mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Add doc about FST-based CTC forced alignment. (#1482)
This commit is contained in:
parent
4d5c1f2e60
commit
ec0389a3c1
Binary file not shown.
BIN
docs/source/_static/kaldi-align/at.wav
Normal file
BIN
docs/source/_static/kaldi-align/at.wav
Normal file
Binary file not shown.
BIN
docs/source/_static/kaldi-align/beside.wav
Normal file
BIN
docs/source/_static/kaldi-align/beside.wav
Normal file
Binary file not shown.
BIN
docs/source/_static/kaldi-align/curiosity.wav
Normal file
BIN
docs/source/_static/kaldi-align/curiosity.wav
Normal file
Binary file not shown.
BIN
docs/source/_static/kaldi-align/had.wav
Normal file
BIN
docs/source/_static/kaldi-align/had.wav
Normal file
Binary file not shown.
BIN
docs/source/_static/kaldi-align/i.wav
Normal file
BIN
docs/source/_static/kaldi-align/i.wav
Normal file
Binary file not shown.
BIN
docs/source/_static/kaldi-align/me.wav
Normal file
BIN
docs/source/_static/kaldi-align/me.wav
Normal file
Binary file not shown.
BIN
docs/source/_static/kaldi-align/moment.wav
Normal file
BIN
docs/source/_static/kaldi-align/moment.wav
Normal file
Binary file not shown.
BIN
docs/source/_static/kaldi-align/that.wav
Normal file
BIN
docs/source/_static/kaldi-align/that.wav
Normal file
Binary file not shown.
BIN
docs/source/_static/kaldi-align/this.wav
Normal file
BIN
docs/source/_static/kaldi-align/this.wav
Normal file
Binary file not shown.
@ -98,4 +98,6 @@ rst_epilog = """
|
||||
.. _Next-gen Kaldi: https://github.com/k2-fsa
|
||||
.. _Kaldi: https://github.com/kaldi-asr/kaldi
|
||||
.. _lilcom: https://github.com/danpovey/lilcom
|
||||
.. _CTC: https://www.cs.toronto.edu/~graves/icml_2006.pdf
|
||||
.. _kaldi-decoder: https://github.com/k2-fsa/kaldi-decoder
|
||||
"""
|
||||
|
@ -34,6 +34,8 @@ which will give you something like below:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
"torch2.3.1-cuda12.1"
|
||||
"torch2.3.1-cuda11.8"
|
||||
"torch2.2.2-cuda12.1"
|
||||
"torch2.2.2-cuda11.8"
|
||||
"torch2.2.1-cuda12.1"
|
||||
|
41
docs/source/fst-based-forced-alignment/diff.rst
Normal file
41
docs/source/fst-based-forced-alignment/diff.rst
Normal file
@ -0,0 +1,41 @@
|
||||
Two approaches
|
||||
==============
|
||||
|
||||
Two approaches for FST-based forced alignment will be described:
|
||||
|
||||
- `Kaldi`_-based
|
||||
- `k2`_-based
|
||||
|
||||
Note that the `Kaldi`_-based approach does not depend on `Kaldi`_ at all.
|
||||
That is, you don't need to install `Kaldi`_ in order to use it. Instead,
|
||||
we use `kaldi-decoder`_, which has ported the C++ decoding code from `Kaldi`_
|
||||
without depending on it.
|
||||
|
||||
Differences between the two approaches
|
||||
--------------------------------------
|
||||
|
||||
The following table compares the differences between the two approaches.
