mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-10 10:32:17 +00:00
remove unneeded and unsupported files
This commit is contained in:
parent
cb329d1342
commit
ec8fa55bcf
@ -1,75 +0,0 @@
|
||||
## Introduction
|
||||
|
||||
Please visit
|
||||
<https://icefall.readthedocs.io/en/latest/recipes/librispeech/conformer_ctc.html>
|
||||
for how to run this recipe.
|
||||
|
||||
## How to compute framewise alignment information
|
||||
|
||||
### Step 1: Train a model
|
||||
|
||||
Please use `conformer_ctc/train.py` to train a model.
|
||||
See <https://icefall.readthedocs.io/en/latest/recipes/librispeech/conformer_ctc.html>
|
||||
for how to do it.
|
||||
|
||||
### Step 2: Compute framewise alignment
|
||||
|
||||
Run
|
||||
|
||||
```
|
||||
# Choose a checkpoint and determine the number of checkpoints to average
|
||||
epoch=30
|
||||
avg=15
|
||||
./conformer_ctc/ali.py \
|
||||
--epoch $epoch \
|
||||
--avg $avg \
|
||||
--max-duration 500 \
|
||||
--bucketing-sampler 0 \
|
||||
--full-libri 1 \
|
||||
--exp-dir conformer_ctc/exp \
|
||||
--lang-dir data/lang_bpe_500 \
|
||||
--ali-dir data/ali_500
|
||||
```
|
||||
and you will get four files inside the folder `data/ali_500`:
|
||||
|
||||
```
|
||||
$ ls -lh data/ali_500
|
||||
total 546M
|
||||
-rw-r--r-- 1 kuangfangjun root 1.1M Sep 28 08:06 test_clean.pt
|
||||
-rw-r--r-- 1 kuangfangjun root 1.1M Sep 28 08:07 test_other.pt
|
||||
-rw-r--r-- 1 kuangfangjun root 542M Sep 28 11:36 train-960.pt
|
||||
-rw-r--r-- 1 kuangfangjun root 2.1M Sep 28 11:38 valid.pt
|
||||
```
|
||||
|
||||
**Note**: It can take more than 3 hours to compute the alignment
|
||||
for the training dataset, which contains 960 * 3 = 2880 hours of data.
|
||||
|
||||
**Caution**: The model parameters in `conformer_ctc/ali.py` have to match those
|
||||
in `conformer_ctc/train.py`.
|
||||
|
||||
**Caution**: You have to set the parameter `preserve_id` to `True` for `CutMix`.
|
||||
Search `./conformer_ctc/asr_datamodule.py` for `preserve_id`.
|
||||
|
||||
### Step 3: Check your extracted alignments
|
||||
|
||||
There is a file `test_ali.py` in `icefall/test` that can be used to test your
|
||||
alignments. It uses pre-computed alignments to modify a randomly generated
|
||||
`nnet_output` and it checks that we can decode the correct transcripts
|
||||
from the resulting `nnet_output`.
|
||||
|
||||
You should get something like the following if you run that script:
|
||||
|
||||
```
|
||||
$ ./test/test_ali.py
|
||||
['THE GOOD NATURED AUDIENCE IN PITY TO FALLEN MAJESTY SHOWED FOR ONCE GREATER DEFERENCE TO THE KING THAN TO THE MINISTER AND SUNG THE PSALM WHICH THE FORMER HAD CALLED FOR', 'THE OLD SERVANT TOLD HIM QUIETLY AS THEY CREPT BACK TO DWELL THAT THIS PASSAGE THAT LED FROM THE HUT IN THE PLEASANCE TO SHERWOOD AND THAT GEOFFREY FOR THE TIME WAS HIDING WITH THE OUTLAWS IN THE FOREST', 'FOR A WHILE SHE LAY IN HER CHAIR IN HAPPY DREAMY PLEASURE AT SUN AND BIRD AND TREE', "BUT THE ESSENCE OF LUTHER'S LECTURES IS THERE"]
|
||||
['THE GOOD NATURED AUDIENCE IN PITY TO FALLEN MAJESTY SHOWED FOR ONCE GREATER DEFERENCE TO THE KING THAN TO THE MINISTER AND SUNG THE PSALM WHICH THE FORMER HAD CALLED FOR', 'THE OLD SERVANT TOLD HIM QUIETLY AS THEY CREPT BACK TO GAMEWELL THAT THIS PASSAGE WAY LED FROM THE HUT IN THE PLEASANCE TO SHERWOOD AND THAT GEOFFREY FOR THE TIME WAS HIDING WITH THE OUTLAWS IN THE FOREST', 'FOR A WHILE SHE LAY IN HER CHAIR IN HAPPY DREAMY PLEASURE AT SUN AND BIRD AND TREE', "BUT THE ESSENCE OF LUTHER'S LECTURES IS THERE"]
|
||||
```
|
||||
|
||||
### Step 4: Use your alignments in training
|
||||
|
||||
Please refer to `conformer_mmi/train.py` for usage. Some useful
|
||||
functions are:
|
||||
|
||||
- `load_alignments()`, it loads alignment saved by `conformer_ctc/ali.py`
|
||||
- `convert_alignments_to_tensor()`, it converts alignments to PyTorch tensors
|
||||
- `lookup_alignments()`, it returns the alignments of utterances by giving the cut ID of the utterances.
