diff --git a/egs/librispeech/ASR/.prompt_tuning.sh.swp b/egs/librispeech/ASR/.prompt_tuning.sh.swp index eeb94631f..9c9dd5016 100644 Binary files a/egs/librispeech/ASR/.prompt_tuning.sh.swp and b/egs/librispeech/ASR/.prompt_tuning.sh.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.prompt_tuning.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.prompt_tuning.py.swp index a0cce3133..fcfd1bdf4 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.prompt_tuning.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.prompt_tuning.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/prompt_tuning.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/prompt_tuning.py index 758978e03..8ec4a5462 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/prompt_tuning.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/prompt_tuning.py @@ -1591,7 +1591,7 @@ def run_adapter(rank, world_size, args, wb=None): for n, p in model.named_parameters(): p.requires_grad = False - prompt = torch.nn.Parameter(torch.randn(50, 512)) + prompt = torch.nn.Parameter(torch.randn(50, 512)).to(device) ''' optimizer_adapter = ScaledAdam(