mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-03 06:04:18 +00:00
pruned_transducer_stateless_for_wenetspeech
This commit is contained in:
parent
a7643301ec
commit
e53411c99e
1
egs/wenetspeech/ASR/local/compute_fbank_musan.py
Symbolic link
1
egs/wenetspeech/ASR/local/compute_fbank_musan.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/compute_fbank_musan.py
|
93
egs/wenetspeech/ASR/local/compute_fbank_wenetspeech_dev_test.py
Executable file
93
egs/wenetspeech/ASR/local/compute_fbank_wenetspeech_dev_test.py
Executable file
@ -0,0 +1,93 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
|
||||
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
KaldifeatFbank,
|
||||
KaldifeatFbankConfig,
|
||||
LilcomHdf5Writer,
|
||||
)
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def compute_fbank_wenetspeech_dev_test():
|
||||
in_out_dir = Path("data/fbank")
|
||||
# number of workers in dataloader
|
||||
num_workers = 20
|
||||
|
||||
# number of seconds in a batch
|
||||
batch_duration = 600
|
||||
|
||||
subsets = ("DEV", "TEST_NET", "TEST_MEETING")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 1)
|
||||
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
for partition in subsets:
|
||||
cuts_path = in_out_dir / f"cuts_{partition}.jsonl.gz"
|
||||
if cuts_path.is_file():
|
||||
logging.info(f"{cuts_path} exists - skipping")
|
||||
continue
|
||||
|
||||
raw_cuts_path = in_out_dir / f"cuts_{partition}_raw.jsonl.gz"
|
||||
|
||||
logging.info(f"Loading {raw_cuts_path}")
|
||||
cut_set = CutSet.from_file(raw_cuts_path)
|
||||
|
||||
logging.info("Computing features")
|
||||
|
||||
cut_set = cut_set.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=f"{in_out_dir}/feats_{partition}",
|
||||
num_workers=num_workers,
|
||||
batch_duration=batch_duration,
|
||||
storage_type=LilcomHdf5Writer,
|
||||
)
|
||||
cut_set = cut_set.trim_to_supervisions(
|
||||
keep_overlapping=False, min_duration=None
|
||||
)
|
||||
|
||||
logging.info(f"Saving to {cuts_path}")
|
||||
cut_set.to_file(cuts_path)
|
||||
|
||||
|
||||
def main():
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
compute_fbank_wenetspeech_dev_test()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
171
egs/wenetspeech/ASR/local/compute_fbank_wenetspeech_splits.py
Executable file
171
egs/wenetspeech/ASR/local/compute_fbank_wenetspeech_splits.py
Executable file
@ -0,0 +1,171 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
|
||||
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import (
|
||||
ChunkedLilcomHdf5Writer,
|
||||
CutSet,
|
||||
KaldifeatFbank,
|
||||
KaldifeatFbankConfig,
|
||||
set_audio_duration_mismatch_tolerance,
|
||||
set_caching_enabled,
|
||||
)
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of dataloading workers used for reading the audio.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch-duration",
|
||||
type=float,
|
||||
default=600.0,
|
||||
help="The maximum number of audio seconds in a batch."
|
||||
"Determines batch size dynamically.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-splits",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The number of splits of the L subset",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Process pieces starting from this number (inclusive).",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--stop",
|
||||
type=int,
|
||||
default=-1,
|
||||
help="Stop processing pieces until this number (exclusive).",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def compute_fbank_wenetspeech_splits(args):
|
||||
num_splits = args.num_splits
|
||||
output_dir = f"data/fbank/L_split_{num_splits}"
|
||||
output_dir = Path(output_dir)
|
||||
assert output_dir.exists(), f"{output_dir} does not exist!"
|
||||
|
||||
num_digits = len(str(num_splits))
|
||||
|
||||
start = args.start
|
||||
stop = args.stop
|
||||
if stop < start:
|
||||
stop = num_splits
|
||||
|
||||
stop = min(stop, num_splits)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 5)
|
||||
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
set_audio_duration_mismatch_tolerance(0.01) # 10ms tolerance
|
||||
set_caching_enabled(False)
|
||||
for i in range(start, stop):
|
||||
idx = f"{i + 1}".zfill(num_digits)
|
||||
logging.info(f"Processing {idx}/{num_splits}")
|
||||
|
||||
cuts_path = output_dir / f"cuts_L.{idx}.jsonl.gz"
|
||||
if cuts_path.is_file():
|
||||
logging.info(f"{cuts_path} exists - skipping")
|
||||
continue
|
||||
|
||||
raw_cuts_path = output_dir / f"cuts_L_raw.{idx}.jsonl.gz"
|
||||
|
||||
logging.info(f"Loading {raw_cuts_path}")
|
||||
cut_set = CutSet.from_file(raw_cuts_path)
|
||||
|
||||
logging.info("Computing features")
|
||||
|
||||
cut_set = cut_set.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/feats_L_{idx}",
|
||||
num_workers=args.num_workers,
|
||||
batch_duration=args.batch_duration,
|
||||
storage_type=ChunkedLilcomHdf5Writer,
|
||||
)
|
||||
|
||||
logging.info("About to split cuts into smaller chunks.")
|
||||
cut_set = cut_set.trim_to_supervisions(
|
||||
keep_overlapping=False, min_duration=None
|
||||
)
|
||||
|
||||
logging.info(f"Saving to {cuts_path}")
|
||||
cut_set.to_file(cuts_path)
|
||||
logging.info(f"Saved to {cuts_path}")
|
||||
|
||||
|
||||
def main():
|
||||
now = datetime.now()
|
||||
date_time = now.strftime("%Y-%m-%d-%H-%M-%S")
|
||||
|
||||
log_filename = "log-compute_fbank_wenetspeech_splits"
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
log_filename = f"{log_filename}-{date_time}"
|
||||
|
||||
logging.basicConfig(
|
||||
filename=log_filename,
|
||||
format=formatter,
|
||||
level=logging.INFO,
|
||||
filemode="w",
|
||||
)
|
||||
|
||||
console = logging.StreamHandler()
|
||||
console.setLevel(logging.INFO)
|
||||
console.setFormatter(logging.Formatter(formatter))
|
||||
logging.getLogger("").addHandler(console)
|
||||
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
logging.info(vars(args))
|
||||
|
||||
compute_fbank_wenetspeech_splits(args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/wenetspeech/ASR/local/prepare_lang.py
Symbolic link
1
egs/wenetspeech/ASR/local/prepare_lang.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/prepare_lang.py
|
253
egs/wenetspeech/ASR/local/prepare_lang_wenetspeech.py
Executable file
253
egs/wenetspeech/ASR/local/prepare_lang_wenetspeech.py
Executable file
@ -0,0 +1,253 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Wei Kang,
|
||||
# Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This script takes as input `lang_dir`, which should contain::
|
||||
- lang_dir/text,
|
||||
- lang_dir/words.txt
|
||||
and generates the following files in the directory `lang_dir`:
|
||||
- lexicon.txt
|
||||
- lexicon_disambig.txt
|
||||
- L.pt
|
||||
- L_disambig.pt
|
||||
- tokens.txt
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
|
||||
import k2
|
||||
import torch
|
||||
from prepare_lang import (
|
||||
Lexicon,
|
||||
add_disambig_symbols,
|
||||
add_self_loops,
|
||||
write_lexicon,
|
||||
write_mapping,
|
||||
)
|
||||
|
||||
|
||||
def lexicon_to_fst_no_sil(
|
||||
lexicon: Lexicon,
|
||||
token2id: Dict[str, int],
|
||||
word2id: Dict[str, int],
|
||||
need_self_loops: bool = False,
|
||||
) -> k2.Fsa:
|
||||
"""Convert a lexicon to an FST (in k2 format).
|
||||
Args:
|
||||
lexicon:
|
||||
The input lexicon. See also :func:`read_lexicon`
|
||||
token2id:
|
||||
A dict mapping tokens to IDs.
|
||||
word2id:
|
||||
A dict mapping words to IDs.
|
||||
need_self_loops:
|
||||
If True, add self-loop to states with non-epsilon output symbols
|
||||
on at least one arc out of the state. The input label for this
|
||||
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
||||
Returns:
|
||||
Return an instance of `k2.Fsa` representing the given lexicon.
|
||||
"""
|
||||
loop_state = 0 # words enter and leave from here
|
||||
next_state = 1 # the next un-allocated state, will be incremented as we go
|
||||
|
||||
arcs = []
|
||||
|
||||
# The blank symbol <blk> is defined in local/train_bpe_model.py
|
||||
assert token2id["<blk>"] == 0
|
||||
assert word2id["<eps>"] == 0
|
||||
|
||||
eps = 0
|
||||
|
||||
for word, pieces in lexicon:
|
||||
assert len(pieces) > 0, f"{word} has no pronunciations"
|
||||
cur_state = loop_state
|
||||
|
||||
word = word2id[word]
|
||||
pieces = [
|
||||
token2id[i] if i in token2id else token2id["<unk>"] for i in pieces
|
||||
]
|
||||
|
||||
for i in range(len(pieces) - 1):
|
||||
w = word if i == 0 else eps
|
||||
arcs.append([cur_state, next_state, pieces[i], w, 0])
|
||||
|
||||
cur_state = next_state
|
||||
next_state += 1
|
||||
|
||||
# now for the last piece of this word
|
||||
i = len(pieces) - 1
|
||||
w = word if i == 0 else eps
|
||||
arcs.append([cur_state, loop_state, pieces[i], w, 0])
|
||||
|
||||
if need_self_loops:
|
||||
disambig_token = token2id["#0"]
|
||||
disambig_word = word2id["#0"]
|
||||
arcs = add_self_loops(
|
||||
arcs,
|
||||
disambig_token=disambig_token,
|
||||
disambig_word=disambig_word,
|
||||
)
|
||||
|
||||
final_state = next_state
|
||||
arcs.append([loop_state, final_state, -1, -1, 0])
|
||||
arcs.append([final_state])
|
||||
|
||||
arcs = sorted(arcs, key=lambda arc: arc[0])
|
||||
arcs = [[str(i) for i in arc] for arc in arcs]
|
||||
arcs = [" ".join(arc) for arc in arcs]
|
||||
arcs = "\n".join(arcs)
|
||||
|
||||
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
||||
return fsa
|
||||
|
||||
|
||||
def contain_oov(token_sym_table: Dict[str, int], tokens: List[str]) -> bool:
|
||||
"""Check if all the given tokens are in token symbol table.
