mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-19 05:54:20 +00:00
update
This commit is contained in:
parent
96e2ea5659
commit
e955dd7af6
152
egs/bengaliai_speech/ASR/local/compute_fbank_bengaliai_speech_splits.py
Executable file
152
egs/bengaliai_speech/ASR/local/compute_fbank_bengaliai_speech_splits.py
Executable file
@ -0,0 +1,152 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (Yifan Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
KaldifeatFbank,
|
||||
KaldifeatFbankConfig,
|
||||
LilcomChunkyWriter,
|
||||
set_audio_duration_mismatch_tolerance,
|
||||
set_caching_enabled,
|
||||
)
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of dataloading workers used for reading the audio.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--batch-duration",
|
||||
type=float,
|
||||
default=600.0,
|
||||
help="The maximum number of audio seconds in a batch."
|
||||
"Determines batch size dynamically.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-splits",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The number of splits of the train subset",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Process pieces starting from this number (inclusive).",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--stop",
|
||||
type=int,
|
||||
default=-1,
|
||||
help="Stop processing pieces until this number (exclusive).",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def compute_fbank_bengaliai_speech_splits(args):
|
||||
num_splits = args.num_splits
|
||||
output_dir = f"data/fbank/bengaliai_speech_train_split"
|
||||
output_dir = Path(output_dir)
|
||||
assert output_dir.exists(), f"{output_dir} does not exist!"
|
||||
|
||||
num_digits = 8
|
||||
|
||||
start = args.start
|
||||
stop = args.stop
|
||||
if stop < start:
|
||||
stop = num_splits
|
||||
|
||||
stop = min(stop, num_splits)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
set_audio_duration_mismatch_tolerance(0.01) # 10ms tolerance
|
||||
set_caching_enabled(False)
|
||||
|
||||
for i in range(start, stop):
|
||||
idx = f"{i + 1}".zfill(num_digits)
|
||||
logging.info(f"Processing train split: {idx}")
|
||||
|
||||
cuts_path = output_dir / f"bengaliai_speech_cuts_train.{idx}.jsonl.gz"
|
||||
if cuts_path.is_file():
|
||||
logging.info(f"{cuts_path} exists - skipping")
|
||||
continue
|
||||
|
||||
raw_cuts_path = (
|
||||
output_dir / f"bengaliai_speech_cuts_train_raw.{idx}.jsonl.gz"
|
||||
)
|
||||
|
||||
logging.info(f"Loading {raw_cuts_path}")
|
||||
cut_set = CutSet.from_file(raw_cuts_path)
|
||||
|
||||
logging.info("Splitting cuts into smaller chunks.")
|
||||
cut_set = cut_set.trim_to_supervisions(
|
||||
keep_overlapping=False, min_duration=None
|
||||
)
|
||||
|
||||
logging.info("Computing features")
|
||||
cut_set = cut_set.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/bengaliai_speech_feats_train_{idx}",
|
||||
num_workers=args.num_workers,
|
||||
batch_duration=args.batch_duration,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
overwrite=True,
|
||||
)
|
||||
|
||||
logging.info(f"Saving to {cuts_path}")
|
||||
cut_set.to_file(cuts_path)
|
||||
|
||||
|
||||
def main():
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
args = get_args()
|
||||
logging.info(vars(args))
|
||||
compute_fbank_bengaliai_speech_splits(args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
92
egs/bengaliai_speech/ASR/local/compute_fbank_bengaliai_speech_valid_test.py
Executable file
92
egs/bengaliai_speech/ASR/local/compute_fbank_bengaliai_speech_valid_test.py
Executable file
@ -0,0 +1,92 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Yifan Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file computes fbank features of the Bengali.AI Speech dataset.
|
||||
It looks for manifests in the directory data/manifests.
|
||||
|
||||
The generated fbank features are saved in data/fbank.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, KaldifeatFbank, KaldifeatFbankConfig, LilcomChunkyWriter
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def compute_fbank_bengaliai_speech_valid_test():
|
||||
src_dir = Path(f"data/manifests")
|
||||
output_dir = Path(f"data/fbank")
|
||||
num_workers = 42
|
||||
batch_duration = 600
|
||||
|
||||
subsets = ("valid", "test")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
for partition in subsets:
|
||||
cuts_path = output_dir / f"bengaliai_speech_cuts_{partition}.jsonl.gz"
|
||||
if cuts_path.is_file():
|
||||
logging.info(f"{partition} already exists - skipping.")
|
||||
continue
|
||||
|
||||
raw_cuts_path = output_dir / f"bengaliai_speech_cuts_{partition}_raw.jsonl.gz"
|
||||
|
||||
logging.info(f"Loading {raw_cuts_path}")
|
||||
cut_set = CutSet.from_file(raw_cuts_path)
|
||||
|
||||
logging.info("Splitting cuts into smaller chunks")
|
||||
cut_set = cut_set.trim_to_supervisions(
|
||||
keep_overlapping=False, min_duration=None
|
||||
)
|
||||
|
||||
logging.info("Computing features")
|
||||
cut_set = cut_set.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/bengaliai_speech_feats_{partition}",
|
||||
num_workers=num_workers,
|
||||
batch_duration=batch_duration,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
overwrite=True,
|
||||
)
|
||||
|
||||
logging.info(f"Saving to {cuts_path}")
|
||||
cut_set.to_file(cuts_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
compute_fbank_bengaliai_speech_valid_test()
|
@ -135,7 +135,7 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
--num-workers $nj \
|
||||
--batch-duration 600 \
|
||||
--start 0 \
|
||||
--num-splits 2000
|
||||
--num-splits 300
|
||||
touch data/fbank/.bengaliai_speech_train.done
|
||||
fi
|
||||
fi
|
||||
@ -159,10 +159,8 @@ if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||
if [ ! -f $lang_dir/transcript_words.txt ]; then
|
||||
log "Generate data for BPE training"
|
||||
file=$(
|
||||
find "data/fbank/bengaliai_speech_cuts_dirty_raw.jsonl.gz"
|
||||
find "data/fbank/bengaliai_speech_cuts_dirty_sa_raw.jsonl.gz"
|
||||
find "data/fbank/bengaliai_speech_cuts_clean_raw.jsonl.gz"
|
||||
find "data/fbank/bengaliai_speech_cuts_clean_sa_raw.jsonl.gz"
|
||||
find "data/fbank/bengaliai_speech_cuts_train_raw.jsonl.gz"
|
||||
find "data/fbank/bengaliai_speech_cuts_valid_raw.jsonl.gz"
|
||||
)
|
||||
gunzip -c ${file} | awk -F '"' '{print $30}' > $lang_dir/transcript_words.txt
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user