Use a stateless decoder.

This commit is contained in:
Fangjun Kuang 2021-12-28 10:49:50 +08:00
parent 2cf1b56cb3
commit ec083e93d8
5 changed files with 77 additions and 292 deletions

View File

@ -78,7 +78,7 @@ class Decoder(nn.Module):
"""
Args:
y:
A 2-D tensor of shape (N, U) with BOS prepended.
A 2-D tensor of shape (N, U) with blank prepended.
states:
A tuple of two tensors containing the states information of
LSTM layers in this decoder.

View File

@ -1,219 +0,0 @@
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import torch
from model import Transducer
def greedy_search(model: Transducer, encoder_out: torch.Tensor) -> List[int]:
"""
Args:
model:
An instance of `Transducer`.
encoder_out:
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
Returns:
Return the decoded result.
"""
assert encoder_out.ndim == 3
# support only batch_size == 1 for now
assert encoder_out.size(0) == 1, encoder_out.size(0)
blank_id = model.decoder.blank_id
device = model.device
sos = torch.tensor([blank_id], device=device).reshape(1, 1)
decoder_out, (h, c) = model.decoder(sos)
T = encoder_out.size(1)
t = 0
hyp = []
sym_per_frame = 0
sym_per_utt = 0
max_sym_per_utt = 1000
max_sym_per_frame = 3
while t < T and sym_per_utt < max_sym_per_utt:
# fmt: off
current_encoder_out = encoder_out[:, t:t+1, :]
# fmt: on
logits = model.joiner(current_encoder_out, decoder_out)
# logits is (1, 1, 1, vocab_size)
log_prob = logits.log_softmax(dim=-1)
# log_prob is (1, 1, 1, vocab_size)
# TODO: Use logits.argmax()
y = log_prob.argmax()
if y != blank_id:
hyp.append(y.item())
y = y.reshape(1, 1)
decoder_out, (h, c) = model.decoder(y, (h, c))
sym_per_utt += 1
sym_per_frame += 1
if y == blank_id or sym_per_frame > max_sym_per_frame:
sym_per_frame = 0
t += 1
return hyp
@dataclass
class Hypothesis:
ys: List[int] # the predicted sequences so far
log_prob: float # The log prob of ys
# Optional decoder state. We assume it is LSTM for now,
# so the state is a tuple (h, c)
decoder_state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
def beam_search(
model: Transducer,
encoder_out: torch.Tensor,
beam: int = 5,
) -> List[int]:
"""
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
espnet/nets/beam_search_transducer.py#L247 is used as a reference.
Args:
model:
An instance of `Transducer`.
encoder_out:
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
beam:
Beam size.
Returns:
Return the decoded result.
"""
assert encoder_out.ndim == 3
# support only batch_size == 1 for now
assert encoder_out.size(0) == 1, encoder_out.size(0)
blank_id = model.decoder.blank_id
device = model.device
sos = torch.tensor([blank_id], device=device).reshape(1, 1)
decoder_out, (h, c) = model.decoder(sos)
T = encoder_out.size(1)
t = 0
B = [Hypothesis(ys=[blank_id], log_prob=0.0, decoder_state=None)]
max_u = 20000 # terminate after this number of steps
u = 0
cache: Dict[
str, Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]
] = {}
while t < T and u < max_u:
# fmt: off
current_encoder_out = encoder_out[:, t:t+1, :]
# fmt: on
A = B
B = []
# for hyp in A:
# for h in A:
# if h.ys == hyp.ys[:-1]:
# # update the score of hyp
# decoder_input = torch.tensor(
# [h.ys[-1]], device=device
# ).reshape(1, 1)
# decoder_out, _ = model.decoder(
# decoder_input, h.decoder_state
# )
# logits = model.joiner(current_encoder_out, decoder_out)
# log_prob = logits.log_softmax(dim=-1)
# log_prob = log_prob.squeeze()
# hyp.log_prob += h.log_prob + log_prob[hyp.ys[-1]].item()
while u < max_u:
y_star = max(A, key=lambda hyp: hyp.log_prob)
A.remove(y_star)
# Note: y_star.ys is unhashable, i.e., cannot be used
# as a key into a dict
cached_key = "_".join(map(str, y_star.ys))
if cached_key not in cache:
decoder_input = torch.tensor(
[y_star.ys[-1]], device=device
).reshape(1, 1)
decoder_out, decoder_state = model.decoder(
decoder_input,
y_star.decoder_state,
)
cache[cached_key] = (decoder_out, decoder_state)
else:
decoder_out, decoder_state = cache[cached_key]
logits = model.joiner(current_encoder_out, decoder_out)
log_prob = logits.log_softmax(dim=-1)
# log_prob is (1, 1, 1, vocab_size)
log_prob = log_prob.squeeze()
# Now log_prob is (vocab_size,)
# If we choose blank here, add the new hypothesis to B.
# Otherwise, add the new hypothesis to A
# First, choose blank
skip_log_prob = log_prob[blank_id]
new_y_star_log_prob = y_star.log_prob + skip_log_prob.item()
# ys[:] returns a copy of ys
new_y_star = Hypothesis(
ys=y_star.ys[:],
log_prob=new_y_star_log_prob,
# Caution: Use y_star.decoder_state here
decoder_state=y_star.decoder_state,
)
B.append(new_y_star)
# Second, choose other labels
for i, v in enumerate(log_prob.tolist()):
if i == blank_id:
continue
new_ys = y_star.ys + [i]
new_log_prob = y_star.log_prob + v
new_hyp = Hypothesis(
ys=new_ys,
log_prob=new_log_prob,
decoder_state=decoder_state,
)
A.append(new_hyp)
u += 1
# check whether B contains more than "beam" elements more probable
# than the most probable in A
A_most_probable = max(A, key=lambda hyp: hyp.log_prob)
B = sorted(
[hyp for hyp in B if hyp.log_prob > A_most_probable.log_prob],
key=lambda hyp: hyp.log_prob,
reverse=True,
)
if len(B) >= beam:
B = B[:beam]
break
t += 1
best_hyp = max(B, key=lambda hyp: hyp.log_prob / len(hyp.ys[1:]))
ys = best_hyp.ys[1:] # [1:] to remove the blank
return ys