|
||||
Args:
|
||||
token_sym_table:
|
||||
Token symbol table that contains all the valid tokens.
|
||||
tokens:
|
||||
A list of tokens.
|
||||
Returns:
|
||||
Return True if there is any token not in the token_sym_table,
|
||||
otherwise False.
|
||||
"""
|
||||
for tok in tokens:
|
||||
if tok not in token_sym_table:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def generate_lexicon(
|
||||
token_sym_table: Dict[str, int], words: List[str]
|
||||
) -> Lexicon:
|
||||
"""Generate a lexicon from a word list and token_sym_table.
|
||||
Args:
|
||||
token_sym_table:
|
||||
Token symbol table that mapping token to token ids.
|
||||
words:
|
||||
A list of strings representing words.
|
||||
Returns:
|
||||
Return a dict whose keys are words and values are the corresponding
|
||||
tokens.
|
||||
"""
|
||||
lexicon = []
|
||||
for word in words:
|
||||
chars = list(word.strip(" \t"))
|
||||
if contain_oov(token_sym_table, chars):
|
||||
continue
|
||||
lexicon.append((word, chars))
|
||||
|
||||
# The OOV word is <UNK>
|
||||
lexicon.append(("<UNK>", ["<unk>"]))
|
||||
return lexicon
|
||||
|
||||
|
||||
def generate_tokens(text_file: str, token_type: str) -> Dict[str, int]:
|
||||
"""Generate tokens from the given text file.
|
||||
Args:
|
||||
text_file:
|
||||
A file that contains text lines to generate tokens.
|
||||
token_type:
|
||||
The type of token, such as "char", "pinyin" and "lazy_pinyin".
|
||||
Returns:
|
||||
Return a dict whose keys are tokens and values are token ids ranged
|
||||
from 0 to len(keys) - 1.
|
||||
"""
|
||||
tokens: Dict[str, int] = dict()
|
||||
tokens["<blk>"] = 0
|
||||
tokens["<sos/eos>"] = 1
|
||||
tokens["<unk>"] = 2
|
||||
whitespace = re.compile(r"([ \t\r\n]+)")
|
||||
with open(text_file, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
if token_type == "char":
|
||||
line = re.sub(whitespace, "", line)
|
||||
tokens_list = list(line)
|
||||
else:
|
||||
tokens_list = line.strip().split(" ")
|
||||
for token in tokens_list:
|
||||
if token not in tokens:
|
||||
tokens[token] = len(tokens)
|
||||
return tokens
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--lang-dir", type=str, help="The lang directory.")
|
||||
parser.add_argument("--token-type", type=str, help="The type of token.")
|
||||
args = parser.parse_args()
|
||||
|
||||
lang_dir = Path(args.lang_dir)
|
||||
token_type = args.token_type
|
||||
text_file = lang_dir / "text"
|
||||
|
||||
word_sym_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||
|
||||
words = word_sym_table.symbols
|
||||
|
||||
excluded = ["<eps>", "!SIL", "<SPOKEN_NOISE>", "<UNK>", "#0", "<s>", "</s>"]
|
||||
for w in excluded:
|
||||
if w in words:
|
||||
words.remove(w)
|
||||
|
||||
token_sym_table = generate_tokens(text_file, token_type)
|
||||
|
||||
lexicon = generate_lexicon(token_sym_table, words)
|
||||
|
||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||
|
||||
next_token_id = max(token_sym_table.values()) + 1
|
||||
for i in range(max_disambig + 1):
|
||||
disambig = f"#{i}"
|
||||
assert disambig not in token_sym_table
|
||||
token_sym_table[disambig] = next_token_id
|
||||
next_token_id += 1
|
||||
|
||||
word_sym_table.add("#0")
|
||||
word_sym_table.add("<s>")
|
||||
word_sym_table.add("</s>")
|
||||
|
||||
write_mapping(lang_dir / "tokens.txt", token_sym_table)
|
||||
|
||||
write_lexicon(lang_dir / "lexicon.txt", lexicon)
|
||||
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
||||
|
||||
L = lexicon_to_fst_no_sil(
|
||||
lexicon,
|
||||
token2id=token_sym_table,
|
||||
word2id=word_sym_table,
|
||||
)
|
||||
|
||||
L_disambig = lexicon_to_fst_no_sil(
|
||||
lexicon_disambig,
|
||||
token2id=token_sym_table,
|
||||
word2id=word_sym_table,
|
||||
need_self_loops=True,
|
||||
)
|
||||
torch.save(L.as_dict(), lang_dir / "L.pt")
|
||||
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
120
egs/wenetspeech/ASR/local/preprocess_wenetspeech.py
Executable file
120
egs/wenetspeech/ASR/local/preprocess_wenetspeech.py
Executable file
@ -0,0 +1,120 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
|
||||
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
from lhotse import CutSet, SupervisionSegment
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
# Similar text filtering and normalization procedure as in:
|
||||
# https://github.com/SpeechColab/WenetSpeech/blob/main/toolkits/kaldi/wenetspeech_data_prep.sh
|
||||
|
||||
|
||||
def normalize_text(
|
||||
utt: str,
|
||||
# punct_pattern=re.compile(r"<(COMMA|PERIOD|QUESTIONMARK|EXCLAMATIONPOINT)>"),
|
||||
punct_pattern=re.compile(r"<(PERIOD|QUESTIONMARK|EXCLAMATIONPOINT)>"),
|
||||
whitespace_pattern=re.compile(r"\s\s+"),
|
||||
) -> str:
|
||||
return whitespace_pattern.sub(" ", punct_pattern.sub("", utt))
|
||||
|
||||
|
||||
def has_no_oov(
|
||||
sup: SupervisionSegment,
|
||||
oov_pattern=re.compile(r"<(SIL|MUSIC|NOISE|OTHER)>"),
|
||||
) -> bool:
|
||||
return oov_pattern.search(sup.text) is None
|
||||
|
||||
|
||||
def preprocess_wenet_speech():
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path("data/fbank")
|
||||
output_dir.mkdir(exist_ok=True)
|
||||
|
||||
dataset_parts = (
|
||||
"L",
|
||||
"M",
|
||||
"S",
|
||||
"DEV",
|
||||
"TEST_NET",
|
||||
"TEST_MEETING",
|
||||
)
|
||||
|
||||
logging.info("Loading manifest (may take 10 minutes)")
|
||||
manifests = read_manifests_if_cached(
|
||||
dataset_parts=dataset_parts,
|
||||
output_dir=src_dir,
|
||||
suffix="jsonl.gz",
|
||||
)
|
||||
assert manifests is not None
|
||||
|
||||
for partition, m in manifests.items():
|
||||
logging.info(f"Processing {partition}")
|
||||
raw_cuts_path = output_dir / f"cuts_{partition}_raw.jsonl.gz"
|
||||
if raw_cuts_path.is_file():
|
||||
logging.info(f"{partition} already exists - skipping")
|
||||
continue
|
||||
|
||||
# Note this step makes the recipe different than LibriSpeech:
|
||||
# We must filter out some utterances and remove punctuation
|
||||
# to be consistent with Kaldi.
|
||||
logging.info("Filtering OOV utterances from supervisions")
|
||||
m["supervisions"] = m["supervisions"].filter(has_no_oov)
|
||||
logging.info(f"Normalizing text in {partition}")
|
||||
for sup in m["supervisions"]:
|
||||
text = str(sup.text)
|
||||
logging.info(f"Original text: {text}")
|
||||
sup.text = normalize_text(sup.text)
|
||||
text = str(sup.text)
|
||||
logging.info(f"Normalize text: {text}")
|
||||
|
||||
# Create long-recording cut manifests.
|
||||
logging.info(f"Processing {partition}")
|
||||
cut_set = CutSet.from_manifests(
|
||||
recordings=m["recordings"],
|
||||
supervisions=m["supervisions"],
|
||||
)
|
||||
# Run data augmentation that needs to be done in the
|
||||
# time domain.
|
||||
if partition not in ["DEV", "TEST_NET", "TEST_MEETING"]:
|
||||
logging.info(
|
||||
f"Speed perturb for {partition} with factors 0.9 and 1.1 "
|
||||
"(Perturbing may take 8 minutes and saving may take 20 minutes)"
|
||||
)
|
||||
cut_set = (
|
||||
cut_set
|
||||
+ cut_set.perturb_speed(0.9)
|
||||
+ cut_set.perturb_speed(1.1)
|
||||
)
|
||||
logging.info(f"Saving to {raw_cuts_path}")
|
||||
cut_set.to_file(raw_cuts_path)
|
||||
|
||||
|
||||
def main():
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
preprocess_wenet_speech()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
196
egs/wenetspeech/ASR/local/text2token.py
Executable file
196
egs/wenetspeech/ASR/local/text2token.py
Executable file
@ -0,0 +1,196 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2017 Johns Hopkins University (authors: Shinji Watanabe)
|
||||
# 2022 Xiaomi Corp. (authors: Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import codecs
|
||||
import re
|
||||
import sys
|
||||
from typing import List
|
||||
|
||||
from pypinyin import lazy_pinyin, pinyin
|
||||
|
||||
is_python2 = sys.version_info[0] == 2
|
||||
|
||||
|
||||
def exist_or_not(i, match_pos):
|
||||
start_pos = None
|
||||
end_pos = None
|
||||
for pos in match_pos:
|
||||
if pos[0] <= i < pos[1]:
|
||||
start_pos = pos[0]
|
||||
end_pos = pos[1]
|
||||
break
|
||||
|
||||
return start_pos, end_pos
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="convert raw text to tokenized text",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--nchar",
|
||||
"-n",
|
||||
default=1,
|
||||
type=int,
|
||||
help="number of characters to split, i.e., \
|
||||
aabb -> a a b b with -n 1 and aa bb with -n 2",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--skip-ncols", "-s", default=0, type=int, help="skip first n columns"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--space", default="<space>", type=str, help="space symbol"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--non-lang-syms",
|
||||
"-l",
|
||||
default=None,
|
||||
type=str,
|
||||
help="list of non-linguistic symobles, e.g., <NOISE> etc.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"text", type=str, default=False, nargs="?", help="input text"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--trans_type",
|
||||
"-t",
|
||||
type=str,
|
||||
default="char",
|
||||
choices=["char", "pinyin", "lazy_pinyin"],
|
||||
help="""Transcript type. char/pinyin/lazy_pinyin""",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def token2id(
|
||||
texts, token_table, token_type: str = "lazy_pinyin", oov: str = "<unk>"
|
||||
) -> List[List[int]]:
|
||||
"""Convert token to id.
