mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
First version of swoosh
This commit is contained in:
parent
d260b54177
commit
ec10573edc
@ -1212,6 +1212,72 @@ class TanSwish(torch.nn.Module):
|
|||||||
return TanSwishFunction.apply(x)
|
return TanSwishFunction.apply(x)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class SwooshFunction(torch.autograd.Function):
|
||||||
|
"""
|
||||||
|
swoosh(x) = log(1 + exp(x-4)) - 0.055*x - 0.15
|
||||||
|
|
||||||
|
derivatives are between -0.055 and 1-0.055.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, x: Tensor) -> Tensor:
|
||||||
|
requires_grad = x.requires_grad
|
||||||
|
x_dtype = x.dtype
|
||||||
|
|
||||||
|
if x.dtype == torch.float16:
|
||||||
|
x = x.to(torch.float32)
|
||||||
|
|
||||||
|
one = torch.tensor(1.0, dtype=x.dtype, device=x.device)
|
||||||
|
|
||||||
|
with torch.cuda.amp.autocast(enabled=False):
|
||||||
|
with torch.enable_grad():
|
||||||
|
x = x.detach()
|
||||||
|
x.requires_grad = True
|
||||||
|
y = torch.logaddexp(one, x - 4) - 0.055 * x - 0.15
|
||||||
|
|
||||||
|
if not requires_grad:
|
||||||
|
return y
|
||||||
|
y.backward(gradient = torch.ones_like(y))
|
||||||
|
|
||||||
|
grad = x.grad
|
||||||
|
floor = -0.055
|
||||||
|
ceil = 0.946 # real ceil would be 0.0945, give it extra room for roundoff.
|
||||||
|
|
||||||
|
d_scaled = ((grad - floor) * (255.0 / (ceil - floor)) + torch.rand_like(grad))
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# for self-testing only.
|
||||||
|
assert d_scaled.min() >= 0.0
|
||||||
|
assert d_scaled.max() < 256.0
|
||||||
|
|
||||||
|
d_int = d_scaled.to(torch.uint8)
|
||||||
|
ctx.save_for_backward(d_int)
|
||||||
|
if x.dtype == torch.float16 or torch.is_autocast_enabled():
|
||||||
|
y = y.to(torch.float16)
|
||||||
|
return y
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, y_grad: Tensor) -> Tensor:
|
||||||
|
d, = ctx.saved_tensors
|
||||||
|
# the same constants as used in forward pass.
|
||||||
|
floor = -0.055
|
||||||
|
ceil = 0.946
|
||||||
|
d = (d * ((ceil - floor) / 255.0) + floor)
|
||||||
|
return (y_grad * d)
|
||||||
|
|
||||||
|
|
||||||
|
class Swoosh(torch.nn.Module):
|
||||||
|
def forward(self, x: Tensor) -> Tensor:
|
||||||
|
"""Return tan-swish activation function which is tanh(x) sigmoid(x-1)n
|
||||||
|
"""
|
||||||
|
if torch.jit.is_scripting():
|
||||||
|
one = torch.tensor(1.0, dtype=x.dtype, device=x.device)
|
||||||
|
return torch.logaddexp(one, x - 4) - 0.055 * x - 0.15
|
||||||
|
return SwooshFunction.apply(x)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def _test_max_eig():
|
def _test_max_eig():
|
||||||
for proportion in [0.1, 0.5, 10.0]:
|
for proportion in [0.1, 0.5, 10.0]:
|
||||||
logging.info(f"proportion = {proportion}")
|
logging.info(f"proportion = {proportion}")
|
||||||
@ -1368,6 +1434,19 @@ def _test_tan_swish_deriv():
|
|||||||
x.requires_grad = True
|
x.requires_grad = True
|
||||||
y = m(x)
|
y = m(x)
|
||||||
|
|
||||||
|
def _test_swoosh_deriv():
|
||||||
|
x = torch.randn(10, 12, dtype=torch.double) * 3.0
|
||||||
|
x.requires_grad = True
|
||||||
|
m = Swoosh()
|
||||||
|
|
||||||
|
tol = (1.0 / 255.0)
|
||||||
|
torch.autograd.gradcheck(m, x, atol=tol)
|
||||||
|
|
||||||
|
# for self-test.
|
||||||
|
x = torch.randn(1000, 1000, dtype=torch.double) * 3.0
|
||||||
|
x.requires_grad = True
|
||||||
|
y = m(x)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def _test_softmax():
|
def _test_softmax():
|
||||||
@ -1395,3 +1474,4 @@ if __name__ == "__main__":
|
|||||||
_test_basic_norm()
|
_test_basic_norm()
|
||||||
_test_double_swish_deriv()
|
_test_double_swish_deriv()
|
||||||
_test_tan_swish_deriv()
|
_test_tan_swish_deriv()
|
||||||
|
_test_swoosh_deriv()
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user