim2: int, min_weight: Tuple[float] = (0.0, 0.0)): + super(SimpleCombiner, self).__init__() + assert dim2 >= dim1, (dim2, dim1) + self.weight1 = nn.Parameter(torch.zeros(())) + self.min_weight = min_weight + + def forward(self, src1: Tensor, src2: Tensor) -> Tensor: + """ + src1: (*, dim1) + src2: (*, dim2) + + Returns: a tensor of shape (*, dim2) + """ + assert src1.shape[:-1] == src2.shape[:-1], (src1.shape, src2.shape) + + weight1 = self.weight1 + if not torch.jit.is_scripting(): + if ( + self.training + and random.random() < 0.25 + and self.min_weight != (0.0, 0.0) + ): + weight1 = weight1.clamp( + min=self.min_weight[0], max=1.0 - self.min_weight[1] + ) + + src1 = src1 * weight1 + src2 = src2 * (1.0 - weight1) + + src1_dim = src1.shape[-1] + src2_dim = src2.shape[-1] + if src1_dim != src2_dim: + if src1_dim < src2_dim: + src1 = torch.nn.functional.pad(src1, (0, src2_dim - src1_dim)) + else: + src1 = src1[:src2_dim] + + return src1 + src2 + + +class RelPositionalEncoding(torch.nn.Module): + """Relative positional encoding module. + + See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" + Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py + + Args: + d_model: Embedding dimension. + dropout_rate: Dropout rate. + max_len: Maximum input length. + + """ + + def __init__( + self, + d_model: int, + dropout_rate: float, + max_len: int = 5000, + ) -> None: + """Construct a PositionalEncoding object.""" + super(RelPositionalEncoding, self).__init__() + self.d_model = d_model + self.dropout = torch.nn.Dropout(dropout_rate) + self.pe = None + self.extend_pe(torch.tensor(0.0).expand(max_len)) + + def extend_pe(self, x: Tensor, left_context_len: int = 0) -> None: + """Reset the positional encodings.""" + x_size_left = x.size(0) + left_context_len + if self.pe is not None: + # self.pe contains both positive and negative parts + # the length of self.pe is 2 * input_len - 1 + if self.pe.size(1) >= x_size_left * 2 - 1: + # Note: TorchScript doesn't implement operator== for torch.Device + if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device): + self.pe = self.pe.to(dtype=x.dtype, device=x.device) + return + # Suppose `i` means to the position of query vector and `j` means the + # position of key vector. We use positive relative positions when keys + # are to the left (i>j) and negative relative positions otherwise (i Tensor: + """Add positional encoding. + + Args: + x (torch.Tensor): Input tensor (time, batch, `*`). + left_context_len: (int): Length of cached left context. + + Returns: + torch.Tensor: Encoded tensor (batch, left_context_len + 2*time-1, `*`). + + """ + self.extend_pe(x, left_context_len) + x_size_left = x.size(0) + left_context_len + pos_emb = self.pe[ + :, + self.pe.size(1) // 2 + - x_size_left + + 1 : self.pe.size(1) // 2 # noqa E203 + + x.size(0), + ] + return self.dropout(pos_emb) + + +class RelPositionMultiheadAttention(nn.Module): + r"""Multi-Head Attention layer with relative position encoding + + This is a quite heavily modified from: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context", + we have to write up the differences. + + + Args: + embed_dim: total dimension of the model. + attention_dim: dimension in the attention module, may be less or more than embed_dim + but must be a multiple of num_heads. + num_heads: parallel attention heads. + dropout: a Dropout layer on attn_output_weights. Default: 0.0. + + Examples:: + + >>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads) + >>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb) + """ + + def __init__( + self, + embed_dim: int, + attention_dim: int, + num_heads: int, + pos_dim: int, + dropout: float = 0.0, + ) -> None: + super(RelPositionMultiheadAttention, self).__init__() + self.embed_dim = embed_dim + self.attention_dim = attention_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = attention_dim // num_heads + self.pos_dim = pos_dim + assert self.head_dim % 2 == 0, self.head_dim + assert self.head_dim * num_heads == attention_dim, ( + self.head_dim, + num_heads, + attention_dim, + ) + + # the initial_scale is supposed to take over the "scaling" factor of + # head_dim ** -0.5, dividing it between the query and key. + in_proj_dim = ( + 2 * attention_dim # query, key + + attention_dim // 2 # value + + pos_dim * num_heads # positional encoding query + ) + + self.in_proj = ScaledLinear( + embed_dim, in_proj_dim, bias=True, initial_scale=self.head_dim**-0.25 + ) + + # self.whiten_values is applied on the values in forward(); + # it just copies the keys but prevents low-rank distribution by modifying grads. + self.whiten_values = Whiten( + num_groups=num_heads, + whitening_limit=2.0, + prob=(0.025, 0.25), + grad_scale=0.025, + ) + self.whiten_keys = Whiten( + num_groups=num_heads, + whitening_limit=2.0, + prob=(0.025, 0.25), + grad_scale=0.025, + ) + + # linear transformation for positional encoding. + self.linear_pos = ScaledLinear( + embed_dim, num_heads * pos_dim, bias=False, initial_scale=0.05 + ) + + # the following are for diagnosics only, see --print-diagnostics option. + # they only copy their inputs. + self.copy_pos_query = Identity() + self.copy_query = Identity() + + self.out_proj = ScaledLinear( + attention_dim // 2, embed_dim, bias=True, initial_scale=0.05 + ) + + self.in_proj2 = nn.Linear(embed_dim, attention_dim // 2, bias=False) + self.out_proj2 = ScaledLinear( + attention_dim // 2, embed_dim, bias=True, initial_scale=0.05 + ) + # self.whiten_values2 is applied on the values in forward2() + self.whiten_values2 = Whiten( + num_groups=num_heads, + whitening_limit=2.0, + prob=(0.025, 0.25), + grad_scale=0.025, + ) + + def forward( + self, + x: Tensor, + pos_emb: Tensor, + key_padding_mask: Optional[Tensor] = None, + attn_mask: Optional[Tensor] = None, + ) -> Tuple[Tensor, Tensor]: + r""" + Args: + x: input to be projected to query, key, value + pos_emb: Positional embedding tensor + key_padding_mask: if provided, specified padding elements in the key will + be ignored by the attention. When given a binary mask and a value is True, + the corresponding value on the attention layer will be ignored. When given + a byte mask and a value is non-zero, the corresponding value on the attention + layer will be ignored + attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all + the batches while a 3D mask allows to specify a different mask for the entries of each batch. + + Shape: + - Inputs: + - x: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is + the embedding dimension. + - pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is + the embedding dimension. + - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. + If a ByteTensor is provided, the non-zero positions will be ignored while the position + with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the + value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. + - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. + 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, + S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked + positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend + while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` + is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor + is provided, it will be added to the attention weight. + + - Returns: (attn_output, attn_weights) + + - attn_output: :math:`(S, N, E)` where S is the sequence length, N is the batch size, + E is the embedding dimension. + - attn_weights: :math:`(N * N, S, S)` where N is the batch size, H is the num-heads + and S is the sequence length. + """ + x, weights = self.multi_head_attention_forward( + self.in_proj(x), + self.linear_pos(pos_emb), + self.attention_dim, + self.num_heads, + self.dropout, + self.out_proj.weight, + self.out_proj.bias, + training=self.training, + key_padding_mask=key_padding_mask, + attn_mask=attn_mask, + ) + return x, weights + + def streaming_forward( + self, + x: Tensor, + pos_emb: Tensor, + cached_key: Tensor, + cached_val: Tensor, + ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: + r""" + Args: + x: input to be projected to query, key, value + pos_emb: Positional embedding tensor + + Shape: + - Inputs: + - x: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is + the embedding dimension. + - pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is + the embedding dimension. + - cached_key: :math:`(left_context_len, N, K)`, where N is the batch size, K is the key dimension. + - cached_val: :math:`(left_context_len, N, V)`, where N is the batch size, V is the value dimension. + + - Returns: (attn_output, attn_weights, cached_key, cached_val) + + - attn_output: :math:`(S, N, E)` where S is the sequence length, N is the batch size, + E is the embedding dimension. + - attn_weights: :math:`(N * N, S, S)` where N is the batch size, H is the num-heads + and S is the sequence length. + - cached_key: :math:`(left_context_len, N, K)`, updated cached attention key tensor of + left context + - cached_val: :math:`(left_context_len, N, K)`, updated cached attention value tensor of + """ + ( + x, + weights, + cached_key, + cached_val, + ) = self.streaming_multi_head_attention_forward( + self.in_proj(x), + self.linear_pos(pos_emb), + self.attention_dim, + self.num_heads, + self.out_proj.weight, + self.out_proj.bias, + cached_key=cached_key, + cached_val=cached_val, + ) + return x, weights, cached_key, cached_val + + def multi_head_attention_forward( + self, + x_proj: Tensor, + pos: Tensor, + attention_dim: int, + num_heads: int, + dropout_p: float, + out_proj_weight: Tensor, + out_proj_bias: Tensor, + training: bool = True, + key_padding_mask: Optional[Tensor] = None, + attn_mask: Optional[Tensor] = None, + ) -> Tuple[Tensor, Tensor]: + r""" + Args: + x_proj: the projected input, to be split into query, key, value. + pos: head-specific biases arising from the positional embeddings. + attention_dim: dimension inside attention mechanism + num_heads: parallel attention heads. + dropout_p: probability of an element to be zeroed. + out_proj_weight, out_proj_bias: the output projection weight and bias. + training: apply dropout if is ``True``. + key_padding_mask: if provided, specified padding elements in the key will + be ignored by the attention. This is an binary mask. When the value is True, + the corresponding value on the attention layer will be filled with -inf. + attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all + the batches while a 3D mask allows to specify a different mask for the entries of each batch. + + Shape: + Inputs: + - x: :math:`(L, N, 7 * A // 2)` where L is the target sequence length, N is the batch size, A is + the attention dimension. Will be split into (query, key, value, pos). + - pos: :math:`(N, 2*L-1, A//2)` or :math:`(1, 2*L-1, A//2)` where L is the sequence + length, N is the batch size, and A is the attention dim. + - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. + If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions + will be unchanged. If a BoolTensor is provided, the positions with the + value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. + - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. + 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, + S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked + positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend + while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` + are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor + is provided, it will be added to the attention weight. + + Outputs: + - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, + E is the embedding dimension. + - attn_weights: :math:`(N * H, S, S)` where N is the batch size, + H is the num-heads, S is the sequence length. + """ + + seq_len, bsz, _ = x_proj.size() + + head_dim = attention_dim // num_heads + pos_dim = self.pos_dim # positional-encoding dim per head + assert ( + head_dim * num_heads == attention_dim + ), f"attention_dim must be divisible by num_heads: {head_dim}, {num_heads}, {attention_dim}" + + # self-attention + q = x_proj[..., 0:attention_dim] + k = x_proj[..., attention_dim : 2 * attention_dim] + value_dim = attention_dim // 2 + v = x_proj[..., 2 * attention_dim : 2 * attention_dim + value_dim] + # p is the position-encoding query, its dimension is num_heads*pos_dim.. + p = x_proj[..., 2 * attention_dim + value_dim :] + + k = self.whiten_keys(k) # does nothing in the forward pass. + v = self.whiten_values(v) # does nothing in the forward pass. + q = self.copy_query(q) # for diagnostics only, does nothing. + p = self.copy_pos_query(p) # for diagnostics only, does nothing. + + if attn_mask is not None: + assert ( + attn_mask.dtype == torch.float32 + or attn_mask.dtype == torch.float64 + or attn_mask.dtype == torch.float16 + or attn_mask.dtype == torch.uint8 + or attn_mask.dtype == torch.bool + ), "Only float, byte, and bool types are supported for attn_mask, not {}".format( + attn_mask.dtype + ) + if attn_mask.dtype == torch.uint8: + warnings.warn( + "Byte tensor for attn_mask is deprecated. Use bool tensor instead." + ) + attn_mask = attn_mask.to(torch.bool) + + if attn_mask.dim() == 2: + attn_mask = attn_mask.unsqueeze(0) + if list(attn_mask.size()) != [1, seq_len, seq_len]: + raise RuntimeError("The size of the 2D attn_mask is not correct.") + elif attn_mask.dim() == 3: + if list(attn_mask.size()) != [ + bsz * num_heads, + seq_len, + seq_len, + ]: + raise RuntimeError("The size of the 3D attn_mask is not correct.") + else: + raise RuntimeError( + "attn_mask's dimension {} is not supported".format(attn_mask.dim()) + ) + # attn_mask's dim is 3 now. + + # convert ByteTensor key_padding_mask to bool + if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: + warnings.warn( + "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead." + ) + key_padding_mask = key_padding_mask.to(torch.bool) + + q = q.reshape(seq_len, bsz, num_heads, head_dim) + p = p.reshape(seq_len, bsz, num_heads, pos_dim) + k = k.reshape(seq_len, bsz, num_heads, head_dim) + v = v.reshape(seq_len, bsz * num_heads, head_dim // 2).transpose(0, 1) + + if key_padding_mask is not None: + assert key_padding_mask.size(0) == bsz, "{} == {}".format( + key_padding_mask.size(0), bsz + ) + assert key_padding_mask.size(1) == seq_len, "{} == {}".format( + key_padding_mask.size(1), seq_len + ) + + q = q.permute(1, 2, 0, 3) # (batch, head, time1, head_dim) + p = p.permute(1, 2, 0, 3) # (batch, head, time1, pos_dim) + k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2) + + seq_len2 = 2 * seq_len - 1 + pos = pos.reshape(1, seq_len2, num_heads, pos_dim).permute(0, 2, 3, 1) + # pos shape now: (batch, head, pos_dim, seq_len2) + + # (batch, head, time1, pos_dim) x (1, head, pos_dim, seq_len2) -> (batch, head, time1, seq_len2) + # [where seq_len2 represents relative position.] + pos_weights = torch.matmul(p, pos) + # the following .as_strided() expression converts the last axis of pos_weights from relative + # to absolute position. I don't know whether I might have got the time-offsets backwards or + # not, but let this code define which way round it is supposed to be. + if torch.jit.is_tracing(): + (batch_size, num_heads, time1, n) = pos_weights.shape + rows = torch.arange(start=time1 - 1, end=-1, step=-1) + cols = torch.arange(seq_len) + rows = rows.repeat(batch_size * num_heads).unsqueeze(-1) + indexes = rows + cols + pos_weights = pos_weights.reshape(-1, n) + pos_weights = torch.gather(pos_weights, dim=1, index=indexes) + pos_weights = pos_weights.reshape(batch_size, num_heads, time1, seq_len) + else: + pos_weights = pos_weights.as_strided( + (bsz, num_heads, seq_len, seq_len), + ( + pos_weights.stride(0), + pos_weights.stride(1), + pos_weights.stride(2) - pos_weights.stride(3), + pos_weights.stride(3), + ), + storage_offset=pos_weights.stride(3) * (seq_len - 1), + ) + + # caution: they are really scores at this point. + attn_output_weights = torch.matmul(q, k) + pos_weights + + if not torch.jit.is_scripting(): + if training and random.random() < 0.1: + # This is a harder way of limiting the attention scores to not be too large. + # It incurs a penalty if any of them has an absolute value greater than 50.0. + # this should be outside the normal range of the attention scores. We use + # this mechanism instead of, say, a limit on entropy, because once the entropy + # gets very small gradients through the softmax can become very small, and + # some mechanisms like that become ineffective. + attn_output_weights = penalize_abs_values_gt( + attn_output_weights, limit=25.0, penalty=1.0e-04 + ) + + # attn_output_weights: (batch, head, time1, time2) + attn_output_weights = attn_output_weights.view( + bsz * num_heads, seq_len, seq_len + ) + + if attn_mask is not None: + if attn_mask.dtype == torch.bool: + attn_output_weights = attn_output_weights.masked_fill( + attn_mask, float("-inf") + ) + else: + attn_output_weights = attn_output_weights + attn_mask + + if key_padding_mask is not None: + attn_output_weights = attn_output_weights.view( + bsz, num_heads, seq_len, seq_len + ) + attn_output_weights = attn_output_weights.masked_fill( + key_padding_mask.unsqueeze(1).unsqueeze(2), + float("-inf"), + ) + attn_output_weights = attn_output_weights.view( + bsz * num_heads, seq_len, seq_len + ) + + # Using this version of softmax, defined in scaling.py, + # should save a little of the memory used in backprop by, if + # we are in automatic mixed precision mode (amp) == autocast, + # only storing the half-precision output for backprop purposes. + attn_output_weights = softmax(attn_output_weights, dim=-1) + + # If we are using chunk-wise attention mask and setting a limited + # num_left_chunks, the attention may only see the padding values which + # will also be masked out by `key_padding_mask`. At this circumstances, + # the whole column of `attn_output_weights` will be `-inf` + # (i.e. be `nan` after softmax). So we fill `0.0` at the masking + # positions to avoid invalid loss value below. + if ( + attn_mask is not None + and attn_mask.dtype == torch.bool + and key_padding_mask is not None + ): + if attn_mask.size(0) != 1: + attn_mask = attn_mask.view(bsz, num_heads, seq_len, seq_len) + combined_mask = attn_mask | key_padding_mask.unsqueeze(1).unsqueeze(2) + else: + # attn_mask.shape == (1, tgt_len, src_len) + combined_mask = attn_mask.unsqueeze(0) | key_padding_mask.unsqueeze( + 1 + ).unsqueeze(2) + + attn_output_weights = attn_output_weights.view( + bsz, num_heads, seq_len, seq_len + ) + attn_output_weights = attn_output_weights.masked_fill(combined_mask, 0.0) + attn_output_weights = attn_output_weights.view( + bsz * num_heads, seq_len, seq_len + ) + + attn_output_weights = nn.functional.dropout( + attn_output_weights, p=dropout_p, training=training + ) + + attn_output = torch.bmm(attn_output_weights, v) + assert list(attn_output.size()) == [bsz * num_heads, seq_len, head_dim // 2] + attn_output = ( + attn_output.transpose(0, 1) + .contiguous() + .view(seq_len, bsz, attention_dim // 2) + ) + attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias) + + return attn_output, attn_output_weights + + def streaming_multi_head_attention_forward( + self, + x_proj: Tensor, + pos: Tensor, + attention_dim: int, + num_heads: int, + out_proj_weight: Tensor, + out_proj_bias: Tensor, + cached_key: Tensor, + cached_val: Tensor, + ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: + r""" + Args: + x_proj: the projected input, to be split into query, key, value. + pos: head-specific biases arising from the positional embeddings. + attention_dim: dimension inside attention mechanism + num_heads: parallel attention heads. + out_proj_weight, out_proj_bias: the output projection weight and bias. + cached_key: cached attention key tensor of left context. + cached_val: cached attention value tensor of left context. + + Shape: + Inputs: + - x: :math:`(L, N, 7 * A // 2)` where L is the target sequence length, N is the batch size, A is + the attention dimension. Will be split into (query, key, value, pos). + - pos: :math:`(N, 2*L-1, A//2)` or :math:`(1, 2*L-1, A//2)` where L is the sequence + length, N is the batch size, and A is the attention dim. + If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions + will be unchanged. If a BoolTensor is provided, the positions with the + value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. + + Outputs: + - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, + E is the embedding dimension. + - attn_weights: :math:`(N * H, S, S)` where N is the batch size, + H is the num-heads, S is the sequence length. + - cached_key: :math:`(left_context_len, N, K)`, updated cached attention key tensor of left context. + - cached_val: :math:`(left_context_len, N, K)`, updated cached attention value tensor of left context. + """ + + seq_len, bsz, _ = x_proj.size() + + head_dim = attention_dim // num_heads + pos_dim = self.pos_dim # positional-encoding dim per head + assert ( + head_dim * num_heads == attention_dim + ), f"attention_dim must be divisible by num_heads: {head_dim}, {num_heads}, {attention_dim}" + + # self-attention + q = x_proj[..., 0:attention_dim] + k = x_proj[..., attention_dim : 2 * attention_dim] + value_dim = attention_dim // 2 + v = x_proj[..., 2 * attention_dim : 2 * attention_dim + value_dim] + # p is the position-encoding query, its dimension is num_heads*pos_dim.. + p = x_proj[..., 2 * attention_dim + value_dim :] + + left_context_len = cached_key.shape[0] + assert left_context_len > 0, left_context_len + assert cached_key.shape[0] == cached_val.shape[0], ( + cached_key.shape, + cached_val.shape, + ) + # Pad cached left contexts + k = torch.cat([cached_key, k], dim=0) + v = torch.cat([cached_val, v], dim=0) + # Update cached left contexts + cached_key = k[-left_context_len:, ...] + cached_val = v[-left_context_len:, ...] + + # The length of key and value + kv_len = k.shape[0] + + q = q.reshape(seq_len, bsz, num_heads, head_dim) + p = p.reshape(seq_len, bsz, num_heads, pos_dim) + k = k.reshape(kv_len, bsz, num_heads, head_dim) + v = v.reshape(kv_len, bsz * num_heads, head_dim // 2).transpose(0, 1) + + q = q.permute(1, 2, 0, 3) # (batch, head, time1, head_dim) + p = p.permute(1, 2, 0, 3) # (batch, head, time1, pos_dim) + k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2) + + seq_len2 = 2 * seq_len - 1 + left_context_len + pos = pos.reshape(1, seq_len2, num_heads, pos_dim).permute(0, 2, 3, 1) + # pos shape now: (batch, head, pos_dim, seq_len2) + + # (batch, head, time1, pos_dim) x (1, head, pos_dim, seq_len2) -> (batch, head, time1, seq_len2) + # [where seq_len2 represents relative position.] + pos_weights = torch.matmul(p, pos) + # the following .as_strided() expression converts the last axis of pos_weights from relative + # to absolute position. I don't know whether I might have got the time-offsets backwards or + # not, but let this code define which way round it is supposed to be. + if torch.jit.is_tracing(): + (batch_size, num_heads, time1, n) = pos_weights.shape + rows = torch.arange(start=time1 - 1, end=-1, step=-1) + cols = torch.arange(kv_len) + rows = rows.repeat(batch_size * num_heads).unsqueeze(-1) + indexes = rows + cols + pos_weights = pos_weights.reshape(-1, n) + pos_weights = torch.gather(pos_weights, dim=1, index=indexes) + pos_weights = pos_weights.reshape(batch_size, num_heads, time1, kv_len) + else: + pos_weights = pos_weights.as_strided( + (bsz, num_heads, seq_len, kv_len), + ( + pos_weights.stride(0), + pos_weights.stride(1), + pos_weights.stride(2) - pos_weights.stride(3), + pos_weights.stride(3), + ), + storage_offset=pos_weights.stride(3) * (seq_len - 1), + ) + + # caution: they are really scores at this point. + attn_output_weights = torch.matmul(q, k) + pos_weights + + # attn_output_weights: (batch, head, time1, time2) + attn_output_weights = attn_output_weights.view(bsz * num_heads, seq_len, kv_len) + + # Using this version of softmax, defined in scaling.py, + # should save a little of the memory used in backprop by, if + # we are in automatic mixed precision mode (amp) == autocast, + # only storing the half-precision output for backprop purposes. + attn_output_weights = softmax(attn_output_weights, dim=-1) + + attn_output = torch.bmm(attn_output_weights, v) + assert list(attn_output.size()) == [bsz * num_heads, seq_len, head_dim // 2] + attn_output = ( + attn_output.transpose(0, 1) + .contiguous() + .view(seq_len, bsz, attention_dim // 2) + ) + attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias) + + return attn_output, attn_output_weights, cached_key, cached_val + + def forward2( + self, + x: Tensor, + attn_weights: Tensor, + ) -> Tensor: + """ + Second forward function, where we re-use the attn_weights returned by the first forward function + but with different input. + Args: + x: input, of shape (seq_len, batch_size, embed_dim) + attn_weights: attention weights returned by forward(), of shape (batch_size * num_heads, seq_len, seq_len) + Returns: + output of the same shape as x, i.e. (seq_len, batch_size, embed_dim) + """ + num_heads = self.num_heads + (seq_len, bsz, embed_dim) = x.shape + head_dim = self.attention_dim // num_heads + # v: (tgt_len, bsz, embed_dim // 2) + v = self.in_proj2(x) + v = self.whiten_values2(v) # does nothing in the forward pass. + v = v.reshape(seq_len, bsz * num_heads, head_dim // 2).transpose(0, 1) + + # now v: (bsz * num_heads, seq_len, head_dim // 2) + attn_output = torch.bmm(attn_weights, v) + + if not torch.jit.is_scripting(): + if random.random() < 0.001 or __name__ == "__main__": + self._print_attn_stats(attn_weights, attn_output) + + # attn_output: (bsz * num_heads, seq_len, head_dim) + attn_output = ( + attn_output.transpose(0, 1) + .contiguous() + .view(seq_len, bsz, self.attention_dim // 2) + ) + # returned value is of shape (seq_len, bsz, embed_dim), like x. + return self.out_proj2(attn_output) + + def streaming_forward2( + self, + x: Tensor, + attn_weights: Tensor, + cached_val: Tensor, + ) -> Tuple[Tensor, Tensor]: + """ + Second forward function, where we re-use the attn_weights returned by the first forward function + but with different input. + Args: + x: input, of shape (seq_len, batch_size, embed_dim) + attn_weights: attention weights returned by forward(), of shape (batch_size * num_heads, seq_len, seq_len) + cached_val: cached attention value tensor of left context. + Returns: + - output of the same shape as x, i.e. (seq_len, batch_size, embed_dim) + - updated cached attention value tensor of left context. + """ + num_heads = self.num_heads + (seq_len, bsz, embed_dim) = x.shape + head_dim = self.attention_dim // num_heads + # v: (tgt_len, bsz, embed_dim // 2) + v = self.in_proj2(x) + + left_context_len = cached_val.shape[0] + assert left_context_len > 0, left_context_len + v = torch.cat([cached_val, v], dim=0) + cached_val = v[-left_context_len:] + + seq_len2 = left_context_len + seq_len + v = v.reshape(seq_len2, bsz * num_heads, head_dim // 2).transpose(0, 1) + + # now v: (bsz * num_heads, seq_len, head_dim // 2) + attn_output = torch.bmm(attn_weights, v) + + # attn_output: (bsz * num_heads, seq_len, head_dim) + attn_output = ( + attn_output.transpose(0, 1) + .contiguous() + .view(seq_len, bsz, self.attention_dim // 2) + ) + # returned value is of shape (seq_len, bsz, embed_dim), like x. + return self.out_proj2(attn_output), cached_val + + def _print_attn_stats(self, attn_weights: Tensor, attn_output: Tensor): + # attn_weights: (batch_size * num_heads, seq_len, seq_len) + # attn_output: (bsz * num_heads, seq_len, head_dim) + (n, seq_len, head_dim) = attn_output.shape + num_heads = self.num_heads + bsz = n // num_heads + + with torch.no_grad(): + with torch.cuda.amp.autocast(enabled=False): + attn_weights = attn_weights.to(torch.float32) + attn_output = attn_output.to(torch.float32) + attn_weights_entropy = ( + -((attn_weights + 1.0e-20).log() * attn_weights) + .sum(dim=-1) + .reshape(bsz, num_heads, seq_len) + .mean(dim=(0, 2)) + ) + attn_output = attn_output.reshape(bsz, num_heads, seq_len, head_dim) + attn_output = attn_output.permute(1, 0, 2, 3).reshape( + num_heads, bsz * seq_len, head_dim + ) + attn_output_mean = attn_output.mean(dim=1, keepdim=True) + attn_output = attn_output - attn_output_mean + attn_covar = torch.matmul(attn_output.transpose(1, 2), attn_output) / ( + bsz * seq_len + ) + # attn_covar: (num_heads, head_dim, head_dim) + # eigs, _ = torch.symeig(attn_covar) + # logging.info(f"attn_weights_entropy = {attn_weights_entropy}, output_eigs = {eigs}") + + attn_covar = _diag(attn_covar).mean(dim=1) # (num_heads,) + embed_dim = self.in_proj2.weight.shape[1] + in_proj_covar = ( + self.in_proj2.weight.reshape(num_heads, head_dim, embed_dim) ** 2 + ).mean(dim=(1, 2)) + out_proj_covar = ( + self.out_proj2.weight.reshape(embed_dim, num_heads, head_dim) ** 2 + ).mean(dim=(0, 2)) + logging.info( + f"attn_weights_entropy = {attn_weights_entropy}, covar={attn_covar}, in_proj_covar={in_proj_covar}, out_proj_covar={out_proj_covar}" + ) + + +class PoolingModule(nn.Module): + """ + Averages the input over the time dimension and project with a square matrix. + """ + + def __init__(self, d_model: int): + super().__init__() + self.proj = ScaledLinear(d_model, d_model, initial_scale=0.1, bias=False) + + def forward( + self, + x: Tensor, + src_key_padding_mask: Optional[Tensor] = None, + ) -> Tensor: + """ + Args: + x: a Tensor of shape (T, N, C) + src_key_padding_mask: a Tensor of bool, of shape (N, T), with True in masked + positions. + + Returns: + - output, a Tensor of shape (T, N, C). + """ + if src_key_padding_mask is not None: + # False in padding positions + padding_mask = src_key_padding_mask.logical_not().to(x.dtype) # (N, T) + # Cumulated numbers of frames from start + cum_mask = padding_mask.cumsum(dim=1) # (N, T) + x = x.cumsum(dim=0) # (T, N, C) + pooling_mask = padding_mask / cum_mask + pooling_mask = pooling_mask.transpose(0, 1).contiguous().unsqueeze(-1) + # now pooling_mask: (T, N, 1) + x = x * pooling_mask # (T, N, C) + else: + num_frames = x.shape[0] + cum_mask = torch.arange(1, num_frames + 1).unsqueeze(1) # (T, 1) + x = x.cumsum(dim=0) # (T, N, C) + pooling_mask = (1.0 / cum_mask).unsqueeze(2) + # now pooling_mask: (T, N, 1) + x = x * pooling_mask + + x = self.proj(x) + return x + + def streaming_forward( + self, + x: Tensor, + cached_len: Tensor, + cached_avg: Tensor, + ) -> Tuple[Tensor, Tensor, Tensor]: + """ + Args: + x: a Tensor of shape (T, N, C) + cached_len: a Tensor of int, of shape (N,), containing the number of + past frames in batch. + cached_avg: a Tensor of shape (N, C), the average over all past frames + in batch. + + Returns: + A tuple of 2 tensors: + - output, a Tensor of shape (T, N, C). + - updated cached_avg, a Tensor of shape (N, C). + """ + x = x.cumsum(dim=0) # (T, N, C) + x = x + (cached_avg * cached_len.unsqueeze(1)).unsqueeze(0) + # Cumulated numbers of frames from start + cum_mask = torch.arange(1, x.size(0) + 1, device=x.device) + cum_mask = cum_mask.unsqueeze(1) + cached_len.unsqueeze(0) # (T, N) + pooling_mask = (1.0 / cum_mask).unsqueeze(2) + # now pooling_mask: (T, N, 1) + x = x * pooling_mask # (T, N, C) + + cached_len = cached_len + x.size(0) + cached_avg = x[-1] + + x = self.proj(x) + return x, cached_len, cached_avg + + +class FeedforwardModule(nn.Module): + """Feedforward module in Zipformer model.""" + + def __init__(self, d_model: int, feedforward_dim: int, dropout: float): + super(FeedforwardModule, self).