|
||||
Args:
|
||||
texts:
|
||||
The input texts, it refers to the chinese text here.
|
||||
token_table:
|
||||
The token table is built based on "data/lang_xxx/token.txt"
|
||||
token_type:
|
||||
The type of token, such as "pinyin" and "lazy_pinyin".
|
||||
oov:
|
||||
Out of vocabulary token. When a word(token) in the transcript
|
||||
does not exist in the token list, it is replaced with `oov`.
|
||||
|
||||
Returns:
|
||||
The list of ids for the input texts.
|
||||
"""
|
||||
if texts is None:
|
||||
raise ValueError("texts can't be None!")
|
||||
else:
|
||||
oov_id = token_table[oov]
|
||||
ids: List[List[int]] = []
|
||||
for text in texts:
|
||||
chars_list = list(str(text))
|
||||
if token_type == "lazy_pinyin":
|
||||
text = lazy_pinyin(chars_list)
|
||||
sub_ids = [
|
||||
token_table[txt] if txt in token_table else oov_id
|
||||
for txt in text
|
||||
]
|
||||
ids.append(sub_ids)
|
||||
else: # token_type = "pinyin"
|
||||
text = pinyin(chars_list)
|
||||
sub_ids = [
|
||||
token_table[txt[0]] if txt[0] in token_table else oov_id
|
||||
for txt in text
|
||||
]
|
||||
ids.append(sub_ids)
|
||||
return ids
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
rs = []
|
||||
if args.non_lang_syms is not None:
|
||||
with codecs.open(args.non_lang_syms, "r", encoding="utf-8") as f:
|
||||
nls = [x.rstrip() for x in f.readlines()]
|
||||
rs = [re.compile(re.escape(x)) for x in nls]
|
||||
|
||||
if args.text:
|
||||
f = codecs.open(args.text, encoding="utf-8")
|
||||
else:
|
||||
f = codecs.getreader("utf-8")(
|
||||
sys.stdin if is_python2 else sys.stdin.buffer
|
||||
)
|
||||
|
||||
sys.stdout = codecs.getwriter("utf-8")(
|
||||
sys.stdout if is_python2 else sys.stdout.buffer
|
||||
)
|
||||
line = f.readline()
|
||||
n = args.nchar
|
||||
while line:
|
||||
x = line.split()
|
||||
print(" ".join(x[: args.skip_ncols]), end=" ")
|
||||
a = " ".join(x[args.skip_ncols :]) # noqa E203
|
||||
|
||||
# get all matched positions
|
||||
match_pos = []
|
||||
for r in rs:
|
||||
i = 0
|
||||
while i >= 0:
|
||||
m = r.search(a, i)
|
||||
if m:
|
||||
match_pos.append([m.start(), m.end()])
|
||||
i = m.end()
|
||||
else:
|
||||
break
|
||||
if len(match_pos) > 0:
|
||||
chars = []
|
||||
i = 0
|
||||
while i < len(a):
|
||||
start_pos, end_pos = exist_or_not(i, match_pos)
|
||||
if start_pos is not None:
|
||||
chars.append(a[start_pos:end_pos])
|
||||
i = end_pos
|
||||
else:
|
||||
chars.append(a[i])
|
||||
i += 1
|
||||
a = chars
|
||||
|
||||
if args.trans_type == "pinyin":
|
||||
a = pinyin(list(str(a)))
|
||||
a = [one[0] for one in a]
|
||||
|
||||
if args.trans_type == "lazy_pinyin":
|
||||
a = lazy_pinyin(list(str(a)))
|
||||
|
||||
a = [a[j : j + n] for j in range(0, len(a), n)] # noqa E203
|
||||
|
||||
a_flat = []
|
||||
for z in a:
|
||||
a_flat.append("".join(z))
|
||||
|
||||
a_chars = [z.replace(" ", args.space) for z in a_flat]
|
||||
|
||||
print(" ".join(a_chars))
|
||||
line = f.readline()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
253
egs/wenetspeech/ASR/prepare.sh
Executable file
253
egs/wenetspeech/ASR/prepare.sh
Executable file
@ -0,0 +1,253 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
nj=15
|
||||
stage=0
|
||||
stop_stage=100
|
||||
|
||||
# Split L subset to this number of pieces
|
||||
# This is to avoid OOM during feature extraction.
|
||||
num_splits=1000
|
||||
|
||||
# We assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, they will be downloaded
|
||||
# by this script automatically.
|
||||
#
|
||||
# - $dl_dir/WenetSpeech
|
||||
# You can find audio, WenetSpeech.json inside it.
|
||||
# You can apply for the download credentials by following
|
||||
# https://github.com/wenet-e2e/WenetSpeech#download
|
||||
#
|
||||
# - $dl_dir/musan
|
||||
# This directory contains the following directories downloaded from
|
||||
# http://www.openslr.org/17/
|
||||
#
|
||||
# - music
|
||||
# - noise
|
||||
# - speech
|
||||
|
||||
dl_dir=$PWD/download
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
# All files generated by this script are saved in "data".
|
||||
# You can safely remove "data" and rerun this script to regenerate it.
|
||||
mkdir -p data
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
log "dl_dir: $dl_dir"
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
log "Stage 0: Download data"
|
||||
|
||||
[ ! -e $dl_dir/WenetSpeech ] && mkdir -p $dl_dir/WenetSpeech
|
||||
|
||||
# If you have pre-downloaded it to /path/to/WenetSpeech,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/WenetSpeech $dl_dir/WenetSpeech
|
||||
#
|
||||
if [ ! -d $dl_dir/WenetSpeech/wenet_speech ] && [ ! -f $dl_dir/WenetSpeech/metadata/v1.list ]; then
|
||||
log "Stage 0: should download WenetSpeech first"
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
# If you have pre-downloaded it to /path/to/musan,
|
||||
# you can create a symlink
|
||||
#
|
||||
#ln -sfv /path/to/musan $dl_dir/musan
|
||||
|
||||
if [ ! -d $dl_dir/musan ]; then
|
||||
lhotse download musan $dl_dir
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
log "Stage 1: Prepare WenetSpeech manifest"
|
||||
# We assume that you have downloaded the WenetSpeech corpus
|
||||
# to $dl_dir/WenetSpeech
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare wenet-speech $dl_dir/WenetSpeech data/manifests -j $nj
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Prepare musan manifest"
|
||||
# We assume that you have downloaded the musan corpus
|
||||
# to data/musan
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare musan $dl_dir/musan data/manifests
|
||||
fi
|
||||
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
log "Stage 3: Preprocess WenetSpeech manifest"
|
||||
if [ ! -f data/fbank/.preprocess_complete ]; then
|
||||
python3 ./local/preprocess_wenetspeech.py
|
||||
touch data/fbank/.preprocess_complete
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "Stage 4: Compute features for DEV and TEST subsets of WenetSpeech (may take 2 minutes)"
|
||||
python3 ./local/compute_fbank_wenetspeech_dev_test.py
|
||||
fi
|
||||
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "Stage 5: Split L subset into ${num_splits} pieces (may take 30 minutes)"
|
||||
split_dir=data/fbank/L_split_${num_splits}
|
||||
if [ ! -f $split_dir/.split_completed ]; then
|
||||
lhotse split $num_splits ./data/fbank/cuts_L_raw.jsonl.gz $split_dir
|
||||
touch $split_dir/.split_completed
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
log "Stage 6: Compute features for L"
|
||||
python3 ./local/compute_fbank_wenetspeech_splits.py \
|
||||
--num-workers 20 \
|
||||
--batch-duration 600 \
|
||||
--start 0 \
|
||||
--num-splits $num_splits
|
||||
fi
|
||||
|
||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||
log "Stage 7: Combine features for L"
|
||||
if [ ! -f data/fbank/cuts_L.jsonl.gz ]; then
|
||||
pieces=$(find data/fbank/L_split_${num_splits} -name "cuts_L.*.jsonl.gz")
|
||||
lhotse combine $pieces data/fbank/cuts_L.jsonl.gz
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||
log "Stage 8: Compute fbank for musan"
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_musan.py
|
||||
fi
|
||||
|
||||
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
||||
log "Stage 9: Prepare char based lang"
|
||||
lang_char_dir=data/lang_char
|
||||
mkdir -p $lang_char_dir
|
||||
|
||||
gunzip -c data/manifests/supervisions_L.jsonl.gz \
|
||||
| jq '.text' | sed 's/"//g' \
|
||||
| ./local/text2token.py -t "char" > $lang_char_dir/text
|
||||
|
||||
cat $lang_char_dir/text | sed 's/ /\n/g' \
|
||||
| sort -u | sed '/^$/d' > $lang_char_dir/words.txt
|
||||
(echo '<SIL>'; echo '<SPOKEN_NOISE>'; echo '<UNK>'; ) |
|
||||
cat - $lang_char_dir/words.txt | sort | uniq | awk '
|
||||
BEGIN {
|
||||
print "<eps> 0";
|
||||
}
|
||||
{
|
||||
if ($1 == "<s>") {
|
||||
print "<s> is in the vocabulary!" | "cat 1>&2"
|
||||
exit 1;
|
||||
}
|
||||
if ($1 == "</s>") {
|
||||
print "</s> is in the vocabulary!" | "cat 1>&2"
