mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
Merge branch 'scaled_adam_exp467' into scaled_adam_exp472
This commit is contained in:
commit
edd4bf5312
@ -928,7 +928,6 @@ class DoubleSwishFunction(torch.autograd.Function):
|
||||
d = (d * ((ceil - floor) / 255.0) + floor)
|
||||
return (y_grad * d)
|
||||
|
||||
|
||||
class DoubleSwish(torch.nn.Module):
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
"""Return double-swish activation function which is an approximation to Swish(Swish(x)),
|
||||
@ -939,6 +938,68 @@ class DoubleSwish(torch.nn.Module):
|
||||
return DoubleSwishFunction.apply(x)
|
||||
|
||||
|
||||
class TanSwishFunction(torch.autograd.Function):
|
||||
"""
|
||||
double_swish(x) = tan(x) * torch.sigmoid(x-1)
|
||||
|
||||
|
||||
entering: d/dx(tanh(x) * sigmoid(x-1))
|
||||
into wolfram alpha, I see that the range of this function is
|
||||
-0.0498087 <= y <= 0.417894
|
||||
let's make it (as we don't know how this was rounded):
|
||||
-0.0498088 <= y <= 0.417895
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, x: Tensor) -> Tensor:
|
||||
requires_grad = x.requires_grad
|
||||
if not requires_grad:
|
||||
return torch.tanh(x) * torch.sigmoid(x - 1.0)
|
||||
|
||||
x_dtype = x.dtype
|
||||
if x.dtype == torch.float16:
|
||||
x = x.to(torch.float32)
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
with torch.enable_grad():
|
||||
x = x.detach()
|
||||
x.requires_grad = True
|
||||
y = torch.tanh(x) * torch.sigmoid(x - 1.0)
|
||||
y.backward(gradient=torch.ones_like(y))
|
||||
grad = x.grad
|
||||
floor = -0.0498088
|
||||
ceil = 0.417895
|
||||
d_scaled = ((grad - floor) * (255.0 / (ceil - floor)) + torch.rand_like(grad))
|
||||
if __name__ == "__main__":
|
||||
# for self-testing only.
|
||||
assert d_scaled.min() >= 0.0
|
||||
assert d_scaled.max() < 256.0
|
||||
|
||||
d_int = d_scaled.to(torch.uint8)
|
||||
ctx.save_for_backward(d_int)
|
||||
if x.dtype == torch.float16 or torch.is_autocast_enabled():
|
||||
y = y.to(torch.float16)
|
||||
return y
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, y_grad: Tensor) -> Tensor:
|
||||
d, = ctx.saved_tensors
|
||||
# the same constants as used in forward pass.
|
||||
floor = -0.0498088
|
||||
ceil = 0.417895
|
||||
d = (d * ((ceil - floor) / 255.0) + floor)
|
||||
return (y_grad * d)
|
||||
|
||||
|
||||
class TanSwish(torch.nn.Module):
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
"""Return tan-swish activation function which is tanh(x) sigmoid(x-1)n
|
||||
"""
|
||||
if torch.jit.is_scripting():
|
||||
return x.tanh() * torch.sigmoid(x - 1.0)
|
||||
return TanSwishFunction.apply(x)
|
||||
|
||||
|
||||
class ScheduledFloat(torch.nn.Module):
|
||||
"""
|
||||
This object is a torch.nn.Module only because we want it to show up in [top_level module].modules();
|
||||
@ -1147,6 +1208,20 @@ def _test_double_swish_deriv():
|
||||
x.requires_grad = True
|
||||
y = m(x)
|
||||
|
||||
def _test_tan_swish_deriv():
|
||||
x = torch.randn(10, 12, dtype=torch.double) * 3.0
|
||||
x.requires_grad = True
|
||||
m = TanSwish()
|
||||
|
||||
tol = ((1.2-(-0.043637))/255.0)
|
||||
torch.autograd.gradcheck(m, x, atol=tol)
|
||||
|
||||
|
||||
# for self-test.
|
||||
x = torch.randn(1000, 1000, dtype=torch.double) * 3.0
|
||||
x.requires_grad = True
|
||||
y = m(x)
|
||||
|
||||
|
||||
|
||||
def _test_softmax():
|
||||
@ -1173,3 +1248,4 @@ if __name__ == "__main__":
|
||||
_test_activation_balancer_magnitude()
|
||||
_test_basic_norm()
|
||||
_test_double_swish_deriv()
|
||||
_test_tan_swish_deriv()
|
||||
|
||||
@ -29,6 +29,7 @@ from scaling import (
|
||||
BasicNorm,
|
||||
MaxEig,
|
||||
DoubleSwish,
|
||||
TanSwish,
|
||||
ScaledConv1d,
|
||||
ScaledLinear, # not as in other dirs.. just scales down initial parameter values.
|
||||
Whiten,
|
||||
@ -1317,7 +1318,7 @@ class AttentionSqueeze(nn.Module):
|
||||
max_factor=0.02,
|
||||
min_prob=0.1,
|
||||
)
|
||||
self.bottleneck_activation = nn.Tanh() # in bottleneck
|
||||
self.bottleneck_activation = TanSwish() # in bottleneck
|
||||
self.activation = Identity() # for diagnostics
|
||||
|
||||
# the next two balancers are only to stop parameter-magnitude 'drift': we have
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user