mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
Swap the order of applying min and max in smoothing operations
This commit is contained in:
parent
9473c7e23d
commit
e9f4ada1c0
@ -820,33 +820,18 @@ param_rms_smooth1: Smoothing proportion for parameter matrix, if assumed rank of
|
||||
of shape (batch_size, num_blocks, block_size, block_size)
|
||||
"""
|
||||
eps = 1.0e-20
|
||||
if power != 1.0:
|
||||
U, S, _ = _svd(X)
|
||||
def mean(Y):
|
||||
return _mean(Y, exclude_dims=[0], keepdim=True)
|
||||
def rms(Y):
|
||||
return _mean(Y**2, exclude_dims=[0], keepdim=True).sqrt()
|
||||
S = S + min_eig * mean(S) + eps
|
||||
S = S / rms(S)
|
||||
S = 1. / (1./S + 1./max_eig)
|
||||
S = S ** power
|
||||
S = S / rms(S)
|
||||
return torch.matmul(U * S.unsqueeze(-2), U.transpose(2, 3))
|
||||
else:
|
||||
X = X.clone()
|
||||
size = X.shape[1] * X.shape[3]
|
||||
def rms_eig(Y):
|
||||
# rms of eigenvalues, or spectral 2-norm.
|
||||
return (_sum(Y**2, exclude_dims=[0], keepdim=True) / size).sqrt()
|
||||
diag = _diag(X).unsqueeze(-1) # Aliased with X
|
||||
diag += (_mean(diag, exclude_dims=[0], keepdim=True) * min_eig + eps)
|
||||
X /= rms_eig(X)
|
||||
|
||||
X /= rms_eig(X)
|
||||
# eig_ceil is the maximum possible eigenvalue that X could possibly
|
||||
# have at this time, given that the RMS eig is 1, equal to sqrt(num_blocks * block_size)
|
||||
eig_ceil = size ** 0.5
|
||||
|
||||
# the next statement wslightly adjusts the target to be the same as
|
||||
# the next statement slightly adjusts the target to be the same as
|
||||
# what the baseline function gives, max_eig -> 1./(1./eig_ceil + 1./max_eig) would
|
||||
# give. so "max_eig" is now the target of the function for arg ==
|
||||
# eig_ceil.
|
||||
@ -873,8 +858,12 @@ param_rms_smooth1: Smoothing proportion for parameter matrix, if assumed rank of
|
||||
X = X - coeff * torch.matmul(X, X.transpose(2, 3))
|
||||
|
||||
# normalize to have rms eig == 1.
|
||||
X /= rms_eig(X)
|
||||
X = 0.5 * (X + X.transpose(2, 3)) # make sure exactly symmetric.
|
||||
|
||||
diag = _diag(X).unsqueeze(-1) # Aliased with X
|
||||
diag += (_mean(diag, exclude_dims=[0], keepdim=True) * min_eig + eps)
|
||||
X /= rms_eig(X)
|
||||
|
||||
return X
|
||||
|
||||
|
||||
@ -910,12 +899,6 @@ param_rms_smooth1: Smoothing proportion for parameter matrix, if assumed rank of
|
||||
# make sure eigs of M^{0.5} X M^{0.5} have rms value 1. This imposes limit on the max.
|
||||
X /= rms_eig(torch.matmul(X, M))
|
||||
|
||||
if min_eig != 0.0:
|
||||
X = X * (1.0-min_eig) + min_eig * M.inverse()
|
||||
X = 0.5 * (X + X.transpose(-2, -1)) # make sure exactly symmetric.
|
||||
|
||||
X /= rms_eig(torch.matmul(X, M))
|
||||
|
||||
# eig_ceil is the maximum possible eigenvalue that X could possibly
|
||||
# have at this time, equal to num_blocks * block_size.
|
||||
eig_ceil = size ** 0.5
|
||||
@ -945,9 +928,13 @@ param_rms_smooth1: Smoothing proportion for parameter matrix, if assumed rank of
|
||||
coeff = (eig_ceil - max_eig) / (eig_ceil*eig_ceil)
|
||||
X = X - coeff * torch.matmul(X, torch.matmul(M, X.transpose(2, 3)))
|
||||
|
||||
# Normalize again.
|
||||
X /= rms_eig(X)
|
||||
X = 0.5 * (X + X.transpose(-2, -1)) # make sure exactly symmetric.
|
||||
|
||||
if min_eig != 0.0:
|
||||
X /= mean_eig(X)
|
||||
X = X * (1.0-min_eig) + min_eig * M.inverse()
|
||||
X = 0.5 * (X + X.transpose(-2, -1)) # make sure exactly symmetric.
|
||||
|
||||
return X
|
||||
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user