|
||||
exit 1;
|
||||
}
|
||||
printf("%s %d\n", $1, NR);
|
||||
}
|
||||
END {
|
||||
printf("#0 %d\n", NR+1);
|
||||
printf("<s> %d\n", NR+2);
|
||||
printf("</s> %d\n", NR+3);
|
||||
}' > $lang_char_dir/words || exit 1;
|
||||
|
||||
mv $lang_char_dir/words $lang_char_dir/words.txt
|
||||
fi
|
||||
|
||||
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
||||
log "Stage 10: Prepare pinyin based lang"
|
||||
lang_pinyin_dir=data/lang_pinyin
|
||||
mkdir -p $lang_pinyin_dir
|
||||
|
||||
gunzip -c data/manifests/supervisions_L.jsonl.gz \
|
||||
| jq '.text' | sed 's/"//g' \
|
||||
| ./local/text2token.py -t "pinyin" > $lang_pinyin_dir/text
|
||||
|
||||
cat $lang_pinyin_dir/text | sed 's/ /\n/g' \
|
||||
| sort -u | sed '/^$/d' > $lang_pinyin_dir/words.txt
|
||||
(echo '<SIL>'; echo '<SPOKEN_NOISE>'; echo '<UNK>'; ) |
|
||||
cat - $lang_pinyin_dir/words.txt | sort | uniq | awk '
|
||||
BEGIN {
|
||||
print "<eps> 0";
|
||||
}
|
||||
{
|
||||
if ($1 == "<s>") {
|
||||
print "<s> is in the vocabulary!" | "cat 1>&2"
|
||||
exit 1;
|
||||
}
|
||||
if ($1 == "</s>") {
|
||||
print "</s> is in the vocabulary!" | "cat 1>&2"
|
||||
exit 1;
|
||||
}
|
||||
printf("%s %d\n", $1, NR);
|
||||
}
|
||||
END {
|
||||
printf("#0 %d\n", NR+1);
|
||||
printf("<s> %d\n", NR+2);
|
||||
printf("</s> %d\n", NR+3);
|
||||
}' > $lang_pinyin_dir/words || exit 1;
|
||||
|
||||
mv $lang_pinyin_dir/words $lang_pinyin_dir/words.txt
|
||||
fi
|
||||
|
||||
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
|
||||
log "Stage 11: Prepare lazy_pinyin based lang"
|
||||
lang_lazy_pinyin_dir=data/lang_lazy_pinyin
|
||||
mkdir -p $lang_lazy_pinyin_dir
|
||||
|
||||
gunzip -c data/manifests/supervisions_L.jsonl.gz \
|
||||
| jq '.text' | sed 's/"//g' \
|
||||
| ./local/text2token.py -t "lazy_pinyin" > $lang_lazy_pinyin_dir/text
|
||||
|
||||
cat $lang_lazy_pinyin_dir/text | sed 's/ /\n/g' \
|
||||
| sort -u | sed '/^$/d' > $lang_lazy_pinyin_dir/words.txt
|
||||
(echo '<SIL>'; echo '<SPOKEN_NOISE>'; echo '<UNK>'; ) |
|
||||
cat - $lang_lazy_pinyin_dir/words.txt | sort | uniq | awk '
|
||||
BEGIN {
|
||||
print "<eps> 0";
|
||||
}
|
||||
{
|
||||
if ($1 == "<s>") {
|
||||
print "<s> is in the vocabulary!" | "cat 1>&2"
|
||||
exit 1;
|
||||
}
|
||||
if ($1 == "</s>") {
|
||||
print "</s> is in the vocabulary!" | "cat 1>&2"
|
||||
exit 1;
|
||||
}
|
||||
printf("%s %d\n", $1, NR);
|
||||
}
|
||||
END {
|
||||
printf("#0 %d\n", NR+1);
|
||||
printf("<s> %d\n", NR+2);
|
||||
printf("</s> %d\n", NR+3);
|
||||
}' > $lang_lazy_pinyin_dir/words || exit 1;
|
||||
|
||||
mv $lang_lazy_pinyin_dir/words $lang_lazy_pinyin_dir/words.txt
|
||||
fi
|
||||
|
||||
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
|
||||
log "Stage 12: Prepare L_disambig.pt"
|
||||
if [ ! -f data/lang_char/L_disambig.pt ]; then
|
||||
python ./local/prepare_lang_wenetspeech.py --lang-dir data/lang_char
|
||||
fi
|
||||
|
||||
if [ ! -f data/lang_pinyin/L_disambig.pt ]; then
|
||||
python ./local/prepare_lang_wenetspeech.py --lang-dir data/lang_pinyin
|
||||
fi
|
||||
|
||||
if [ ! -f data/lang_lazy_pinyin/L_disambig.pt ]; then
|
||||
python ./local/prepare_lang_wenetspeech.py --lang-dir data/lang_lazy_pinyin
|
||||
fi
|
||||
fi
|
22
egs/wenetspeech/ASR/pruned_transducer_stateless/README.md
Normal file
22
egs/wenetspeech/ASR/pruned_transducer_stateless/README.md
Normal file
@ -0,0 +1,22 @@
|
||||
## Introduction
|
||||
|
||||
The decoder, i.e., the prediction network, is from
|
||||
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
|
||||
(Rnn-Transducer with Stateless Prediction Network)
|
||||
|
||||
You can use the following command to start the training:
|
||||
|
||||
```bash
|
||||
cd egs/wenetspeech/ASR
|
||||
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
./pruned_transducer_stateless/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 0 \
|
||||
--exp-dir pruned_transducer_stateless/exp \
|
||||
--token-type lazy_pinyin \
|
||||
--lang-dir data/lang_lazy_pinyin \
|
||||
--max-duration 250
|
||||
```
|
@ -0,0 +1,401 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import inspect
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import torch
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
Fbank,
|
||||
FbankConfig,
|
||||
load_manifest,
|
||||
set_caching_enabled,
|
||||
)
|
||||
from lhotse.cut import Cut
|
||||
from lhotse.dataset import (
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SingleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
set_caching_enabled(False)
|
||||
torch.set_num_threads(1)
|
||||
|
||||
|
||||
class WenetSpeechAsrDataModule:
|
||||
"""
|
||||
DataModule for k2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=300,
|
||||
help="The number of buckets for the DynamicBucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-spec-aug",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use SpecAugment for training dataset.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--spec-aug-time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Used only when --enable-spec-aug is True. "
|
||||
"It specifies the factor for time warping in SpecAugment. "
|
||||
"Larger values mean more warping. "
|
||||
"A value less than 1 means to disable time warp.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-musan",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, select noise from MUSAN and mix it"
|
||||
"with training dataset. ",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--lazy-load",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="lazily open CutSets to avoid OOM (for L|XL subset)",
|
||||
)
|
||||
|
||||
def train_dataloaders(self, cuts_train: CutSet) -> DataLoader:
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(
|
||||
self.args.manifest_dir / "cuts_musan.json.gz"
|
||||
)
|
||||
|
||||
transforms = []
|
||||
if self.args.enable_musan:
|
||||
logging.info("Enable MUSAN")
|
||||
transforms.append(
|
||||
CutMix(
|
||||
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
||||
if self.args.concatenate_cuts:
|
||||
logging.info(
|
||||
f"Using cut concatenation with duration factor "
|
||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||
)
|
||||
# Cut concatenation should be the first transform in the list,
|
||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||
# different utterances.
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
input_transforms = []
|
||||
if self.args.enable_spec_aug:
|
||||
logging.info("Enable SpecAugment")
|
||||
logging.info(
|
||||
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
||||
)
|
||||
# Set the value of num_frame_masks according to Lhotse's version.
|
||||
# In different Lhotse's versions, the default of num_frame_masks is
|
||||
# different.
|
||||
num_frame_masks = 10
|
||||
num_frame_masks_parameter = inspect.signature(
|
||||
SpecAugment.__init__
|
||||
).parameters["num_frame_masks"]
|
||||
if num_frame_masks_parameter.default == 1:
|
||||
num_frame_masks = 2
|
||||
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||
input_transforms.append(
|
||||
SpecAugment(
|
||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||
num_frame_masks=num_frame_masks,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable SpecAugment")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
# NOTE: the PerturbSpeed transform should be added only if we
|
||||
# remove it from data prep stage.
|
||||
# Add on-the-fly speed perturbation; since originally it would
|
||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||
# 3x more epochs.
|
||||
# Speed perturbation probably should come first before
|
||||
# concatenation, but in principle the transforms order doesn't have
|
||||
# to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||
# Drop feats to be on the safe side.
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
buffer_size=20000,
|
||||
drop_last=True,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SingleCutSampler.")