|
@ -1,399 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./conformer_ctc/ali.py \
|
||||
--exp-dir ./conformer_ctc/exp \
|
||||
--lang-dir ./data/lang_bpe_500 \
|
||||
--epoch 20 \
|
||||
--avg 10 \
|
||||
--max-duration 300 \
|
||||
--dataset train-clean-100 \
|
||||
--out-dir data/ali
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import k2
|
||||
import numpy as np
|
||||
import torch
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from conformer import Conformer
|
||||
from lhotse import CutSet
|
||||
from lhotse.features.io import FeaturesWriter, NumpyHdf5Writer
|
||||
|
||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.decode import one_best_decoding
|
||||
from icefall.env import get_env_info
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
encode_supervisions,
|
||||
get_alignments,
|
||||
setup_logger,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=34,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_bpe_500",
|
||||
help="The lang dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="conformer_ctc/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--out-dir",
|
||||
type=str,
|
||||
required=True,
|
||||
help="""Output directory.
|
||||
It contains 3 generated files:
|
||||
|
||||
- labels_xxx.h5
|
||||
- aux_labels_xxx.h5
|
||||
- cuts_xxx.json.gz
|
||||
|
||||
where xxx is the value of `--dataset`. For instance, if
|
||||
`--dataset` is `train-clean-100`, it will contain 3 files:
|
||||
|
||||
- `labels_train-clean-100.h5`
|
||||
- `aux_labels_train-clean-100.h5`
|
||||
- `cuts_train-clean-100.json.gz`
|
||||
|
||||
Note: Both labels_xxx.h5 and aux_labels_xxx.h5 contain framewise
|
||||
alignment. The difference is that labels_xxx.h5 contains repeats.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
type=str,
|
||||
required=True,
|
||||
help="""The name of the dataset to compute alignments for.
|
||||
Possible values are:
|
||||
- test-clean.
|
||||
- test-other
|
||||
- train-clean-100
|
||||
- train-clean-360
|
||||
- train-other-500
|
||||
- dev-clean
|
||||
- dev-other
|
||||
""",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"lm_dir": Path("data/lm"),
|
||||
"feature_dim": 80,
|
||||
"nhead": 8,
|
||||
"attention_dim": 512,
|
||||
"subsampling_factor": 4,
|
||||
# Set it to 0 since attention decoder
|
||||
# is not used for computing alignments
|
||||
"num_decoder_layers": 0,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
"output_beam": 10,
|
||||
"use_double_scores": True,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def compute_alignments(
|
||||
model: torch.nn.Module,
|
||||
dl: torch.utils.data.DataLoader,
|
||||
labels_writer: FeaturesWriter,
|
||||
aux_labels_writer: FeaturesWriter,
|
||||
params: AttributeDict,
|
||||
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||
) -> CutSet:
|
||||
"""Compute the framewise alignments of a dataset.
|
||||
|
||||
Args:
|
||||
model:
|
||||
The neural network model.
|
||||
dl:
|
||||
Dataloader containing the dataset.
|
||||
params:
|
||||
Parameters for computing alignments.
|
||||
graph_compiler:
|
||||
It converts token IDs to decoding graphs.
|
||||
Returns:
|
||||
Return a CutSet. Each cut has two custom fields: labels_alignment
|
||||
and aux_labels_alignment, containing framewise alignments information.
