This commit is contained in:
Yifan Yang 2023-07-24 16:04:28 +08:00
parent 96e2ea5659
commit e955dd7af6
3 changed files with 247 additions and 5 deletions

View File

@ -0,0 +1,152 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
from datetime import datetime
from pathlib import Path
import torch
from lhotse import (
CutSet,
KaldifeatFbank,
KaldifeatFbankConfig,
LilcomChunkyWriter,
set_audio_duration_mismatch_tolerance,
set_caching_enabled,
)
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--num-workers",
type=int,
default=20,
help="Number of dataloading workers used for reading the audio.",
)
parser.add_argument(
"--batch-duration",
type=float,
default=600.0,
help="The maximum number of audio seconds in a batch."
"Determines batch size dynamically.",
)
parser.add_argument(
"--num-splits",
type=int,
required=True,
help="The number of splits of the train subset",
)
parser.add_argument(
"--start",
type=int,
default=0,
help="Process pieces starting from this number (inclusive).",
)
parser.add_argument(
"--stop",
type=int,
default=-1,
help="Stop processing pieces until this number (exclusive).",
)
return parser.parse_args()
def compute_fbank_bengaliai_speech_splits(args):
num_splits = args.num_splits
output_dir = f"data/fbank/bengaliai_speech_train_split"
output_dir = Path(output_dir)
assert output_dir.exists(), f"{output_dir} does not exist!"
num_digits = 8
start = args.start
stop = args.stop
if stop < start:
stop = num_splits
stop = min(stop, num_splits)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
logging.info(f"device: {device}")
set_audio_duration_mismatch_tolerance(0.01) # 10ms tolerance
set_caching_enabled(False)
for i in range(start, stop):
idx = f"{i + 1}".zfill(num_digits)
logging.info(f"Processing train split: {idx}")
cuts_path = output_dir / f"bengaliai_speech_cuts_train.{idx}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{cuts_path} exists - skipping")
continue
raw_cuts_path = (
output_dir / f"bengaliai_speech_cuts_train_raw.{idx}.jsonl.gz"
)
logging.info(f"Loading {raw_cuts_path}")
cut_set = CutSet.from_file(raw_cuts_path)
logging.info("Splitting cuts into smaller chunks.")
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)
logging.info("Computing features")
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{output_dir}/bengaliai_speech_feats_train_{idx}",
num_workers=args.num_workers,
batch_duration=args.batch_duration,
storage_type=LilcomChunkyWriter,
overwrite=True,
)
logging.info(f"Saving to {cuts_path}")
cut_set.to_file(cuts_path)
def main():
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
compute_fbank_bengaliai_speech_splits(args)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,92 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the Bengali.AI Speech dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
import argparse
import logging
import os
from pathlib import Path
from typing import Optional
import torch
from lhotse import CutSet, KaldifeatFbank, KaldifeatFbankConfig, LilcomChunkyWriter
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def compute_fbank_bengaliai_speech_valid_test():
src_dir = Path(f"data/manifests")
output_dir = Path(f"data/fbank")
num_workers = 42
batch_duration = 600
subsets = ("valid", "test")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
logging.info(f"device: {device}")
for partition in subsets:
cuts_path = output_dir / f"bengaliai_speech_cuts_{partition}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{partition} already exists - skipping.")
continue
raw_cuts_path = output_dir / f"bengaliai_speech_cuts_{partition}_raw.jsonl.gz"
logging.info(f"Loading {raw_cuts_path}")
cut_set = CutSet.from_file(raw_cuts_path)
logging.info("Splitting cuts into smaller chunks")
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)
logging.info("Computing features")
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{output_dir}/bengaliai_speech_feats_{partition}",
num_workers=num_workers,
batch_duration=batch_duration,
storage_type=LilcomChunkyWriter,
overwrite=True,
)
logging.info(f"Saving to {cuts_path}")
cut_set.to_file(cuts_path)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
compute_fbank_bengaliai_speech_valid_test()

View File

@ -135,7 +135,7 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
--num-workers $nj \
--batch-duration 600 \
--start 0 \
--num-splits 2000
--num-splits 300
touch data/fbank/.bengaliai_speech_train.done
fi
fi
@ -159,10 +159,8 @@ if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate data for BPE training"
file=$(
find "data/fbank/bengaliai_speech_cuts_dirty_raw.jsonl.gz"
find "data/fbank/bengaliai_speech_cuts_dirty_sa_raw.jsonl.gz"
find "data/fbank/bengaliai_speech_cuts_clean_raw.jsonl.gz"
find "data/fbank/bengaliai_speech_cuts_clean_sa_raw.jsonl.gz"
find "data/fbank/bengaliai_speech_cuts_train_raw.jsonl.gz"
find "data/fbank/bengaliai_speech_cuts_valid_raw.jsonl.gz"
)
gunzip -c ${file} | awk -F '"' '{print $30}' > $lang_dir/transcript_words.txt