|
||||
|
||||
.. list-table::
|
||||
|
||||
* - Features
|
||||
- `Kaldi`_-based
|
||||
- `k2`_-based
|
||||
* - Support CUDA
|
||||
- No
|
||||
- Yes
|
||||
* - Support CPU
|
||||
- Yes
|
||||
- Yes
|
||||
* - Support batch processing
|
||||
- No
|
||||
- Yes on CUDA; No on CPU
|
||||
* - Support streaming models
|
||||
- Yes
|
||||
- No
|
||||
* - Support C++ APIs
|
||||
- Yes
|
||||
- Yes
|
||||
* - Support Python APIs
|
||||
- Yes
|
||||
- Yes
|
18
docs/source/fst-based-forced-alignment/index.rst
Normal file
18
docs/source/fst-based-forced-alignment/index.rst
Normal file
@ -0,0 +1,18 @@
|
||||
FST-based forced alignment
|
||||
==========================
|
||||
|
||||
This section describes how to perform **FST-based** ``forced alignment`` with models
|
||||
trained by `CTC`_ loss.
|
||||
|
||||
We use `CTC FORCED ALIGNMENT API TUTORIAL <https://pytorch.org/audio/main/tutorials/ctc_forced_alignment_api_tutorial.html>`_
|
||||
from `torchaudio`_ as a reference in this section.
|
||||
|
||||
Different from `torchaudio`_, we use an ``FST``-based approach.
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
:caption: Contents:
|
||||
|
||||
diff
|
||||
kaldi-based
|
||||
k2-based
|
4
docs/source/fst-based-forced-alignment/k2-based.rst
Normal file
4
docs/source/fst-based-forced-alignment/k2-based.rst
Normal file
@ -0,0 +1,4 @@
|
||||
k2-based forced alignment
|
||||
=========================
|
||||
|
||||
TODO(fangjun)
|
712
docs/source/fst-based-forced-alignment/kaldi-based.rst
Normal file
712
docs/source/fst-based-forced-alignment/kaldi-based.rst
Normal file
@ -0,0 +1,712 @@
|
||||
Kaldi-based forced alignment
|
||||
============================
|
||||
|
||||
This section describes in detail how to use `kaldi-decoder`_
|
||||
for **FST-based** ``forced alignment`` with models trained by `CTC`_ loss.
|
||||
|
||||
.. hint::
|
||||
|
||||
We have a colab notebook walking you through this section step by step.
|
||||
|
||||
|kaldi-based forced alignment colab notebook|
|
||||
|
||||
.. |kaldi-based forced alignment colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg
|
||||
:target: https://github.com/k2-fsa/colab/blob/master/icefall/ctc_forced_alignment_fst_based_kaldi.ipynb
|
||||
|
||||
Prepare the environment
|
||||
-----------------------
|
||||
|
||||
Before you continue, make sure you have setup `icefall`_ by following :ref:`install icefall`.
|
||||
|
||||
.. hint::
|
||||
|
||||
You don't need to install `Kaldi`_. We will ``NOT`` use `Kaldi`_ below.
|
||||
|
||||
Get the test data
|
||||
-----------------
|
||||
|
||||
We use the test wave
|
||||
from `CTC FORCED ALIGNMENT API TUTORIAL <https://pytorch.org/audio/main/tutorials/ctc_forced_alignment_api_tutorial.html>`_
|
||||
|
||||
.. code-block:: python3
|
||||
|
||||
import torchaudio
|
||||
|
||||
# Download test wave
|
||||
speech_file = torchaudio.utils.download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav")
|
||||
print(speech_file)
|
||||
waveform, sr = torchaudio.load(speech_file)
|
||||
transcript = "i had that curiosity beside me at this moment".split()
|
||||
print(waveform.shape, sr)
|
||||
|
||||
assert waveform.ndim == 2
|
||||
assert waveform.shape[0] == 1
|
||||
assert sr == 16000
|
||||
|
||||
The test wave is downloaded to::
|
||||
|
||||
$HOME/.cache/torch/hub/torchaudio/tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<th>Wave filename</th>
|
||||
<th>Content</th>
|
||||
<th>Text</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav</td>
|
||||
<td>
|
||||
<audio title="Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav" controls="controls">
|
||||
<source src="/icefall/_static/kaldi-align/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav" type="audio/wav">
|
||||
Your browser does not support the <code>audio</code> element.