|
||||
Both are of type `lhotse.array.TemporalArray`. The difference between
|
||||
the two alignments is that `labels_alignment` contain repeats.
|
||||
"""
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
num_cuts = 0
|
||||
|
||||
device = graph_compiler.device
|
||||
cuts = []
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
feature = batch["inputs"]
|
||||
|
||||
# at entry, feature is [N, T, C]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
cut_list = supervisions["cut"]
|
||||
|
||||
for cut in cut_list:
|
||||
assert len(cut.supervisions) == 1, f"{len(cut.supervisions)}"
|
||||
|
||||
nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
|
||||
# nnet_output is [N, T, C]
|
||||
supervision_segments, texts = encode_supervisions(
|
||||
supervisions, subsampling_factor=params.subsampling_factor
|
||||
)
|
||||
# we need also to sort cut_ids as encode_supervisions()
|
||||
# reorders "texts".
|
||||
# In general, new2old is an identity map since lhotse sorts the returned
|
||||
# cuts by duration in descending order
|
||||
new2old = supervision_segments[:, 0].tolist()
|
||||
|
||||
cut_list = [cut_list[i] for i in new2old]
|
||||
|
||||
token_ids = graph_compiler.texts_to_ids(texts)
|
||||
decoding_graph = graph_compiler.compile(token_ids)
|
||||
|
||||
dense_fsa_vec = k2.DenseFsaVec(
|
||||
nnet_output,
|
||||
supervision_segments,
|
||||
allow_truncate=params.subsampling_factor - 1,
|
||||
)
|
||||
|
||||
lattice = k2.intersect_dense(
|
||||
decoding_graph,
|
||||
dense_fsa_vec,
|
||||
params.output_beam,
|
||||
)
|
||||
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice,
|
||||
use_double_scores=params.use_double_scores,
|
||||
)
|
||||
|
||||
labels_ali = get_alignments(best_path, kind="labels")
|
||||
aux_labels_ali = get_alignments(best_path, kind="aux_labels")
|
||||
assert len(labels_ali) == len(aux_labels_ali) == len(cut_list)
|
||||
for cut, labels, aux_labels in zip(
|
||||
cut_list, labels_ali, aux_labels_ali
|
||||
):
|
||||
cut.labels_alignment = labels_writer.store_array(
|
||||
key=cut.id,
|
||||
value=np.asarray(labels, dtype=np.int32),
|
||||
# frame shift is 0.01s, subsampling_factor is 4
|
||||
frame_shift=0.04,
|
||||
temporal_dim=0,
|
||||
start=0,
|
||||
)
|
||||
cut.aux_labels_alignment = aux_labels_writer.store_array(
|
||||
key=cut.id,
|
||||
value=np.asarray(aux_labels, dtype=np.int32),
|
||||
# frame shift is 0.01s, subsampling_factor is 4
|
||||
frame_shift=0.04,
|
||||
temporal_dim=0,
|
||||
start=0,
|
||||
)
|
||||
|
||||
cuts += cut_list
|
||||
|
||||
num_cuts += len(cut_list)
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
|
||||
return CutSet.from_cuts(cuts)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
args.enable_spec_aug = False
|
||||
args.enable_musan = False
|
||||
args.return_cuts = True
|
||||
args.concatenate_cuts = False
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log-ali")
|
||||
|
||||
logging.info(f"Computing alignments for {params.dataset} - started")
|
||||
logging.info(params)
|
||||
|
||||
out_dir = Path(params.out_dir)
|
||||
out_dir.mkdir(exist_ok=True)
|
||||
|
||||
out_labels_ali_filename = out_dir / f"labels_{params.dataset}.h5"
|
||||
out_aux_labels_ali_filename = out_dir / f"aux_labels_{params.dataset}.h5"
|
||||
out_manifest_filename = out_dir / f"cuts_{params.dataset}.json.gz"
|
||||
|
||||
for f in (
|
||||
out_labels_ali_filename,
|
||||
out_aux_labels_ali_filename,
|
||||
out_manifest_filename,
|
||||
):
|
||||
if f.exists():
|
||||
logging.info(f"{f} exists - skipping")
|
||||
return
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
num_classes = max_token_id + 1 # +1 for the blank
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
graph_compiler = BpeCtcTrainingGraphCompiler(
|
||||
params.lang_dir,
|
||||
device=device,
|
||||
sos_token="<sos/eos>",
|
||||
eos_token="<sos/eos>",
|
||||
)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
nhead=params.nhead,
|
||||
d_model=params.attention_dim,
|
||||
num_classes=num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