View File

@ -0,0 +1 @@
../transducer_stateless/beam_search.py

View File

@ -114,6 +114,14 @@ def get_parser():
help="Used only when --decoding-method is beam_search",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
return parser
@ -124,14 +132,10 @@ def get_params() -> AttributeDict:
"feature_dim": 80,
"encoder_out_dim": 512,
"subsampling_factor": 4,
"encoder_hidden_size": 1024,
"num_encoder_layers": 4,
"encoder_hidden_size": 2048,
"num_encoder_layers": 6,
"proj_size": 512,
"vgg_frontend": False,
# decoder params
"decoder_embedding_dim": 1024,
"num_decoder_layers": 4,
"decoder_hidden_dim": 512,
"env_info": get_env_info(),
}
)
@ -153,11 +157,9 @@ def get_encoder_model(params: AttributeDict):
def get_decoder_model(params: AttributeDict):
decoder = Decoder(
vocab_size=params.vocab_size,
embedding_dim=params.decoder_embedding_dim,
embedding_dim=params.encoder_out_dim,
blank_id=params.blank_id,
num_layers=params.num_decoder_layers,
hidden_dim=params.decoder_hidden_dim,
output_dim=params.encoder_out_dim,
context_size=params.context_size,
)
return decoder

View File

@ -14,24 +14,30 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
# TODO(fangjun): Support switching between LSTM and GRU
class Decoder(nn.Module):
"""This class modifies the stateless decoder from the following paper:
RNN-transducer with stateless prediction network
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
It removes the recurrent connection from the decoder, i.e., the prediction
network. Different from the above paper, it adds an extra Conv1d
right after the embedding layer.
TODO: Implement https://arxiv.org/pdf/2109.07513.pdf
"""
def __init__(
self,
vocab_size: int,
embedding_dim: int,
blank_id: int,
num_layers: int,
hidden_dim: int,
output_dim: int,
embedding_dropout: float = 0.0,
rnn_dropout: float = 0.0,
context_size: int,
):
"""
Args:
@ -41,16 +47,9 @@ class Decoder(nn.Module):
Dimension of the input embedding.
blank_id:
The ID of the blank symbol.
num_layers:
Number of LSTM layers.
hidden_dim:
Hidden dimension of LSTM layers.
output_dim:
Output dimension of the decoder.
embedding_dropout:
Dropout rate for the embedding layer.
rnn_dropout:
Dropout for LSTM layers.
context_size:
Number of previous words to use to predict the next word.
1 means bigram; 2 means trigram. n means (n+1)-gram.
"""
super().__init__()
self.embedding = nn.Embedding(
@ -58,40 +57,42 @@ class Decoder(nn.Module):
embedding_dim=embedding_dim,
padding_idx=blank_id,
)
self.embedding_dropout = nn.Dropout(embedding_dropout)
# TODO(fangjun): Use layer normalized LSTM
self.rnn = nn.LSTM(
input_size=embedding_dim,
hidden_size=hidden_dim,
num_layers=num_layers,
batch_first=True,
dropout=rnn_dropout,
)
self.blank_id = blank_id
self.output_linear = nn.Linear(hidden_dim, output_dim)
def forward(
self,
y: torch.Tensor,
states: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
assert context_size >= 1, context_size
self.context_size = context_size
if context_size > 1:
self.conv = nn.Conv1d(
in_channels=embedding_dim,
out_channels=embedding_dim,
kernel_size=context_size,
padding=0,
groups=embedding_dim,