|
||||
</audio>
|
||||
</td>
|
||||
<td>
|
||||
i had that curiosity beside me at this moment
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
We use the test model
|
||||
from `CTC FORCED ALIGNMENT API TUTORIAL <https://pytorch.org/audio/main/tutorials/ctc_forced_alignment_api_tutorial.html>`_
|
||||
|
||||
.. code-block:: python3
|
||||
|
||||
import torch
|
||||
|
||||
bundle = torchaudio.pipelines.MMS_FA
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model = bundle.get_model(with_star=False).to(device)
|
||||
|
||||
The model is downloaded to::
|
||||
|
||||
$HOME/.cache/torch/hub/checkpoints/model.pt
|
||||
|
||||
Compute log_probs
|
||||
-----------------
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
with torch.inference_mode():
|
||||
emission, _ = model(waveform.to(device))
|
||||
print(emission.shape)
|
||||
|
||||
It should print::
|
||||
|
||||
torch.Size([1, 169, 28])
|
||||
|
||||
Create token2id and id2token
|
||||
----------------------------
|
||||
|
||||
.. code-block:: python3
|
||||
|
||||
token2id = bundle.get_dict(star=None)
|
||||
id2token = {i:t for t, i in token2id.items()}
|
||||
token2id["<eps>"] = 0
|
||||
del token2id["-"]
|
||||
|
||||
Create word2id and id2word
|
||||
--------------------------
|
||||
|
||||
.. code-block:: python3
|
||||
|
||||
words = list(set(transcript))
|
||||
word2id = dict()
|
||||
word2id['eps'] = 0
|
||||
for i, w in enumerate(words):
|
||||
word2id[w] = i + 1
|
||||
|
||||
id2word = {i:w for w, i in word2id.items()}
|
||||
|
||||
Note that we only use words from the transcript of the test wave.
|
||||
|
||||
Generate lexicon-related files
|
||||
------------------------------
|
||||
|
||||
We use the code below to generate the following 4 files:
|
||||
|
||||
- ``lexicon.txt``
|
||||
- ``tokens.txt``
|
||||
- ``words.txt``
|
||||
- ``lexicon_disambig.txt``
|
||||
|
||||
.. caution::
|
||||
|
||||
``words.txt`` contains only words from the transcript of the test wave.
|
||||
|
||||
.. code-block:: python3
|
||||
|
||||
from prepare_lang import add_disambig_symbols
|
||||
|
||||
lexicon = [(w, list(w)) for w in word2id if w != "eps"]
|
||||
lexicon_disambig, max_disambig_id = add_disambig_symbols(lexicon)
|
||||
|
||||
with open('lexicon.txt', 'w', encoding='utf-8') as f:
|
||||
for w, tokens in lexicon:
|
||||
f.write(f"{w} {' '.join(tokens)}\n")
|
||||
|
||||
with open('lexicon_disambig.txt', 'w', encoding='utf-8') as f:
|
||||
for w, tokens in lexicon_disambig:
|
||||
f.write(f"{w} {' '.join(tokens)}\n")
|
||||
|
||||
with open('tokens.txt', 'w', encoding='utf-8') as f:
|
||||
for t, i in token2id.items():
|
||||
if t == '-':
|
||||
t = "<eps>"
|
||||
f.write(f"{t} {i}\n")
|
||||
|
||||
for k in range(max_disambig_id + 2):
|
||||
f.write(f"#{k} {len(token2id) + k}\n")
|
||||
|
||||
with open('words.txt', 'w', encoding='utf-8') as f:
|
||||
for w, i in word2id.items():
|
||||
f.write(f"{w} {i}\n")
|
||||
f.write(f'#0 {len(word2id)}\n')
|
||||
|
||||
|
||||
To give you an idea about what the generated files look like::
|
||||
|
||||
head -n 50 lexicon.txt lexicon_disambig.txt tokens.txt words.txt