num_decoder_layers=params.num_decoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
model.to(device)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(
|
||||
f"{params.exp_dir}/epoch-{params.epoch}.pt", model, strict=False
|
||||
)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.load_state_dict(
|
||||
average_checkpoints(filenames, device=device), strict=False
|
||||
)
|
||||
|
||||
model.eval()
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
if params.dataset == "test-clean":
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||
elif params.dataset == "test-other":
|
||||
test_other_cuts = librispeech.test_other_cuts()
|
||||
dl = librispeech.test_dataloaders(test_other_cuts)
|
||||
elif params.dataset == "train-clean-100":
|
||||
train_clean_100_cuts = librispeech.train_clean_100_cuts()
|
||||
dl = librispeech.train_dataloaders(train_clean_100_cuts)
|
||||
elif params.dataset == "train-clean-360":
|
||||
train_clean_360_cuts = librispeech.train_clean_360_cuts()
|
||||
dl = librispeech.train_dataloaders(train_clean_360_cuts)
|
||||
elif params.dataset == "train-other-500":
|
||||
train_other_500_cuts = librispeech.train_other_500_cuts()
|
||||
dl = librispeech.train_dataloaders(train_other_500_cuts)
|
||||
elif params.dataset == "dev-clean":
|
||||
dev_clean_cuts = librispeech.dev_clean_cuts()
|
||||
dl = librispeech.valid_dataloaders(dev_clean_cuts)
|
||||
else:
|
||||
assert params.dataset == "dev-other", f"{params.dataset}"
|
||||
dev_other_cuts = librispeech.dev_other_cuts()
|
||||
dl = librispeech.valid_dataloaders(dev_other_cuts)
|
||||
|
||||
logging.info(f"Processing {params.dataset}")
|
||||
with NumpyHdf5Writer(out_labels_ali_filename) as labels_writer:
|
||||
with NumpyHdf5Writer(out_aux_labels_ali_filename) as aux_labels_writer:
|
||||
cut_set = compute_alignments(
|
||||
model=model,
|
||||
dl=dl,
|
||||
labels_writer=labels_writer,
|
||||
aux_labels_writer=aux_labels_writer,
|
||||
params=params,
|
||||
graph_compiler=graph_compiler,
|
||||
)
|
||||
|
||||
cut_set.to_file(out_manifest_filename)
|
||||
|
||||
logging.info(
|
||||
f"For dataset {params.dataset}, its alignments with repeats are "
|
||||
f"saved to {out_labels_ali_filename}, the alignments without repeats "
|
||||
f"are saved to {out_aux_labels_ali_filename}, and the cut manifest "
|
||||
f"file is {out_manifest_filename}. Number of cuts: {len(cut_set)}"
|
||||
)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,435 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import List
|
||||
|
||||
import k2
|
||||
import kaldifeat
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torchaudio
|
||||
from conformer import Conformer
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
from icefall.decode import (
|
||||
get_lattice,
|
||||
one_best_decoding,
|
||||
rescore_with_attention_decoder,
|
||||
rescore_with_whole_lattice,
|
||||
)
|
||||
from icefall.utils import AttributeDict, get_texts
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--checkpoint",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the checkpoint. "
|
||||
"The checkpoint is assumed to be saved by "
|
||||
"icefall.checkpoint.save_checkpoint().",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--words-file",
|
||||
type=str,
|
||||
help="""Path to words.txt.
|
||||
Used only when method is not ctc-decoding.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--HLG",
|
||||
type=str,
|
||||
help="""Path to HLG.pt.
|
||||
Used only when method is not ctc-decoding.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
help="""Path to bpe.model.
|
||||
Used only when method is ctc-decoding.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="1best",
|
||||
help="""Decoding method.
|
||||
Possible values are:
|
||||
(0) ctc-decoding - Use CTC decoding. It uses a sentence
|
||||
piece model, i.e., lang_dir/bpe.model, to convert
|
||||
word pieces to words. It needs neither a lexicon
|
||||
nor an n-gram LM.
|
||||
(1) 1best - Use the best path as decoding output. Only
|
||||
the transformer encoder output is used for decoding.
