remove more unused code

This commit is contained in:
Fangjun Kuang 2024-10-28 19:20:21 +08:00
parent c558328dc5
commit ed569a938a
2 changed files with 0 additions and 281 deletions

View File

@ -1,159 +0,0 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
import torch
from icefall.utils import AttributeDict
from matcha.models.matcha_tts import MatchaTTS
from matcha.data.text_mel_datamodule import TextMelDataModule
def _get_data_params() -> AttributeDict:
params = AttributeDict(
{
"name": "ljspeech",
"train_filelist_path": "./filelists/ljs_audio_text_train_filelist.txt",
"valid_filelist_path": "./filelists/ljs_audio_text_val_filelist.txt",
"batch_size": 32,
"num_workers": 3,
"pin_memory": False,
"cleaners": ["english_cleaners2"],
"add_blank": True,
"n_spks": 1,
"n_fft": 1024,
"n_feats": 80,
"sample_rate": 22050,
"hop_length": 256,
"win_length": 1024,
"f_min": 0,
"f_max": 8000,
"seed": 1234,
"load_durations": False,
"data_statistics": AttributeDict(
{
"mel_mean": -5.517028331756592,
"mel_std": 2.0643954277038574,
}
),
}
)
return params
def _get_model_params() -> AttributeDict:
n_feats = 80
filter_channels_dp = 256
encoder_params_p_dropout = 0.1
params = AttributeDict(
{
"n_vocab": 178,
"n_spks": 1, # for ljspeech.
"spk_emb_dim": 64,
"n_feats": n_feats,
"out_size": None, # or use 172
"prior_loss": True,
"use_precomputed_durations": False,
"encoder": AttributeDict(
{
"encoder_type": "RoPE Encoder", # not used
"encoder_params": AttributeDict(
{
"n_feats": n_feats,
"n_channels": 192,
"filter_channels": 768,
"filter_channels_dp": filter_channels_dp,
"n_heads": 2,
"n_layers": 6,
"kernel_size": 3,
"p_dropout": encoder_params_p_dropout,
"spk_emb_dim": 64,
"n_spks": 1,
"prenet": True,
}
),
"duration_predictor_params": AttributeDict(
{
"filter_channels_dp": filter_channels_dp,
"kernel_size": 3,
"p_dropout": encoder_params_p_dropout,
}
),
}
),
"decoder": AttributeDict(
{
"channels": [256, 256],
"dropout": 0.05,
"attention_head_dim": 64,
"n_blocks": 1,
"num_mid_blocks": 2,
"num_heads": 2,
"act_fn": "snakebeta",
}
),
"cfm": AttributeDict(
{
"name": "CFM",
"solver": "euler",
"sigma_min": 1e-4,
}
),
"optimizer": AttributeDict(
{
"lr": 1e-4,
"weight_decay": 0.0,
}
),
}
)
return params
def get_params():
params = AttributeDict(
{
"model": _get_model_params(),
"data": _get_data_params(),
}
)
return params
def get_model(params):
m = MatchaTTS(**params.model)
return m
def main():
params = get_params()
data_module = TextMelDataModule(hparams=params.data)
if False:
for b in data_module.train_dataloader():
assert isinstance(b, dict)
# b.keys()
# ['x', 'x_lengths', 'y', 'y_lengths', 'spks', 'filepaths', 'x_texts', 'durations']
# x: [batch_size, 289], torch.int64
# x_lengths: [batch_size], torch.int64
# y: [batch_size, n_feats, num_frames], torch.float32
# y_lengths: [batch_size], torch.int64
# spks: None
# filepaths: list, (batch_size,)
# x_texts: list, (batch_size,)
# durations: None
m = get_model(params)
print(m)
num_param = sum([p.numel() for p in m.parameters()])
print(f"Number of parameters: {num_param}")
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
if __name__ == "__main__":
main()