|
||||
|
||||
prints::
|
||||
|
||||
==> lexicon.txt <==
|
||||
moment m o m e n t
|
||||
beside b e s i d e
|
||||
i i
|
||||
this t h i s
|
||||
curiosity c u r i o s i t y
|
||||
had h a d
|
||||
that t h a t
|
||||
at a t
|
||||
me m e
|
||||
|
||||
==> lexicon_disambig.txt <==
|
||||
moment m o m e n t
|
||||
beside b e s i d e
|
||||
i i
|
||||
this t h i s
|
||||
curiosity c u r i o s i t y
|
||||
had h a d
|
||||
that t h a t
|
||||
at a t
|
||||
me m e
|
||||
|
||||
==> tokens.txt <==
|
||||
a 1
|
||||
i 2
|
||||
e 3
|
||||
n 4
|
||||
o 5
|
||||
u 6
|
||||
t 7
|
||||
s 8
|
||||
r 9
|
||||
m 10
|
||||
k 11
|
||||
l 12
|
||||
d 13
|
||||
g 14
|
||||
h 15
|
||||
y 16
|
||||
b 17
|
||||
p 18
|
||||
w 19
|
||||
c 20
|
||||
v 21
|
||||
j 22
|
||||
z 23
|
||||
f 24
|
||||
' 25
|
||||
q 26
|
||||
x 27
|
||||
<eps> 0
|
||||
#0 28
|
||||
#1 29
|
||||
|
||||
==> words.txt <==
|
||||
eps 0
|
||||
moment 1
|
||||
beside 2
|
||||
i 3
|
||||
this 4
|
||||
curiosity 5
|
||||
had 6
|
||||
that 7
|
||||
at 8
|
||||
me 9
|
||||
#0 10
|
||||
|
||||
.. note::
|
||||
|
||||
This test model uses characters as modeling unit. If you use other types of
|
||||
modeling unit, the same code can be used without any change.
|
||||
|
||||
Convert transcript to an FST graph
|
||||
----------------------------------
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
egs/librispeech/ASR/local/prepare_lang_fst.py --lang-dir ./
|
||||
|
||||
The above command should generate two files ``H.fst`` and ``HL.fst``. We will
|
||||
use ``HL.fst`` below::
|
||||
|
||||
-rw-r--r-- 1 root root 13K Jun 12 08:28 H.fst
|
||||
-rw-r--r-- 1 root root 3.7K Jun 12 08:28 HL.fst
|
||||
|
||||
Force aligner
|
||||
-------------
|
||||
|
||||
Now, everything is ready. We can use the following code to get forced alignments.
|
||||
|
||||
.. code-block:: python3
|
||||
|
||||
from kaldi_decoder import DecodableCtc, FasterDecoder, FasterDecoderOptions
|
||||
import kaldifst
|
||||
|
||||
def force_align():
|
||||
HL = kaldifst.StdVectorFst.read("./HL.fst")
|
||||
decodable = DecodableCtc(emission[0].contiguous().cpu().numpy())
|
||||
decoder_opts = FasterDecoderOptions(max_active=3000)
|
||||
decoder = FasterDecoder(HL, decoder_opts)
|
||||
decoder.decode(decodable)
|
||||
if not decoder.reached_final():
|
||||
print(f"failed to decode xxx")
|
||||
return None
|
||||
ok, best_path = decoder.get_best_path()
|
||||
|
||||
(
|
||||
ok,
|
||||
isymbols_out,
|
||||
osymbols_out,
|
||||
total_weight,
|
||||
) = kaldifst.get_linear_symbol_sequence(best_path)
|
||||
if not ok:
|
||||
print(f"failed to get linear symbol sequence for xxx")
|
||||
return None
|
||||
|
||||
# We need to use i-1 here since we have incremented tokens during
|
||||
# HL construction
|
||||
alignment = [i-1 for i in isymbols_out]
|
||||
return alignment
|
||||
|
||||
alignment = force_align()
|
||||
|
||||
for i, a in enumerate(alignment):
|
||||
print(i, id2token[a])
|
||||
|
||||
The output should be identical to
|
||||
`<https://pytorch.org/audio/main/tutorials/ctc_forced_alignment_api_tutorial.html#frame-level-alignments>`_.