|
||||
We call it HLG decoding.
|
||||
(2) whole-lattice-rescoring - Use an LM to rescore the
|
||||
decoding lattice and then use 1best to decode the
|
||||
rescored lattice.
|
||||
We call it HLG decoding + n-gram LM rescoring.
|
||||
(3) attention-decoder - Extract n paths from the rescored
|
||||
lattice and use the transformer attention decoder for
|
||||
rescoring.
|
||||
We call it HLG decoding + n-gram LM rescoring + attention
|
||||
decoder rescoring.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--G",
|
||||
type=str,
|
||||
help="""An LM for rescoring.
|
||||
Used only when method is
|
||||
whole-lattice-rescoring or attention-decoder.
|
||||
It's usually a 4-gram LM.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=100,
|
||||
help="""
|
||||
Used only when method is attention-decoder.
|
||||
It specifies the size of n-best list.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--ngram-lm-scale",
|
||||
type=float,
|
||||
default=1.3,
|
||||
help="""
|
||||
Used only when method is whole-lattice-rescoring and attention-decoder.
|
||||
It specifies the scale for n-gram LM scores.
|
||||
(Note: You need to tune it on a dataset.)
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--attention-decoder-scale",
|
||||
type=float,
|
||||
default=1.2,
|
||||
help="""
|
||||
Used only when method is attention-decoder.
|
||||
It specifies the scale for attention decoder scores.
|
||||
(Note: You need to tune it on a dataset.)
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""
|
||||
Used only when method is attention-decoder.
|
||||
It specifies the scale for lattice.scores when
|
||||
extracting n-best lists. A smaller value results in
|
||||
more unique number of paths with the risk of missing
|
||||
the best path.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sos-id",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""
|
||||
Used only when method is attention-decoder.
|
||||
It specifies ID for the SOS token.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-classes",
|
||||
type=int,
|
||||
default=500,
|
||||
help="""
|
||||
Vocab size in the BPE model.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--eos-id",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""
|
||||
Used only when method is attention-decoder.
|
||||
It specifies ID for the EOS token.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. "
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"sample_rate": 16000,
|
||||
# parameters for conformer
|
||||
"subsampling_factor": 4,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
"feature_dim": 80,
|
||||
"nhead": 8,
|
||||
"attention_dim": 512,
|
||||
"num_decoder_layers": 6,
|
||||
# parameters for decoding
|
||||
"search_beam": 20,
|
||||
"output_beam": 8,
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert sample_rate == expected_sample_rate, (
|
||||
f"expected sample rate: {expected_sample_rate}. "
|
||||
f"Given: {sample_rate}"
|
||||
)
|
||||
# We use only the first channel
|
||||
ans.append(wave[0])
|
||||
return ans
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
params = get_params()
|
||||
if args.method != "attention-decoder":
|
||||
# to save memory as the attention decoder
|
||||
# will not be used
|
||||
params.num_decoder_layers = 0
|
||||
|
||||
params.update(vars(args))
|
||||
logging.info(f"{params}")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info("Creating model")
|
||||
model = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
nhead=params.nhead,
|
||||
d_model=params.attention_dim,
|
||||
num_classes=params.num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
num_decoder_layers=params.num_decoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
|
||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||
model.load_state_dict(checkpoint["model"], strict=False)
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = params.sample_rate
|
||||
opts.mel_opts.num_bins = params.feature_dim
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {params.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||
)
|
||||
waves = [w.to(device) for w in waves]
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
|
||||
features = pad_sequence(
|
||||
features, batch_first=True, padding_value=math.log(1e-10)
|
||||
)
|
||||
|
||||
# Note: We don't use key padding mask for attention during decoding
|
||||
with torch.no_grad():
|
||||
nnet_output, memory, memory_key_padding_mask = model(features)
|
||||
|
||||
batch_size = nnet_output.shape[0]
|
||||
supervision_segments = torch.tensor(
|
||||
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
|
||||
dtype=torch.int32,
|
||||
)
|
||||
|
||||
if params.method == "ctc-decoding":
|
||||
logging.info("Use CTC decoding")
|
||||
bpe_model = spm.SentencePieceProcessor()