View File

@ -1,122 +0,0 @@
from typing import Any, Dict, List, Optional, Tuple
import hydra
import lightning as L
import rootutils
from lightning import Callback, LightningDataModule, LightningModule, Trainer
from lightning.pytorch.loggers import Logger
from omegaconf import DictConfig
from matcha import utils
rootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
# ------------------------------------------------------------------------------------ #
# the setup_root above is equivalent to:
# - adding project root dir to PYTHONPATH
# (so you don't need to force user to install project as a package)
# (necessary before importing any local modules e.g. `from src import utils`)
# - setting up PROJECT_ROOT environment variable
# (which is used as a base for paths in "configs/paths/default.yaml")
# (this way all filepaths are the same no matter where you run the code)
# - loading environment variables from ".env" in root dir
#
# you can remove it if you:
# 1. either install project as a package or move entry files to project root dir
# 2. set `root_dir` to "." in "configs/paths/default.yaml"
#
# more info: https://github.com/ashleve/rootutils
# ------------------------------------------------------------------------------------ #
log = utils.get_pylogger(__name__)
@utils.task_wrapper
def train(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]:
"""Trains the model. Can additionally evaluate on a testset, using best weights obtained during
training.
This method is wrapped in optional @task_wrapper decorator, that controls the behavior during
failure. Useful for multiruns, saving info about the crash, etc.
:param cfg: A DictConfig configuration composed by Hydra.
:return: A tuple with metrics and dict with all instantiated objects.
"""
# set seed for random number generators in pytorch, numpy and python.random
if cfg.get("seed"):
L.seed_everything(cfg.seed, workers=True)
log.info(f"Instantiating datamodule <{cfg.data._target_}>") # pylint: disable=protected-access
datamodule: LightningDataModule = hydra.utils.instantiate(cfg.data)
log.info(f"Instantiating model <{cfg.model._target_}>") # pylint: disable=protected-access
model: LightningModule = hydra.utils.instantiate(cfg.model)
log.info("Instantiating callbacks...")
callbacks: List[Callback] = utils.instantiate_callbacks(cfg.get("callbacks"))
log.info("Instantiating loggers...")
logger: List[Logger] = utils.instantiate_loggers(cfg.get("logger"))
log.info(f"Instantiating trainer <{cfg.trainer._target_}>") # pylint: disable=protected-access
trainer: Trainer = hydra.utils.instantiate(cfg.trainer, callbacks=callbacks, logger=logger)
object_dict = {
"cfg": cfg,
"datamodule": datamodule,
"model": model,
"callbacks": callbacks,
"logger": logger,
"trainer": trainer,
}
if logger:
log.info("Logging hyperparameters!")
utils.log_hyperparameters(object_dict)
if cfg.get("train"):
log.info("Starting training!")
trainer.fit(model=model, datamodule=datamodule, ckpt_path=cfg.get("ckpt_path"))
train_metrics = trainer.callback_metrics
if cfg.get("test"):
log.info("Starting testing!")
ckpt_path = trainer.checkpoint_callback.best_model_path
if ckpt_path == "":
log.warning("Best ckpt not found! Using current weights for testing...")
ckpt_path = None
trainer.test(model=model, datamodule=datamodule, ckpt_path=ckpt_path)
log.info(f"Best ckpt path: {ckpt_path}")
test_metrics = trainer.callback_metrics
# merge train and test metrics
metric_dict = {**train_metrics, **test_metrics}
return metric_dict, object_dict
@hydra.main(version_base="1.3", config_path="../configs", config_name="train.yaml")
def main(cfg: DictConfig) -> Optional[float]:
"""Main entry point for training.
:param cfg: DictConfig configuration composed by Hydra.
:return: Optional[float] with optimized metric value.
"""
# apply extra utilities
# (e.g. ask for tags if none are provided in cfg, print cfg tree, etc.)
utils.extras(cfg)
# train the model
metric_dict, _ = train(cfg)
# safely retrieve metric value for hydra-based hyperparameter optimization
metric_value = utils.get_metric_value(metric_dict=metric_dict, metric_name=cfg.get("optimized_metric"))
# return optimized metric
return metric_value
if __name__ == "__main__":
main() # pylint: disable=no-value-for-parameter