|
||||
train_sampler = SingleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 20 seconds
|
||||
return 1.0 <= c.duration <= 16.0
|
||||
|
||||
train_sampler.filter(remove_short_and_long_utt)
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
buffer_size=20000,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||
if self.args.on_the_fly_feats
|
||||
else PrecomputedFeatures(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts, max_duration=self.args.max_duration, shuffle=False
|
||||
)
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get train cuts")
|
||||
if self.args.lazy_load:
|
||||
logging.info("use lazy cuts")
|
||||
cuts_train = CutSet.from_jsonl_lazy(
|
||||
self.args.manifest_dir / "cuts_L.jsonl.gz"
|
||||
)
|
||||
else:
|
||||
cuts_train = CutSet.from_file(
|
||||
self.args.manifest_dir / "cuts_L.jsonl.gz"
|
||||
)
|
||||
return cuts_train
|
||||
|
||||
@lru_cache()
|
||||
def valid_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev cuts")
|
||||
return load_manifest(self.args.manifest_dir / "cuts_DEV.jsonl.gz")
|
||||
|
||||
@lru_cache()
|
||||
def test_net_cuts(self) -> List[CutSet]:
|
||||
logging.info("About to get TEST_NET cuts")
|
||||
return load_manifest(self.args.manifest_dir / "cuts_TEST_NET.jsonl.gz")
|
||||
|
||||
@lru_cache()
|
||||
def test_meeting_cuts(self) -> List[CutSet]:
|
||||
logging.info("About to get TEST_MEETING cuts")
|
||||
return load_manifest(
|
||||
self.args.manifest_dir / "cuts_TEST_MEETING.jsonl.gz"
|
||||
)
|
591
egs/wenetspeech/ASR/pruned_transducer_stateless/beam_search.py
Normal file
591
egs/wenetspeech/ASR/pruned_transducer_stateless/beam_search.py
Normal file
@ -0,0 +1,591 @@
|
||||
# Copyright 2020 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import k2
|
||||
import torch
|
||||
from model import Transducer
|
||||
|
||||
from icefall.decode import one_best_decoding
|
||||
from icefall.utils import get_texts
|
||||
|
||||
|
||||
def fast_beam_search(
|
||||
model: Transducer,
|
||||
decoding_graph: k2.Fsa,
|
||||
encoder_out: torch.Tensor,
|
||||
encoder_out_lens: torch.Tensor,
|
||||
beam: float,
|
||||
max_states: int,
|
||||
max_contexts: int,
|
||||
) -> List[List[int]]:
|
||||
"""It limits the maximum number of symbols per frame to 1.
|
||||
|
||||
Args:
|
||||
model:
|
||||
An instance of `Transducer`.
|
||||
decoding_graph:
|
||||
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
||||
encoder_out:
|
||||
A tensor of shape (N, T, C) from the encoder.
|
||||
encoder_out_lens:
|
||||
A tensor of shape (N,) containing the number of frames in `encoder_out`
|
||||
before padding.
|
||||
beam:
|
||||
Beam value, similar to the beam used in Kaldi..
|
||||
max_states:
|
||||
Max states per stream per frame.
|
||||
max_contexts:
|
||||
Max contexts pre stream per frame.
|
||||
Returns:
|
||||
Return the decoded result.
|
||||
"""
|
||||
assert encoder_out.ndim == 3
|
||||
|
||||
context_size = model.decoder.context_size
|
||||
vocab_size = model.decoder.vocab_size
|
||||
|
||||
B, T, C = encoder_out.shape
|
||||
|
||||
config = k2.RnntDecodingConfig(
|
||||
vocab_size=vocab_size,
|
||||
decoder_history_len=context_size,
|
||||
beam=beam,
|
||||
max_contexts=max_contexts,
|
||||
max_states=max_states,
|
||||
)
|
||||
individual_streams = []
|
||||
for i in range(B):
|
||||
individual_streams.append(k2.RnntDecodingStream(decoding_graph))
|
||||
decoding_streams = k2.RnntDecodingStreams(individual_streams, config)
|
||||
|
||||
for t in range(T):
|
||||
# shape is a RaggedShape of shape (B, context)
|
||||
# contexts is a Tensor of shape (shape.NumElements(), context_size)
|
||||
shape, contexts = decoding_streams.get_contexts()
|
||||
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
|
||||
contexts = contexts.to(torch.int64)
|
||||
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
|
||||
decoder_out = model.decoder(contexts, need_pad=False)
|
||||
# current_encoder_out is of shape
|
||||
# (shape.NumElements(), 1, encoder_out_dim)
|
||||
# fmt: off
|
||||
current_encoder_out = torch.index_select(
|
||||
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1)
|
||||
)
|
||||
# fmt: on
|
||||
logits = model.joiner(
|
||||
current_encoder_out.unsqueeze(2), decoder_out.unsqueeze(1)
|
||||
)
|
||||
logits = logits.squeeze(1).squeeze(1)
|
||||
log_probs = logits.log_softmax(dim=-1)
|
||||
decoding_streams.advance(log_probs)
|
||||
decoding_streams.terminate_and_flush_to_streams()
|
||||
lattice = decoding_streams.format_output(encoder_out_lens.tolist())
|
||||
best_path = one_best_decoding(lattice)
|
||||
hyps = get_texts(best_path)
|
||||
print(len(hyps), hyps[0])
|
||||
return hyps
|
||||
|
||||
|
||||
def greedy_search(
|
||||
model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int
|
||||
) -> List[int]:
|
||||
"""Greedy search for a single utterance.
|
||||
Args:
|
||||
model:
|
||||
An instance of `Transducer`.
|
||||
encoder_out:
|
||||
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||
max_sym_per_frame:
|
||||
Maximum number of symbols per frame. If it is set to 0, the WER
|
||||
would be 100%.
|
||||
Returns:
|
||||
Return the decoded result.
|
||||
"""
|
||||
assert encoder_out.ndim == 3
|
||||
|
||||
# support only batch_size == 1 for now
|
||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
|
||||
device = model.device
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[blank_id] * context_size, device=device, dtype=torch.int64
|
||||
).reshape(1, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
|
||||
T = encoder_out.size(1)
|
||||
t = 0
|
||||
hyp = [blank_id] * context_size
|
||||
|
||||
# Maximum symbols per utterance.
|
||||
max_sym_per_utt = 1000
|
||||
|
||||
# symbols per frame
|
||||
sym_per_frame = 0
|
||||
|
||||
# symbols per utterance decoded so far
|
||||
sym_per_utt = 0
|
||||
|
||||
while t < T and sym_per_utt < max_sym_per_utt:
|
||||
if sym_per_frame >= max_sym_per_frame:
|
||||
sym_per_frame = 0
|
||||
t += 1
|
||||
continue
|
||||
|
||||
# fmt: off
|
||||
current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
|
||||
# fmt: on
|
||||
logits = model.joiner(current_encoder_out, decoder_out.unsqueeze(1))
|
||||
# logits is (1, 1, 1, vocab_size)
|
||||
|
||||
y = logits.argmax().item()
|
||||
if y != blank_id:
|
||||
# print(y, blank_id)
|
||||
hyp.append(y)
|
||||
decoder_input = torch.tensor(
|
||||
[hyp[-context_size:]], device=device
|
||||
).reshape(1, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
|
||||
sym_per_utt += 1
|
||||
sym_per_frame += 1
|
||||
else:
|
||||
sym_per_frame = 0
|
||||
t += 1
|
||||
hyp = hyp[context_size:] # remove blanks
|
||||
|
||||
return hyp
|
||||
|
||||
|
||||
def greedy_search_batch(
|
||||
model: Transducer, encoder_out: torch.Tensor
|
||||
) -> List[List[int]]:
|
||||
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
||||
Args:
|
||||
model:
|
||||
The transducer model.
|
||||
encoder_out:
|
||||
Output from the encoder. Its shape is (N, T, C), where N >= 1.
|
||||
Returns:
|
||||
Return a list-of-list integers containing the decoded results.
|
||||
len(ans) equals to encoder_out.size(0).
|
||||
"""
|
||||
assert encoder_out.ndim == 3
|
||||
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||
|
||||
device = model.device
|
||||
|
||||
batch_size = encoder_out.size(0)
|
||||
T = encoder_out.size(1)
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
|
||||
hyps = [[blank_id] * context_size for _ in range(batch_size)]
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
hyps,
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
) # (batch_size, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
# decoder_out: (batch_size, 1, decoder_out_dim)
|
||||
for t in range(T):
|
||||
current_encoder_out = encoder_out[:, t : t + 1, :].unsqueeze(2) # noqa
|
||||
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
|
||||
logits = model.joiner(current_encoder_out, decoder_out.unsqueeze(1))
|
||||
# logits'shape (batch_size, 1, 1, vocab_size)
|
||||
|
||||
logits = logits.squeeze(1).squeeze(1) # (batch_size, vocab_size)
|
||||
assert logits.ndim == 2, logits.shape
|
||||
y = logits.argmax(dim=1).tolist()
|
||||
emitted = False
|
||||
for i, v in enumerate(y):
|
||||
if v != blank_id:
|
||||
hyps[i].append(v)
|
||||
emitted = True
|
||||
if emitted:
|
||||
# update decoder output
|
||||
decoder_input = [h[-context_size:] for h in hyps]
|
||||
decoder_input = torch.tensor(decoder_input, device=device)
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
|
||||
ans = [h[context_size:] for h in hyps]
|
||||
return ans
|
||||
|
||||
|
||||
@dataclass
|
||||
class Hypothesis:
|
||||
# The predicted tokens so far.
|
||||
# Newly predicted tokens are appended to `ys`.
|
||||
ys: List[int]
|
||||
|
||||
# The log prob of ys.
|
||||
# It contains only one entry.
|
||||
log_prob: torch.Tensor
|
||||
|
||||
@property
|
||||
def key(self) -> str:
|
||||
"""Return a string representation of self.ys"""
|
||||
return "_".join(map(str, self.ys))
|
||||
|
||||
|
||||
class HypothesisList(object):
|
||||
def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None:
|
||||
"""
|
||||
Args:
|
||||
data:
|
||||
A dict of Hypotheses. Its key is its `value.key`.
|
||||
"""
|
||||
if data is None:
|
||||
self._data = {}
|
||||
else:
|
||||
self._data = data
|
||||
|
||||
@property
|
||||
def data(self) -> Dict[str, Hypothesis]:
|
||||
return self._data
|
||||
|
||||
def add(self, hyp: Hypothesis) -> None:
|
||||
"""Add a Hypothesis to `self`.