|
||||
bpe_model.load(params.bpe_model)
|
||||
max_token_id = params.num_classes - 1
|
||||
|
||||
H = k2.ctc_topo(
|
||||
max_token=max_token_id,
|
||||
modified=False,
|
||||
device=device,
|
||||
)
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
decoding_graph=H,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
token_ids = get_texts(best_path)
|
||||
hyps = bpe_model.decode(token_ids)
|
||||
hyps = [s.split() for s in hyps]
|
||||
elif params.method in [
|
||||
"1best",
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
]:
|
||||
logging.info(f"Loading HLG from {params.HLG}")
|
||||
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
||||
HLG = HLG.to(device)
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
# For whole-lattice-rescoring and attention-decoder
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
|
||||
if params.method in [
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
]:
|
||||
logging.info(f"Loading G from {params.G}")
|
||||
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
|
||||
# Add epsilon self-loops to G as we will compose
|
||||
# it with the whole lattice later
|
||||
G = G.to(device)
|
||||
G = k2.add_epsilon_self_loops(G)
|
||||
G = k2.arc_sort(G)
|
||||
G.lm_scores = G.scores.clone()
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
decoding_graph=HLG,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
if params.method == "1best":
|
||||
logging.info("Use HLG decoding")
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
elif params.method == "whole-lattice-rescoring":
|
||||
logging.info("Use HLG decoding + LM rescoring")
|
||||
best_path_dict = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=[params.ngram_lm_scale],
|
||||
)
|
||||
best_path = next(iter(best_path_dict.values()))
|
||||
elif params.method == "attention-decoder":
|
||||
logging.info("Use HLG + LM rescoring + attention decoder rescoring")
|
||||
rescored_lattice = rescore_with_whole_lattice(
|
||||
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=None
|
||||
)
|
||||
best_path_dict = rescore_with_attention_decoder(
|
||||
lattice=rescored_lattice,
|
||||
num_paths=params.num_paths,
|
||||
model=model,
|
||||
memory=memory,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
sos_id=params.sos_id,
|
||||
eos_id=params.eos_id,
|
||||
nbest_scale=params.nbest_scale,
|
||||
ngram_lm_scale=params.ngram_lm_scale,
|
||||
attention_scale=params.attention_decoder_scale,
|
||||
)
|
||||
best_path = next(iter(best_path_dict.values()))
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
||||
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.method}")
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(params.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
@ -1,100 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This file takes as input a lexicon.txt and output a new lexicon,
|
||||
in which each word has a unique pronunciation.
|
||||
|
||||
The way to do this is to keep only the first pronunciation of a word
|
||||
in lexicon.txt.
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple
|
||||
|
||||
from icefall.lexicon import read_lexicon, write_lexicon
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
It should contain a file lexicon.txt.
|
||||
This file will generate a new file uniq_lexicon.txt
|
||||
in it.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def filter_multiple_pronunications(
|
||||
lexicon: List[Tuple[str, List[str]]]
|
||||
) -> List[Tuple[str, List[str]]]:
|
||||
"""Remove multiple pronunciations of words from a lexicon.
|
||||
|
||||
If a word has more than one pronunciation in the lexicon, only
|
||||
the first one is kept, while other pronunciations are removed
|
||||
from the lexicon.
|
||||
|
||||
Args:
|
||||
lexicon:
|
||||
The input lexicon, containing a list of (word, [p1, p2, ..., pn]),
|
||||
where "p1, p2, ..., pn" are the pronunciations of the "word".
|
||||
Returns:
|
||||
Return a new lexicon where each word has a unique pronunciation.
|
||||
"""
|
||||
seen = set()
|
||||
ans = []
|
||||
|
||||
for word, tokens in lexicon:
|
||||
if word in seen:
|
||||
continue
|
||||
seen.add(word)
|
||||
ans.append((word, tokens))
|
||||
return ans
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
lang_dir = Path(args.lang_dir)
|
||||
|
||||
lexicon_filename = lang_dir / "lexicon.txt"
|
||||
|
||||
in_lexicon = read_lexicon(lexicon_filename)
|
||||
|
||||
out_lexicon = filter_multiple_pronunications(in_lexicon)
|
||||
|
||||
write_lexicon(lang_dir / "uniq_lexicon.txt", out_lexicon)
|
||||
|
||||
logging.info(f"Number of entries in lexicon.txt: {len(in_lexicon)}")
|
||||
logging.info(f"Number of entries in uniq_lexicon.txt: {len(out_lexicon)}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user