Zipformer Onnx FP16 (#1671)

Signed-off-by: manickavela29 <manickavela1998@gmail.com>
This commit is contained in:
Manix 2024-06-27 13:38:24 +05:30 committed by GitHub
parent b594a3875b
commit eaab2c819f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 58 additions and 5 deletions

View File

@ -48,7 +48,8 @@ popd
--joiner-dim 512 \
--causal True \
--chunk-size 16 \
--left-context-frames 128
--left-context-frames 128 \
--fp16 True
The --chunk-size in training is "16,32,64,-1", so we select one of them
(excluding -1) during streaming export. The same applies to `--left-context`,
@ -73,6 +74,7 @@ import onnx
import torch
import torch.nn as nn
from decoder import Decoder
from onnxconverter_common import float16
from onnxruntime.quantization import QuantType, quantize_dynamic
from scaling_converter import convert_scaled_to_non_scaled
from train import add_model_arguments, get_model, get_params
@ -154,6 +156,13 @@ def get_parser():
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--fp16",
type=str2bool,
default=False,
help="Whether to export models in fp16",
)
add_model_arguments(parser)
return parser
@ -479,7 +488,6 @@ def export_encoder_model_onnx(
add_meta_data(filename=encoder_filename, meta_data=meta_data)
def export_decoder_model_onnx(
decoder_model: OnnxDecoder,
decoder_filename: str,
@ -747,11 +755,29 @@ def main():
)
logging.info(f"Exported joiner to {joiner_filename}")
if(params.fp16) :
logging.info("Generate fp16 models")
encoder = onnx.load(encoder_filename)
encoder_fp16 = float16.convert_float_to_float16(encoder, keep_io_types=True)
encoder_filename_fp16 = params.exp_dir / f"encoder-{suffix}.fp16.onnx"
onnx.save(encoder_fp16,encoder_filename_fp16)
decoder = onnx.load(decoder_filename)
decoder_fp16 = float16.convert_float_to_float16(decoder, keep_io_types=True)
decoder_filename_fp16 = params.exp_dir / f"decoder-{suffix}.fp16.onnx"
onnx.save(decoder_fp16,decoder_filename_fp16)
joiner = onnx.load(joiner_filename)
joiner_fp16 = float16.convert_float_to_float16(joiner, keep_io_types=True)
joiner_filename_fp16 = params.exp_dir / f"joiner-{suffix}.fp16.onnx"
onnx.save(joiner_fp16,joiner_filename_fp16)
# Generate int8 quantization models
# See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection
logging.info("Generate int8 quantization models")
encoder_filename_int8 = params.exp_dir / f"encoder-{suffix}.int8.onnx"
quantize_dynamic(
model_input=encoder_filename,

View File

@ -48,8 +48,8 @@ popd
--joiner-dim 512 \
--causal False \
--chunk-size "16,32,64,-1" \
--left-context-frames "64,128,256,-1"
--left-context-frames "64,128,256,-1" \
--fp16 True
It will generate the following 3 files inside $repo/exp:
- encoder-epoch-99-avg-1.onnx
@ -70,6 +70,7 @@ import onnx
import torch
import torch.nn as nn
from decoder import Decoder
from onnxconverter_common import float16
from onnxruntime.quantization import QuantType, quantize_dynamic
from scaling_converter import convert_scaled_to_non_scaled
from train import add_model_arguments, get_model, get_params
@ -151,6 +152,13 @@ def get_parser():
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--fp16",
type=str2bool,
default=False,
help="Whether to export models in fp16",
)
add_model_arguments(parser)
return parser
@ -584,6 +592,24 @@ def main():
)
logging.info(f"Exported joiner to {joiner_filename}")
if(params.fp16) :
logging.info("Generate fp16 models")
encoder = onnx.load(encoder_filename)
encoder_fp16 = float16.convert_float_to_float16(encoder, keep_io_types=True)
encoder_filename_fp16 = params.exp_dir / f"encoder-{suffix}.fp16.onnx"
onnx.save(encoder_fp16,encoder_filename_fp16)
decoder = onnx.load(decoder_filename)
decoder_fp16 = float16.convert_float_to_float16(decoder, keep_io_types=True)
decoder_filename_fp16 = params.exp_dir / f"decoder-{suffix}.fp16.onnx"
onnx.save(decoder_fp16,decoder_filename_fp16)
joiner = onnx.load(joiner_filename)
joiner_fp16 = float16.convert_float_to_float16(joiner, keep_io_types=True)
joiner_filename_fp16 = params.exp_dir / f"joiner-{suffix}.fp16.onnx"
onnx.save(joiner_fp16,joiner_filename_fp16)
# Generate int8 quantization models
# See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection

View File

@ -12,6 +12,7 @@ onnx>=1.15.0
onnxruntime>=1.16.3
onnxoptimizer
onnxsim
onnxconverter_common
# style check session:
black==22.3.0