|
||||
|
||||
If `hyp` already exists in `self`, its probability is updated using
|
||||
`log-sum-exp` with the existed one.
|
||||
|
||||
Args:
|
||||
hyp:
|
||||
The hypothesis to be added.
|
||||
"""
|
||||
key = hyp.key
|
||||
if key in self:
|
||||
old_hyp = self._data[key] # shallow copy
|
||||
torch.logaddexp(
|
||||
old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob
|
||||
)
|
||||
else:
|
||||
self._data[key] = hyp
|
||||
|
||||
def get_most_probable(self, length_norm: bool = False) -> Hypothesis:
|
||||
"""Get the most probable hypothesis, i.e., the one with
|
||||
the largest `log_prob`.
|
||||
|
||||
Args:
|
||||
length_norm:
|
||||
If True, the `log_prob` of a hypothesis is normalized by the
|
||||
number of tokens in it.
|
||||
Returns:
|
||||
Return the hypothesis that has the largest `log_prob`.
|
||||
"""
|
||||
if length_norm:
|
||||
return max(
|
||||
self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys)
|
||||
)
|
||||
else:
|
||||
return max(self._data.values(), key=lambda hyp: hyp.log_prob)
|
||||
|
||||
def remove(self, hyp: Hypothesis) -> None:
|
||||
"""Remove a given hypothesis.
|
||||
|
||||
Caution:
|
||||
`self` is modified **in-place**.
|
||||
|
||||
Args:
|
||||
hyp:
|
||||
The hypothesis to be removed from `self`.
|
||||
Note: It must be contained in `self`. Otherwise,
|
||||
an exception is raised.
|
||||
"""
|
||||
key = hyp.key
|
||||
assert key in self, f"{key} does not exist"
|
||||
del self._data[key]
|
||||
|
||||
def filter(self, threshold: torch.Tensor) -> "HypothesisList":
|
||||
"""Remove all Hypotheses whose log_prob is less than threshold.
|
||||
|
||||
Caution:
|
||||
`self` is not modified. Instead, a new HypothesisList is returned.
|
||||
|
||||
Returns:
|
||||
Return a new HypothesisList containing all hypotheses from `self`
|
||||
with `log_prob` being greater than the given `threshold`.
|
||||
"""
|
||||
ans = HypothesisList()
|
||||
for _, hyp in self._data.items():
|
||||
if hyp.log_prob > threshold:
|
||||
ans.add(hyp) # shallow copy
|
||||
return ans
|
||||
|
||||
def topk(self, k: int) -> "HypothesisList":
|
||||
"""Return the top-k hypothesis."""
|
||||
hyps = list(self._data.items())
|
||||
|
||||
hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k]
|
||||
|
||||
ans = HypothesisList(dict(hyps))
|
||||
return ans
|
||||
|
||||
def __contains__(self, key: str):
|
||||
return key in self._data
|
||||
|
||||
def __iter__(self):
|
||||
return iter(self._data.values())
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self._data)
|
||||
|
||||
def __str__(self) -> str:
|
||||
s = []
|
||||
for key in self:
|
||||
s.append(key)
|
||||
return ", ".join(s)
|
||||
|
||||
|
||||
def modified_beam_search(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
beam: int = 4,
|
||||
) -> List[int]:
|
||||
"""It limits the maximum number of symbols per frame to 1.
|
||||
|
||||
Args:
|
||||
model:
|
||||
An instance of `Transducer`.
|
||||
encoder_out:
|
||||
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||
beam:
|
||||
Beam size.
|
||||
Returns:
|
||||
Return the decoded result.
|
||||
"""
|
||||
|
||||
assert encoder_out.ndim == 3
|
||||
|
||||
# support only batch_size == 1 for now
|
||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
|
||||
device = model.device
|
||||
|
||||
T = encoder_out.size(1)
|
||||
|
||||
B = HypothesisList()
|
||||
B.add(
|
||||
Hypothesis(
|
||||
ys=[blank_id] * context_size,
|
||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||
)
|
||||
)
|
||||
|
||||
for t in range(T):
|
||||
# fmt: off
|
||||
current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
|
||||
# current_encoder_out is of shape (1, 1, 1, encoder_out_dim)
|
||||
# fmt: on
|
||||
A = list(B)
|
||||
B = HypothesisList()
|
||||
|
||||
ys_log_probs = torch.cat([hyp.log_prob.reshape(1, 1) for hyp in A])
|
||||
# ys_log_probs is of shape (num_hyps, 1)
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[hyp.ys[-context_size:] for hyp in A],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
)
|
||||
# decoder_input is of shape (num_hyps, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
||||
# decoder_output is of shape (num_hyps, 1, 1, decoder_output_dim)
|
||||
|
||||
current_encoder_out = current_encoder_out.expand(
|
||||
decoder_out.size(0), 1, 1, -1
|
||||
) # (num_hyps, 1, 1, encoder_out_dim)
|
||||
|
||||
logits = model.joiner(
|
||||
current_encoder_out,
|
||||
decoder_out,
|
||||
)
|
||||
# logits is of shape (num_hyps, 1, 1, vocab_size)
|
||||
logits = logits.squeeze(1).squeeze(1)
|
||||
|
||||
# now logits is of shape (num_hyps, vocab_size)
|
||||
log_probs = logits.log_softmax(dim=-1)
|
||||
|
||||
log_probs.add_(ys_log_probs)
|
||||
|
||||
log_probs = log_probs.reshape(-1)
|
||||
topk_log_probs, topk_indexes = log_probs.topk(beam)
|
||||
|
||||
# topk_hyp_indexes are indexes into `A`
|
||||
topk_hyp_indexes = topk_indexes // logits.size(-1)
|
||||
topk_token_indexes = topk_indexes % logits.size(-1)
|
||||
|
||||
topk_hyp_indexes = topk_hyp_indexes.tolist()
|
||||
topk_token_indexes = topk_token_indexes.tolist()
|
||||
|
||||
for i in range(len(topk_hyp_indexes)):
|
||||
hyp = A[topk_hyp_indexes[i]]
|
||||
new_ys = hyp.ys[:]
|
||||
new_token = topk_token_indexes[i]
|
||||
if new_token != blank_id:
|
||||
new_ys.append(new_token)
|
||||
new_log_prob = topk_log_probs[i]
|
||||
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||
B.add(new_hyp)
|
||||
|
||||
best_hyp = B.get_most_probable(length_norm=True)
|
||||
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
||||
|
||||
return ys
|
||||
|
||||
|
||||
def beam_search(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
beam: int = 4,
|
||||
) -> List[int]:
|
||||
"""
|
||||
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
|
||||
|
||||
espnet/nets/beam_search_transducer.py#L247 is used as a reference.
|
||||
|
||||
Args:
|
||||
model:
|
||||
An instance of `Transducer`.
|
||||
encoder_out:
|
||||
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||
beam:
|
||||
Beam size.
|
||||
Returns:
|
||||
Return the decoded result.
|
||||
"""
|
||||
assert encoder_out.ndim == 3
|
||||
|
||||
# support only batch_size == 1 for now
|
||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
|
||||
device = model.device
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[blank_id] * context_size,
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
).reshape(1, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
|
||||
T = encoder_out.size(1)
|
||||
t = 0
|
||||
|
||||
B = HypothesisList()
|
||||
B.add(Hypothesis(ys=[blank_id] * context_size, log_prob=0.0))
|
||||
|
||||
max_sym_per_utt = 20000
|
||||
|
||||
sym_per_utt = 0
|
||||
|
||||
decoder_cache: Dict[str, torch.Tensor] = {}
|
||||
|
||||
while t < T and sym_per_utt < max_sym_per_utt:
|
||||
# fmt: off
|
||||
current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
|
||||
# fmt: on
|
||||
A = B
|
||||
B = HypothesisList()
|
||||
|
||||
joint_cache: Dict[str, torch.Tensor] = {}
|
||||
|
||||
# TODO(fangjun): Implement prefix search to update the `log_prob`
|
||||
# of hypotheses in A
|
||||
|
||||
while True:
|
||||
y_star = A.get_most_probable()
|
||||
A.remove(y_star)
|
||||
|
||||
cached_key = y_star.key
|
||||
|
||||
if cached_key not in decoder_cache:
|
||||
decoder_input = torch.tensor(
|
||||
[y_star.ys[-context_size:]],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
).reshape(1, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
decoder_cache[cached_key] = decoder_out
|
||||
else:
|
||||
decoder_out = decoder_cache[cached_key]
|
||||
|
||||
cached_key += f"-t-{t}"
|
||||
if cached_key not in joint_cache:
|
||||
logits = model.joiner(
|
||||
current_encoder_out, decoder_out.unsqueeze(1)
|
||||
)
|
||||
|
||||
# TODO(fangjun): Scale the blank posterior
|
||||
|
||||
log_prob = logits.log_softmax(dim=-1)
|
||||
# log_prob is (1, 1, 1, vocab_size)
|
||||
log_prob = log_prob.squeeze()
|
||||
# Now log_prob is (vocab_size,)
|
||||
joint_cache[cached_key] = log_prob
|
||||
else:
|
||||
log_prob = joint_cache[cached_key]
|
||||
|
||||
# First, process the blank symbol
|
||||
skip_log_prob = log_prob[blank_id]
|
||||
new_y_star_log_prob = y_star.log_prob + skip_log_prob
|
||||
|
||||
# ys[:] returns a copy of ys
|
||||
B.add(Hypothesis(ys=y_star.ys[:], log_prob=new_y_star_log_prob))
|
||||
|
||||
# Second, process other non-blank labels
|
||||
values, indices = log_prob.topk(beam + 1)
|
||||
for i, v in zip(indices.tolist(), values.tolist()):
|
||||
if i == blank_id:
|
||||
continue
|
||||
new_ys = y_star.ys + [i]
|
||||
new_log_prob = y_star.log_prob + v
|
||||
A.add(Hypothesis(ys=new_ys, log_prob=new_log_prob))
|
||||
|
||||
# Check whether B contains more than "beam" elements more probable
|
||||
# than the most probable in A
|
||||
A_most_probable = A.get_most_probable()
|
||||
|
||||
kept_B = B.filter(A_most_probable.log_prob)
|
||||
|
||||
if len(kept_B) >= beam:
|
||||
B = kept_B.topk(beam)
|
||||
break
|
||||
|
||||
t += 1
|
||||
|
||||
best_hyp = B.get_most_probable(length_norm=True)
|
||||
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
||||
return ys
|
1
egs/wenetspeech/ASR/pruned_transducer_stateless/conformer.py
Symbolic link
1
egs/wenetspeech/ASR/pruned_transducer_stateless/conformer.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/transducer_stateless/conformer.py
|
620
egs/wenetspeech/ASR/pruned_transducer_stateless/decode.py
Executable file
620
egs/wenetspeech/ASR/pruned_transducer_stateless/decode.py
Executable file
@ -0,0 +1,620 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang
|
||||
# Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
Here, using token-type as lazy_pinyin.