|
||||
|
||||
For ease of reference, we list the output below::
|
||||
|
||||
0 -
|
||||
1 -
|
||||
2 -
|
||||
3 -
|
||||
4 -
|
||||
5 -
|
||||
6 -
|
||||
7 -
|
||||
8 -
|
||||
9 -
|
||||
10 -
|
||||
11 -
|
||||
12 -
|
||||
13 -
|
||||
14 -
|
||||
15 -
|
||||
16 -
|
||||
17 -
|
||||
18 -
|
||||
19 -
|
||||
20 -
|
||||
21 -
|
||||
22 -
|
||||
23 -
|
||||
24 -
|
||||
25 -
|
||||
26 -
|
||||
27 -
|
||||
28 -
|
||||
29 -
|
||||
30 -
|
||||
31 -
|
||||
32 i
|
||||
33 -
|
||||
34 -
|
||||
35 h
|
||||
36 h
|
||||
37 a
|
||||
38 -
|
||||
39 -
|
||||
40 -
|
||||
41 d
|
||||
42 -
|
||||
43 -
|
||||
44 t
|
||||
45 h
|
||||
46 -
|
||||
47 a
|
||||
48 -
|
||||
49 -
|
||||
50 t
|
||||
51 -
|
||||
52 -
|
||||
53 -
|
||||
54 c
|
||||
55 -
|
||||
56 -
|
||||
57 -
|
||||
58 u
|
||||
59 u
|
||||
60 -
|
||||
61 -
|
||||
62 -
|
||||
63 r
|
||||
64 -
|
||||
65 i
|
||||
66 -
|
||||
67 -
|
||||
68 -
|
||||
69 -
|
||||
70 -
|
||||
71 -
|
||||
72 o
|
||||
73 -
|
||||
74 -
|
||||
75 -
|
||||
76 -
|
||||
77 -
|
||||
78 -
|
||||
79 s
|
||||
80 -
|
||||
81 -
|
||||
82 -
|
||||
83 i
|
||||
84 -
|
||||
85 t
|
||||
86 -
|
||||
87 -
|
||||
88 y
|
||||
89 -
|
||||
90 -
|
||||
91 -
|
||||
92 -
|
||||
93 b
|
||||
94 -
|
||||
95 e
|
||||
96 -
|
||||
97 -
|
||||
98 -
|
||||
99 -
|
||||
100 -
|
||||
101 s
|
||||
102 -
|
||||
103 -
|
||||
104 -
|
||||
105 -
|
||||
106 -
|
||||
107 -
|
||||
108 -
|
||||
109 -
|
||||
110 i
|
||||
111 -
|
||||
112 -
|
||||
113 d
|
||||
114 e
|
||||
115 -
|
||||
116 m
|
||||
117 -
|
||||
118 -
|
||||
119 e
|
||||
120 -
|
||||
121 -
|
||||
122 -
|
||||
123 -
|
||||
124 a
|
||||
125 -
|
||||
126 -
|
||||
127 t
|
||||
128 -
|
||||
129 t
|
||||
130 h
|
||||
131 -
|
||||
132 i
|
||||
133 -
|
||||
134 -
|
||||
135 -
|
||||
136 s
|
||||
137 -
|
||||
138 -
|
||||
139 -
|
||||
140 -
|
||||
141 m
|
||||
142 -
|
||||
143 -
|
||||
144 o
|
||||
145 -
|
||||
146 -
|
||||
147 -
|
||||
148 m
|
||||
149 -
|
||||
150 -
|
||||
151 e
|
||||
152 -
|
||||
153 n
|
||||
154 -
|
||||
155 t
|
||||
156 -
|
||||
157 -
|
||||
158 -
|
||||
159 -
|
||||
160 -
|
||||
161 -
|
||||
162 -
|
||||
163 -
|
||||
164 -
|
||||
165 -
|
||||
166 -
|
||||
167 -
|
||||
168 -
|
||||
|
||||
To merge tokens, we use::
|
||||
|
||||
from icefall.ctc import merge_tokens
|
||||
token_spans = merge_tokens(alignment)
|
||||
for span in token_spans:
|
||||
print(id2token[span.token], span.start, span.end)
|
||||
|
||||
The output is given below::
|
||||
|
||||
i 32 33
|
||||
h 35 37
|
||||
a 37 38
|
||||
d 41 42
|
||||
t 44 45
|
||||
h 45 46
|
||||
a 47 48
|
||||
t 50 51
|
||||
c 54 55
|
||||
u 58 60
|
||||
r 63 64
|
||||
i 65 66
|
||||
o 72 73
|
||||
s 79 80
|
||||
i 83 84
|
||||
t 85 86
|
||||
y 88 89
|
||||
b 93 94
|
||||
e 95 96
|
||||
s 101 102
|
||||