bias=False,
)
def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor:
"""
Args:
y:
A 2-D tensor of shape (N, U) with BOS prepended.
states:
A tuple of two tensors containing the states information of
LSTM layers in this decoder.
A 2-D tensor of shape (N, U) with blank prepended.
need_pad:
True to left pad the input. Should be True during training.
False to not pad the input. Should be False during inference.
Returns:
Return a tuple containing:
- rnn_output, a tensor of shape (N, U, C)
- (h, c), containing the state information for LSTM layers.
Both are of shape (num_layers, N, C)
Return a tensor of shape (N, U, embedding_dim).
"""
embeding_out = self.embedding(y)
embeding_out = self.embedding_dropout(embeding_out)
rnn_out, (h, c) = self.rnn(embeding_out, states)
out = self.output_linear(rnn_out)
return out, (h, c)
if self.context_size > 1:
embeding_out = embeding_out.permute(0, 2, 1)
if need_pad is True:
embeding_out = F.pad(
embeding_out, pad=(self.context_size - 1, 0)
)
else:
# During inference time, there is no need to do extra padding
# as we only need one output
assert embeding_out.size(-1) == self.context_size
embeding_out = self.conv(embeding_out)
embeding_out = embeding_out.permute(0, 2, 1)
return embeding_out

View File

@ -131,6 +131,14 @@ def get_parser():
help="The lr_factor for Noam optimizer",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
return parser
@ -172,9 +180,6 @@ def get_params() -> AttributeDict:
- subsampling_factor: The subsampling factor for the model.
- use_feat_batchnorm: Whether to do batch normalization for the
input features.
- attention_dim: Hidden dim for multi-head attention model.
- num_decoder_layers: Number of decoder layer of transformer decoder.
@ -195,14 +200,10 @@ def get_params() -> AttributeDict:
"feature_dim": 80,
"encoder_out_dim": 512,
"subsampling_factor": 4,
"encoder_hidden_size": 1024,
"num_encoder_layers": 4,
"encoder_hidden_size": 2048,
"num_encoder_layers": 6,
"proj_size": 512,
"vgg_frontend": False,
# decoder params
"decoder_embedding_dim": 1024,
"num_decoder_layers": 4,
"decoder_hidden_dim": 512,
# parameters for Noam
"warm_step": 80000, # For the 100h subset, use 8k
"env_info": get_env_info(),
@ -227,12 +228,11 @@ def get_encoder_model(params: AttributeDict):
def get_decoder_model(params: AttributeDict):
decoder = Decoder(
vocab_size=params.vocab_size,
embedding_dim=params.decoder_embedding_dim,
embedding_dim=params.encoder_out_dim,
blank_id=params.blank_id,
num_layers=params.num_decoder_layers,
hidden_dim=params.decoder_hidden_dim,
output_dim=params.encoder_out_dim,
context_size=params.context_size,
)
return decoder
@ -573,11 +573,11 @@ def run(rank, world_size, args):
logging.info("About to create model")
model = get_transducer_model(params)
checkpoints = load_checkpoint_if_available(params=params, model=model)
num_param = sum([p.numel() for p in model.parameters() if p.requires_grad])
logging.info(f"Number of model parameters: {num_param}")
checkpoints = load_checkpoint_if_available(params=params, model=model)
model.to(device)
if world_size > 1:
logging.info("Using DDP")