|
||||
(1) greedy search
|
||||
./pruned_transducer_stateless/decode.py \
|
||||
--epoch 29 \
|
||||
--avg 13 \
|
||||
--exp-dir ./pruned_transducer_stateless/exp \
|
||||
--token-type lazy_pinyin \
|
||||
--lang-dir data/lang_lazy_pinyin \
|
||||
--max-duration 100 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
(2) beam search
|
||||
./pruned_transducer_stateless/decode.py \
|
||||
--epoch 29 \
|
||||
--avg 13 \
|
||||
--exp-dir ./pruned_transducer_stateless/exp \
|
||||
--token-type lazy_pinyin \
|
||||
--lang-dir data/lang_lazy_pinyin \
|
||||
--max-duration 100 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(3) modified beam search
|
||||
./pruned_transducer_stateless/decode.py \
|
||||
--epoch 29 \
|
||||
--avg 13 \
|
||||
--exp-dir ./pruned_transducer_stateless/exp \
|
||||
--token-type lazy_pinyin \
|
||||
--lang-dir data/lang_lazy_pinyin \
|
||||
--max-duration 100 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search
|
||||
./pruned_transducer_stateless/decode.py \
|
||||
--epoch 29 \
|
||||
--avg 13 \
|
||||
--exp-dir ./pruned_transducer_stateless/exp \
|
||||
--token-type lazy_pinyin \
|
||||
--lang-dir data/lang_lazy_pinyin \
|
||||
--max-duration 1500 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import WenetSpeechAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from conformer import Conformer
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from model import Transducer
|
||||
from pypinyin import lazy_pinyin, pinyin
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.env import get_env_info
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=29,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=13,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_lazy_pinyin",
|
||||
help="""The lang dir
|
||||
It contains language related input files such as
|
||||
"lexicon.txt"
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--token-type",
|
||||
type=str,
|
||||
default="lazy_pinyin",
|
||||
help="""The token type
|
||||
It refers to the token type for modeling, such as
|
||||
char, pinyin, lazy_pinyin.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An interger indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=3,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
"subsampling_factor": 4,
|
||||
"attention_dim": 512,
|
||||
"nhead": 8,
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
# parameters for decoder
|
||||
"embedding_dim": 512,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def get_encoder_model(params: AttributeDict):
|
||||
# TODO: We can add an option to switch between Conformer and Transformer
|
||||
encoder = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
output_dim=params.vocab_size,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
d_model=params.attention_dim,
|
||||
nhead=params.nhead,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
)
|
||||
return encoder
|
||||
|
||||
|
||||
def get_decoder_model(params: AttributeDict):
|
||||
decoder = Decoder(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.embedding_dim,
|
||||
blank_id=params.blank_id,
|
||||
context_size=params.context_size,
|
||||
)
|
||||
return decoder
|
||||
|
||||
|
||||
def get_joiner_model(params: AttributeDict):
|
||||
joiner = Joiner(
|
||||
input_dim=params.vocab_size,
|
||||
inner_dim=params.embedding_dim,
|
||||
output_dim=params.vocab_size,
|
||||
)
|
||||
return joiner
|
||||
|
||||
|
||||
def get_transducer_model(params: AttributeDict):
|
||||
encoder = get_encoder_model(params)
|
||||
decoder = get_decoder_model(params)
|
||||
joiner = get_joiner_model(params)
|
||||
|
||||
model = Transducer(
|
||||
encoder=encoder,
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
lexicon: Lexicon,
|
||||
batch: dict,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if greedy_search is used, it would be "greedy_search"
|
||||
If beam search with a beam size of 7 is used, it would be
|
||||
"beam_7"
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = model.device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
encoder_out, encoder_out_lens = model.encoder(
|
||||
x=feature, x_lens=feature_lens
|
||||
)
|
||||
hyps = []
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
hyp_tokens = fast_beam_search(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for i in range(encoder_out.size(0)):
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
elif (
|
||||
params.decoding_method == "greedy_search"
|
||||
and params.max_sym_per_frame == 1
|
||||
):
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
)
|
||||
for i in range(encoder_out.size(0)):
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append([lexicon.token_table[i] for i in hyp])
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
return {
|
||||
(
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
): hyps
|
||||
}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
lexicon: Lexicon,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 100
|
||||
else:
|
||||
log_interval = 2
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
texts = [list(str(text)) for text in texts]
|
||||
if params.token_type == "lazy_pinyin":
|
||||
texts = [lazy_pinyin(text) for text in texts]
|
||||
if params.token_type == "pinyin":
|
||||
texts = [pinyin(text) for text in texts]
|
||||
for i in range(len(texts)):
|
||||
texts[i] = [token[0] for token in texts[i]]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
lexicon=lexicon,
|
||||
batch=batch,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for hyp_words, ref_text in zip(hyps, texts):
|
||||
this_batch.append((ref_text, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir
|
||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
WenetSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam_size}"
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
params.blank_id = lexicon.token_table["<blk>"]
|
||||
params.vocab_size = max(lexicon.tokens) + 1
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
wenetspeech = WenetSpeechAsrDataModule(args)
|
||||
test_net_cuts = wenetspeech.test_net_cuts()
|
||||
test_meeting_cuts = wenetspeech.test_meeting_cuts()
|
||||
|
||||
test_net_dl = wenetspeech.valid_dataloaders(test_net_cuts)
|
||||
test_meeting_dl = wenetspeech.test_dataloaders(test_meeting_cuts)
|
||||
|
||||
test_sets = ["TEST_NET", "TEST_MEETING"]
|
||||
test_dl = [test_net_dl, test_meeting_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
lexicon=lexicon,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
100
egs/wenetspeech/ASR/pruned_transducer_stateless/decoder.py
Normal file
100
egs/wenetspeech/ASR/pruned_transducer_stateless/decoder.py
Normal file
@ -0,0 +1,100 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
"""This class modifies the stateless decoder from the following paper:
|
||||
|
||||
RNN-transducer with stateless prediction network
|
||||
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
|
||||
|
||||
It removes the recurrent connection from the decoder, i.e., the prediction
|
||||
network. Different from the above paper, it adds an extra Conv1d
|
||||
right after the embedding layer.
|
||||
|
||||
TODO: Implement https://arxiv.org/pdf/2109.07513.pdf
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
embedding_dim: int,
|
||||
blank_id: int,
|
||||
context_size: int,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
vocab_size:
|
||||
Number of tokens of the modeling unit including blank.
|
||||
embedding_dim:
|
||||
Dimension of the input embedding.
|
||||
blank_id:
|
||||
The ID of the blank symbol.
|
||||
context_size:
|
||||
Number of previous words to use to predict the next word.
|
||||
1 means bigram; 2 means trigram. n means (n+1)-gram.
|
||||
"""
|
||||
super().__init__()
|
||||
self.embedding = nn.Embedding(
|
||||
num_embeddings=vocab_size,
|
||||
embedding_dim=embedding_dim,
|
||||
padding_idx=blank_id,
|
||||
)
|
||||
self.blank_id = blank_id
|
||||
assert context_size >= 1, context_size
|
||||
self.context_size = context_size
|
||||
self.vocab_size = vocab_size
|
||||
if context_size > 1:
|
||||
self.conv = nn.Conv1d(
|
||||
in_channels=embedding_dim,
|
||||
out_channels=embedding_dim,
|
||||
kernel_size=context_size,
|
||||
padding=0,
|
||||
groups=embedding_dim,
|
||||
bias=False,
|
||||
)
|
||||
self.output_linear = nn.Linear(embedding_dim, vocab_size)
|
||||
|
||||
def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
y:
|
||||
A 2-D tensor of shape (N, U).
|
||||
need_pad:
|
||||
True to left pad the input. Should be True during training.
|
||||
False to not pad the input. Should be False during inference.
|
||||
Returns:
|
||||
Return a tensor of shape (N, U, embedding_dim).