i 110 111
|
||||
d 113 114
|
||||
e 114 115
|
||||
m 116 117
|
||||
e 119 120
|
||||
a 124 125
|
||||
t 127 128
|
||||
t 129 130
|
||||
h 130 131
|
||||
i 132 133
|
||||
s 136 137
|
||||
m 141 142
|
||||
o 144 145
|
||||
m 148 149
|
||||
e 151 152
|
||||
n 153 154
|
||||
t 155 156
|
||||
|
||||
All of the code below is copied and modified
|
||||
from `<https://pytorch.org/audio/main/tutorials/ctc_forced_alignment_api_tutorial.html>`_.
|
||||
|
||||
Segment each word using the computed alignments
|
||||
-----------------------------------------------
|
||||
|
||||
.. code-block:: python3
|
||||
|
||||
def unflatten(list_, lengths):
|
||||
assert len(list_) == sum(lengths)
|
||||
i = 0
|
||||
ret = []
|
||||
for l in lengths:
|
||||
ret.append(list_[i : i + l])
|
||||
i += l
|
||||
return ret
|
||||
|
||||
|
||||
word_spans = unflatten(token_spans, [len(word) for word in transcript])
|
||||
print(word_spans)
|
||||
|
||||
The output is::
|
||||
|
||||
[[TokenSpan(token=2, start=32, end=33)],
|
||||
[TokenSpan(token=15, start=35, end=37), TokenSpan(token=1, start=37, end=38), TokenSpan(token=13, start=41, end=42)],
|
||||
[TokenSpan(token=7, start=44, end=45), TokenSpan(token=15, start=45, end=46), TokenSpan(token=1, start=47, end=48), TokenSpan(token=7, start=50, end=51)],
|
||||
[TokenSpan(token=20, start=54, end=55), TokenSpan(token=6, start=58, end=60), TokenSpan(token=9, start=63, end=64), TokenSpan(token=2, start=65, end=66), TokenSpan(token=5, start=72, end=73), TokenSpan(token=8, start=79, end=80), TokenSpan(token=2, start=83, end=84), TokenSpan(token=7, start=85, end=86), TokenSpan(token=16, start=88, end=89)],
|
||||
[TokenSpan(token=17, start=93, end=94), TokenSpan(token=3, start=95, end=96), TokenSpan(token=8, start=101, end=102), TokenSpan(token=2, start=110, end=111), TokenSpan(token=13, start=113, end=114), TokenSpan(token=3, start=114, end=115)],
|
||||
[TokenSpan(token=10, start=116, end=117), TokenSpan(token=3, start=119, end=120)],
|
||||
[TokenSpan(token=1, start=124, end=125), TokenSpan(token=7, start=127, end=128)],
|
||||
[TokenSpan(token=7, start=129, end=130), TokenSpan(token=15, start=130, end=131), TokenSpan(token=2, start=132, end=133), TokenSpan(token=8, start=136, end=137)],
|
||||
[TokenSpan(token=10, start=141, end=142), TokenSpan(token=5, start=144, end=145), TokenSpan(token=10, start=148, end=149), TokenSpan(token=3, start=151, end=152), TokenSpan(token=4, start=153, end=154), TokenSpan(token=7, start=155, end=156)]
|
||||
]
|
||||
|
||||
|
||||
.. code-block:: python3
|
||||
|
||||
def preview_word(waveform, spans, num_frames, transcript, sample_rate=bundle.sample_rate):
|
||||
ratio = waveform.size(1) / num_frames
|
||||
x0 = int(ratio * spans[0].start)
|
||||