__init__() + self.in_proj = nn.Linear(d_model, feedforward_dim) + self.balancer = ActivationBalancer( + feedforward_dim, channel_dim=-1, max_abs=10.0, min_prob=0.25 + ) + self.activation = DoubleSwish() + self.dropout = nn.Dropout(dropout) + self.out_proj = ScaledLinear(feedforward_dim, d_model, initial_scale=0.01) + + def forward(self, x: Tensor): + x = self.in_proj(x) + x = self.balancer(x) + x = self.activation(x) + x = self.dropout(x) + x = self.out_proj(x) + return x + + +class ConvolutionModule(nn.Module): + """ConvolutionModule in Zipformer model. + Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py + + Args: + channels (int): The number of channels of conv layers. + kernel_size (int): Kernerl size of conv layers. + bias (bool): Whether to use bias in conv layers (default=True). + + """ + + def __init__(self, channels: int, kernel_size: int, bias: bool = True) -> None: + """Construct an ConvolutionModule object.""" + super(ConvolutionModule, self).__init__() + # kernerl_size should be a odd number for 'SAME' padding + assert (kernel_size - 1) % 2 == 0, kernel_size + + self.pointwise_conv1 = nn.Conv1d( + channels, + 2 * channels, + kernel_size=1, + stride=1, + padding=0, + bias=bias, + ) + + # after pointwise_conv1 we put x through a gated linear unit (nn.functional.glu). + # For most layers the normal rms value of channels of x seems to be in the range 1 to 4, + # but sometimes, for some reason, for layer 0 the rms ends up being very large, + # between 50 and 100 for different channels. This will cause very peaky and + # sparse derivatives for the sigmoid gating function, which will tend to make + # the loss function not learn effectively. (for most layers the average absolute values + # are in the range 0.5..9.0, and the average p(x>0), i.e. positive proportion, + # at the output of pointwise_conv1.output is around 0.35 to 0.45 for different + # layers, which likely breaks down as 0.5 for the "linear" half and + # 0.2 to 0.3 for the part that goes into the sigmoid. The idea is that if we + # constrain the rms values to a reasonable range via a constraint of max_abs=10.0, + # it will be in a better position to start learning something, i.e. to latch onto + # the correct range. + self.deriv_balancer1 = ActivationBalancer( + 2 * channels, + channel_dim=1, + max_abs=10.0, + min_positive=0.05, + max_positive=1.0, + ) + + # Will pad cached left context + self.lorder = kernel_size - 1 + self.depthwise_conv = nn.Conv1d( + channels, + channels, + kernel_size, + stride=1, + padding=0, + groups=channels, + bias=bias, + ) + + self.deriv_balancer2 = ActivationBalancer( + channels, + channel_dim=1, + min_positive=0.05, + max_positive=1.0, + max_abs=20.0, + ) + + self.activation = DoubleSwish() + + self.pointwise_conv2 = ScaledConv1d( + channels, + channels, + kernel_size=1, + stride=1, + padding=0, + bias=bias, + initial_scale=0.05, + ) + + def forward( + self, + x: Tensor, + src_key_padding_mask: Optional[Tensor] = None, + ) -> Tensor: + """Compute convolution module. + + Args: + x: Input tensor (#time, batch, channels). + src_key_padding_mask: the mask for the src keys per batch (optional): + (batch, #time), contains bool in masked positions. + + Returns: + - Output tensor (#time, batch, channels). + """ + # exchange the temporal dimension and the feature dimension + x = x.permute(1, 2, 0) # (#batch, channels, time). + + # GLU mechanism + x = self.pointwise_conv1(x) # (batch, 2*channels, time) + + x = self.deriv_balancer1(x) + x = nn.functional.glu(x, dim=1) # (batch, channels, time) + + if src_key_padding_mask is not None: + x.masked_fill_(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0) + + # 1D Depthwise Conv + # Make depthwise_conv causal by + # manualy padding self.lorder zeros to the left + x = nn.functional.pad(x, (self.lorder, 0), "constant", 0.0) + x = self.depthwise_conv(x) + + x = self.deriv_balancer2(x) + x = self.activation(x) + + x = self.pointwise_conv2(x) # (batch, channel, time) + + return x.permute(2, 0, 1) + + def streaming_forward( + self, + x: Tensor, + cache: Tensor, + ) -> Tuple[Tensor, Tensor]: + """Compute convolution module. + + Args: + x: Input tensor (#time, batch, channels). + src_key_padding_mask: the mask for the src keys per batch: + (batch, #time), contains bool in masked positions. + cache: Cached left context for depthwise_conv, with shape of + (batch, channels, #kernel_size-1). Only used in real streaming decoding. + + Returns: + A tuple of 2 tensors: + - Output tensor (#time, batch, channels). + - New cached left context, with shape of (batch, channels, #kernel_size-1). + """ + # exchange the temporal dimension and the feature dimension + x = x.permute(1, 2, 0) # (#batch, channels, time). + + # GLU mechanism + x = self.pointwise_conv1(x) # (batch, 2*channels, time) + + x = self.deriv_balancer1(x) + x = nn.functional.glu(x, dim=1) # (batch, channels, time) + + # 1D Depthwise Conv + assert cache.shape == (x.size(0), x.size(1), self.lorder), ( + cache.shape, + (x.size(0), x.size(1), self.lorder), + ) + x = torch.cat([cache, x], dim=2) + # Update cache + cache = x[:, :, -self.lorder :] + x = self.depthwise_conv(x) + + x = self.deriv_balancer2(x) + x = self.activation(x) + + x = self.pointwise_conv2(x) # (batch, channel, time) + + return x.permute(2, 0, 1), cache + + +class Conv2dSubsampling(nn.Module): + """Convolutional 2D subsampling (to 1/4 length). + + Convert an input of shape (N, T, idim) to an output + with shape (N, T', odim), where + T' = (T-3)//2 - 2 == (T-7)//2 + + It is based on + https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa + """ + + def __init__( + self, + in_channels: int, + out_channels: int, + layer1_channels: int = 8, + layer2_channels: int = 32, + layer3_channels: int = 128, + dropout: float = 0.1, + ) -> None: + """ + Args: + in_channels: + Number of channels in. The input shape is (N, T, in_channels). + Caution: It requires: T >=7, in_channels >=7 + out_channels + Output dim. The output shape is (N, (T-7)//2, out_channels) + layer1_channels: + Number of channels in layer1 + layer2_channels: + Number of channels in layer2 + layer3_channels: + Number of channels in layer3 + """ + assert in_channels >= 7, in_channels + super().__init__() + + self.conv = nn.Sequential( + nn.Conv2d( + in_channels=1, + out_channels=layer1_channels, + kernel_size=3, + padding=(0, 1), # (time, freq) + ), + ActivationBalancer(layer1_channels, channel_dim=1), + DoubleSwish(), + nn.Conv2d( + in_channels=layer1_channels, + out_channels=layer2_channels, + kernel_size=3, + stride=2, + padding=0, + ), + ActivationBalancer(layer2_channels, channel_dim=1), + DoubleSwish(), + nn.Conv2d( + in_channels=layer2_channels, + out_channels=layer3_channels, + kernel_size=3, + stride=(1, 2), # (time, freq) + ), + ActivationBalancer(layer3_channels, channel_dim=1), + DoubleSwish(), + ) + out_height = (((in_channels - 1) // 2) - 1) // 2 + self.out = ScaledLinear(out_height * layer3_channels, out_channels) + self.dropout = nn.Dropout(dropout) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """Subsample x. + + Args: + x: + Its shape is (N, T, idim). + + Returns: + Return a tensor of shape (N, (T-7)//2, odim) + """ + # On entry, x is (N, T, idim) + x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W) + x = self.conv(x) + # Now x is of shape (N, odim, (T-7)//2, ((idim-1)//2 - 1)//2) + b, c, t, f = x.size() + x = self.out(x.transpose(1, 2).reshape(b, t, c * f)) + # Now x is of shape (N, (T-7)//2, odim) + x = self.dropout(x) + return x + + +def _test_zipformer_main(): + feature_dim = 50 + batch_size = 5 + seq_len = 47 + feature_dim = 50 + # Just make sure the forward pass runs. + + c = Zipformer( + num_features=feature_dim, + encoder_dims=(64, 96), + encoder_unmasked_dims=(48, 64), + nhead=(4, 4), + decode_chunk_size=4, + ) + # Just make sure the forward pass runs. + f = c( + torch.randn(batch_size, seq_len, feature_dim), + torch.full((batch_size,), seq_len, dtype=torch.int64), + ) + assert ((seq_len - 7) // 2 + 1) // 2 == f[0].shape[1], (seq_len, f.shape[1]) + f[0].sum().backward() + c.eval() + f = c( + torch.randn(batch_size, seq_len, feature_dim), + torch.full((batch_size,), seq_len, dtype=torch.int64), + ) + f # to remove flake8 warnings + + +def _test_conv2d_subsampling(): + num_features = 80 + encoder_dims = 384 + dropout = 0.1 + encoder_embed = Conv2dSubsampling(num_features, encoder_dims, dropout=dropout) + for i in range(20, 40): + x = torch.rand(2, i, num_features) + y = encoder_embed(x) + assert (x.shape[1] - 7) // 2 == y.shape[1], (x.shape[1], y.shape[1]) + + +def _test_pooling_module(): + N, S, C = 2, 12, 32 + chunk_len = 4 + m = PoolingModule(d_model=C) + + # test chunk-wise forward with padding_mask + x = torch.randn(S, N, C) + y = m(x) + cached_len = torch.zeros(N, dtype=torch.int32) + cached_avg = torch.zeros(N, C) + for i in range(S // chunk_len): + start = i * chunk_len + end = start + chunk_len + x_chunk = x[start:end] + y_chunk, cached_len, cached_avg = m.streaming_forward( + x_chunk, + cached_len=cached_len, + cached_avg=cached_avg, + ) + assert torch.allclose(y_chunk, y[start:end]), (y_chunk, y[start:end]) + + +def _test_state_stack_unstack(): + m = Zipformer( + num_features=80, + encoder_dims=(64, 96), + encoder_unmasked_dims=(48, 64), + nhead=(4, 4), + zipformer_downsampling_factors=(4, 8), + num_left_chunks=2, + decode_chunk_size=8, + ) + s1 = m.get_init_state() + s2 = m.get_init_state() + states = stack_states([s1, s2]) + new_s1, new_s2 = unstack_states(states) + for i in range(m.num_encoders * 7): + for x, y in zip(s1[i], new_s1[i]): + assert torch.equal(x, y) + for x, y in zip(s2[i], new_s2[i]): + assert torch.equal(x, y) + + +if __name__ == "__main__": + logging.getLogger().setLevel(logging.INFO) + torch.set_num_threads(1) + torch.set_num_interop_threads(1) + _test_zipformer_main() + _test_conv2d_subsampling() + _test_pooling_module() + _test_state_stack_unstack() diff --git a/egs/ksponspeech/ASR/shared b/egs/ksponspeech/ASR/shared new file mode 120000 index 000000000..4c5e91438 --- /dev/null +++ b/egs/ksponspeech/ASR/shared @@ -0,0 +1 @@ +../../../icefall/shared/ \ No newline at end of file