x1 = int(ratio * spans[-1].end)
|
||||
print(f"{transcript} {x0 / sample_rate:.3f} - {x1 / sample_rate:.3f} sec")
|
||||
segment = waveform[:, x0:x1]
|
||||
return IPython.display.Audio(segment.numpy(), rate=sample_rate)
|
||||
num_frames = emission.size(1)
|
||||
|
||||
.. code-block:: python3
|
||||
|
||||
preview_word(waveform, word_spans[0], num_frames, transcript[0])
|
||||
preview_word(waveform, word_spans[1], num_frames, transcript[1])
|
||||
preview_word(waveform, word_spans[2], num_frames, transcript[2])
|
||||
preview_word(waveform, word_spans[3], num_frames, transcript[3])
|
||||
preview_word(waveform, word_spans[4], num_frames, transcript[4])
|
||||
preview_word(waveform, word_spans[5], num_frames, transcript[5])
|
||||
preview_word(waveform, word_spans[6], num_frames, transcript[6])
|
||||
preview_word(waveform, word_spans[7], num_frames, transcript[7])
|
||||
preview_word(waveform, word_spans[8], num_frames, transcript[8])
|
||||
|
||||
The segmented wave of each word along with its time stamp is given below:
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<th>Word</th>
|
||||
<th>Time</th>
|
||||
<th>Wave</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>i</td>
|
||||
<td>0.644 - 0.664 sec</td>
|
||||
<td>
|
||||
<audio title="i.wav" controls="controls">
|
||||
<source src="/icefall/_static/kaldi-align/i.wav" type="audio/wav">
|
||||
Your browser does not support the <code>audio</code> element.
|
||||
</audio>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>had</td>
|
||||
<td>0.704 - 0.845 sec</td>
|
||||
<td>
|
||||
<audio title="had.wav" controls="controls">
|
||||
<source src="/icefall/_static/kaldi-align/had.wav" type="audio/wav">
|
||||
Your browser does not support the <code>audio</code> element.
|
||||
</audio>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>that</td>
|
||||
<td>0.885 - 1.026 sec</td>
|
||||
<td>
|
||||
<audio title="that.wav" controls="controls">
|
||||
<source src="/icefall/_static/kaldi-align/that.wav" type="audio/wav">
|
||||
Your browser does not support the <code>audio</code> element.
|
||||
</audio>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>curiosity</td>
|
||||
<td>1.086 - 1.790 sec</td>
|
||||
<td>
|
||||
<audio title="curiosity.wav" controls="controls">
|
||||
<source src="/icefall/_static/kaldi-align/curiosity.wav" type="audio/wav">
|
||||
Your browser does not support the <code>audio</code> element.
|
||||
</audio>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>beside</td>
|
||||
<td>1.871 - 2.314 sec</td>
|
||||
<td>
|
||||
<audio title="beside.wav" controls="controls">
|
||||
<source src="/icefall/_static/kaldi-align/beside.wav" type="audio/wav">
|
||||
Your browser does not support the <code>audio</code> element.
|
||||
</audio>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>me</td>
|
||||
<td>2.334 - 2.414 sec</td>
|
||||
<td>
|
||||
<audio title="me.wav" controls="controls">
|
||||
<source src="/icefall/_static/kaldi-align/me.wav" type="audio/wav">
|
||||
Your browser does not support the <code>audio</code> element.
|
||||
</audio>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>at</td>
|
||||
<td>2.495 - 2.575 sec</td>
|
||||
<td>
|
||||
<audio title="at.wav" controls="controls">
|
||||
<source src="/icefall/_static/kaldi-align/at.wav" type="audio/wav">
|
||||
Your browser does not support the <code>audio</code> element.
|
||||
</audio>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>this</td>
|
||||
<td>2.595 - 2.756 sec</td>
|
||||
<td>
|
||||
<audio title="this.wav" controls="controls">
|
||||
<source src="/icefall/_static/kaldi-align/this.wav" type="audio/wav">
|
||||
Your browser does not support the <code>audio</code> element.
|
||||
</audio>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>moment</td>
|
||||
<td>2.837 - 3.138 sec</td>
|
||||
<td>
|
||||
<audio title="moment.wav" controls="controls">
|
||||
<source src="/icefall/_static/kaldi-align/moment.wav" type="audio/wav">
|
||||
Your browser does not support the <code>audio</code> element.
|
||||
</audio>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
We repost the whole wave below for ease of reference:
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<th>Wave filename</th>
|
||||
<th>Content</th>
|
||||
<th>Text</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav</td>
|
||||
<td>
|
||||
<audio title="Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav" controls="controls">
|
||||
<source src="/icefall/_static/kaldi-align/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav" type="audio/wav">
|
||||
Your browser does not support the <code>audio</code> element.
|
||||
</audio>
|
||||
</td>
|
||||
<td>
|
||||
i had that curiosity beside me at this moment
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
Summary
|
||||
-------
|
||||
|
||||
Congratulations! You have succeeded in using the FST-based approach to
|
||||
compute alignment of a test wave.
|
@ -25,7 +25,7 @@ speech recognition recipes using `k2 <https://github.com/k2-fsa/k2>`_.
|
||||
docker/index
|
||||
faqs
|
||||
model-export/index
|
||||
|
||||
fst-based-forced-alignment/index
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 3
|
||||
|
@ -15,8 +15,8 @@ We will show you step by step how to export it to `ncnn`_ and run it with `sherp
|
||||
|
||||
.. caution::
|
||||
|
||||
Please use a more recent version of PyTorch. For instance, ``torch 1.8``
|
||||
may ``not`` work.
|
||||
``torch > 2.0`` may not work. If you get errors while building pnnx, please switch
|
||||
to ``torch < 2.0``.
|
||||
|
||||
1. Download the pre-trained model
|
||||
---------------------------------
|
||||
|
@ -15,8 +15,8 @@ We will show you step by step how to export it to `ncnn`_ and run it with `sherp
|
||||
|
||||
.. caution::
|
||||
|
||||
Please use a more recent version of PyTorch. For instance, ``torch 1.8``
|
||||
may ``not`` work.
|
||||
``torch > 2.0`` may not work. If you get errors while building pnnx, please switch
|
||||
to ``torch < 2.0``.
|
||||
|
||||
1. Download the pre-trained model
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
@ -15,8 +15,8 @@ We will show you step by step how to export it to `ncnn`_ and run it with `sherp
|
||||
|
||||
.. caution::
|
||||
|
||||
Please use a more recent version of PyTorch. For instance, ``torch 1.8``
|
||||
may ``not`` work.
|
||||
``torch > 2.0`` may not work. If you get errors while building pnnx, please switch
|
||||
to ``torch < 2.0``.
|
||||
|
||||
1. Download the pre-trained model
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
Loading…
x
Reference in New Issue
Block a user