|
||||
"""
|
||||
embedding_out = self.embedding(y)
|
||||
if self.context_size > 1:
|
||||
embedding_out = embedding_out.permute(0, 2, 1)
|
||||
if need_pad is True:
|
||||
embedding_out = F.pad(
|
||||
embedding_out, pad=(self.context_size - 1, 0)
|
||||
)
|
||||
else:
|
||||
# During inference time, there is no need to do extra padding
|
||||
# as we only need one output
|
||||
assert embedding_out.size(-1) == self.context_size
|
||||
embedding_out = self.conv(embedding_out)
|
||||
embedding_out = embedding_out.permute(0, 2, 1)
|
||||
embedding_out = self.output_linear(F.relu(embedding_out))
|
||||
return embedding_out
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/transducer_stateless/encoder_interface.py
|
256
egs/wenetspeech/ASR/pruned_transducer_stateless/export.py
Normal file
256
egs/wenetspeech/ASR/pruned_transducer_stateless/export.py
Normal file
@ -0,0 +1,256 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang
|
||||
# Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
"""
|
||||
Usage:
|
||||
./pruned_transducer_stateless/export.py \
|
||||
--exp-dir ./pruned_transducer_stateless/exp \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--epoch 29 \
|
||||
--avg 13
|
||||
|
||||
It will generate a file exp_dir/pretrained.pt
|
||||
|
||||
To use the generated file with `pruned_transducer_stateless/decode.py`,
|
||||
you can do:
|
||||
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/tedlium3/ASR
|
||||
./pruned_transducer_stateless/decode.py \
|
||||
--exp-dir ./pruned_transducer_stateless/exp \
|
||||
--epoch 9999 \
|
||||
--avg 1 \
|
||||
--max-duration 1 \
|
||||
--bpe-model data/lang_bpe_500/bpe.model
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from conformer import Conformer
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from model import Transducer
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import AttributeDict, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=20,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
"encoder_out_dim": 512,
|
||||
"subsampling_factor": 4,
|
||||
"attention_dim": 512,
|
||||
"nhead": 8,
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
# parameters for decoder
|
||||
"embedding_dim": 512,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
||||
encoder = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
output_dim=params.encoder_out_dim,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
d_model=params.attention_dim,
|
||||
nhead=params.nhead,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
)
|
||||
return encoder
|
||||
|
||||
|
||||
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
||||
decoder = Decoder(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.encoder_out_dim,
|
||||
blank_id=params.blank_id,
|
||||
unk_id=params.unk_id,
|
||||
context_size=params.context_size,
|
||||
)
|
||||
return decoder
|
||||
|
||||
|
||||
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
||||
joiner = Joiner(
|
||||
input_dim=params.encoder_out_dim,
|
||||
inner_dim=params.embedding_dim,
|
||||
output_dim=params.vocab_size,
|
||||
)
|
||||
return joiner
|
||||
|
||||
|
||||
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
||||
encoder = get_encoder_model(params)
|
||||
decoder = get_decoder_model(params)
|
||||
joiner = get_joiner_model(params)
|
||||
|
||||
model = Transducer(
|
||||
encoder=encoder,
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
assert args.jit is False, "Support torchscript will be added later"
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
model.to(device)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
model.eval()
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
model.save(str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torch.jit.script")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
1
egs/wenetspeech/ASR/pruned_transducer_stateless/joiner.py
Symbolic link
1
egs/wenetspeech/ASR/pruned_transducer_stateless/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless/joiner.py
|
1
egs/wenetspeech/ASR/pruned_transducer_stateless/model.py
Symbolic link
1
egs/wenetspeech/ASR/pruned_transducer_stateless/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless/model.py
|
346
egs/wenetspeech/ASR/pruned_transducer_stateless/pretrained.py
Normal file
346
egs/wenetspeech/ASR/pruned_transducer_stateless/pretrained.py
Normal file
@ -0,0 +1,346 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
# 2022 Xiaomi Crop. (authors: Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
|
||||
(1) greedy search
|
||||
./pruned_transducer_stateless/pretrained.py \
|
||||
--checkpoint ./pruned_transducer_stateless/exp/pretrained.pt \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--method greedy_search \
|
||||
--max-sym-per-frame 1 \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(2) beam search
|
||||
./pruned_transducer_stateless/pretrained.py \
|
||||
--checkpoint ./pruned_transducer_stateless/exp/pretrained.pt \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--method beam_search \
|
||||
--beam-size 4 \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
|
||||
(3) modified beam search
|
||||
./pruned_transducer_stateless/pretrained.py \
|
||||
--checkpoint ./pruned_transducer_stateless/exp/pretrained.pt \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--method modified_beam_search \
|
||||
--beam-size 4 \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
You can also use `./pruned_transducer_stateless/exp/epoch-xx.pt`.
|
||||
|
||||
Note: ./pruned_transducer_stateless/exp/pretrained.pt is generated by
|
||||
./pruned_transducer_stateless/export.py
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import List
|
||||
|
||||
import kaldifeat
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torchaudio
|
||||
from beam_search import beam_search, greedy_search, modified_beam_search
|
||||
from conformer import Conformer
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from model import Transducer
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import AttributeDict
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--checkpoint",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the checkpoint. "
|
||||
"The checkpoint is assumed to be saved by "
|
||||
"icefall.checkpoint.save_checkpoint().",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
help="""Path to bpe.model.
|
||||
Used only when method is ctc-decoding.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. "
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Used only when --method is beam_search and modified_beam_search ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=3,
|
||||
help="""Maximum number of symbols per frame. Used only when
|
||||
--method is greedy_search.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"sample_rate": 16000,
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
"subsampling_factor": 4,
|
||||
"attention_dim": 512,
|
||||
"nhead": 8,
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
# parameters for decoder
|
||||
"embedding_dim": 512,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
||||
encoder = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
output_dim=params.vocab_size,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
d_model=params.attention_dim,
|
||||
nhead=params.nhead,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
)
|
||||
return encoder
|
||||
|
||||
|
||||
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
||||
decoder = Decoder(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.embedding_dim,
|
||||
blank_id=params.blank_id,
|
||||
unk_id=params.unk_id,
|
||||
context_size=params.context_size,
|
||||
)
|
||||
return decoder
|
||||
|
||||
|
||||
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
||||
joiner = Joiner(
|
||||
input_dim=params.vocab_size,
|
||||
inner_dim=params.embedding_dim,
|
||||
output_dim=params.vocab_size,
|
||||
)
|
||||
return joiner
|
||||
|
||||
|
||||
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
||||
encoder = get_encoder_model(params)
|
||||
decoder = get_decoder_model(params)
|
||||
joiner = get_joiner_model(params)
|
||||
|
||||
model = Transducer(
|
||||
encoder=encoder,
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert sample_rate == expected_sample_rate, (
|
||||
f"expected sample rate: {expected_sample_rate}. "
|
||||
f"Given: {sample_rate}"
|
||||
)
|
||||
# We use only the first channel
|
||||
ans.append(wave[0])
|
||||
return ans
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
params = get_params()
|
||||
|
||||
params.update(vars(args))
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(f"{params}")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info("Creating model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||
model.load_state_dict(checkpoint["model"], strict=False)
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = params.sample_rate
|
||||
opts.mel_opts.num_bins = params.feature_dim
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {params.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||
)
|
||||
waves = [w.to(device) for w in waves]
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
feature_lengths = [f.size(0) for f in features]
|
||||
|
||||
features = pad_sequence(
|
||||
features, batch_first=True, padding_value=math.log(1e-10)
|
||||
)
|
||||
|
||||
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||
|
||||
with torch.no_grad():
|
||||
encoder_out, encoder_out_lens = model.encoder(
|
||||
x=features, x_lens=feature_lengths
|
||||
)
|
||||
|
||||
num_waves = encoder_out.size(0)
|
||||
hyps = []
|
||||
msg = f"Using {params.method}"
|
||||
if params.method == "beam_search":
|
||||
msg += f" with beam size {params.beam_size}"
|
||||
logging.info(msg)
|
||||
for i in range(num_waves):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||
)
|
||||
elif params.method == "modified_beam_search":
|
||||
hyp = modified_beam_search(
|
||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported method: {params.method}")
|
||||
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(params.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
1
egs/wenetspeech/ASR/pruned_transducer_stateless/subsampling.py
Symbolic link
1
egs/wenetspeech/ASR/pruned_transducer_stateless/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/transducer_stateless/subsampling.py
|
58
egs/wenetspeech/ASR/pruned_transducer_stateless/test_decoder.py
Executable file
58
egs/wenetspeech/ASR/pruned_transducer_stateless/test_decoder.py
Executable file
@ -0,0 +1,58 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/tedlium3/ASR
|
||||
python ./pruned_transducer_stateless/test_decoder.py
|
||||
"""
|
||||
|
||||
import torch
|
||||
from decoder import Decoder
|
||||
|
||||
|
||||
def test_decoder():
|
||||
vocab_size = 3
|
||||
blank_id = 0
|
||||
embedding_dim = 128
|
||||
context_size = 4
|
||||
|
||||
decoder = Decoder(
|
||||
vocab_size=vocab_size,
|
||||
embedding_dim=embedding_dim,
|
||||
blank_id=blank_id,
|
||||
context_size=context_size,
|
||||
)
|
||||
N = 100
|
||||
U = 20
|
||||
x = torch.randint(low=0, high=vocab_size, size=(N, U))
|
||||
y = decoder(x)
|
||||
assert y.shape == (N, U, vocab_size)
|
||||
|
||||
# for inference
|
||||
x = torch.randint(low=0, high=vocab_size, size=(N, context_size))
|
||||
y = decoder(x, need_pad=False)
|
||||
assert y.shape == (N, 1, vocab_size)
|
||||
|
||||
|
||||
def main():
|
||||
test_decoder()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
739
egs/wenetspeech/ASR/pruned_transducer_stateless/train.py
Executable file
739
egs/wenetspeech/ASR/pruned_transducer_stateless/train.py
Executable file
@ -0,0 +1,739 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Wei Kang
|
||||
# Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
./pruned_transducer_stateless/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 0 \
|
||||
--exp-dir pruned_transducer_stateless/exp \
|
||||
--max-duration 300
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import WenetSpeechAsrDataModule
|
||||
from conformer import Conformer
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from lhotse.utils import fix_random_seed
|
||||
from local.text2token import token2id
|
||||
from model import Transducer
|
||||
from torch import Tensor
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from transformer import Noam
|
||||
|
||||
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.env import get_env_info
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12350,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=30,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
transducer_stateless/exp/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_lazy_pinyin",
|
||||
help="""The lang dir
|
||||
It contains language related input files such as
|
||||
"lexicon.txt"
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--token-type",
|
||||
type=str,
|
||||
default="lazy_pinyin",
|
||||
help="""The token type
|
||||
It refers to the token type for modeling, such as
|
||||
char, pinyin, lazy_pinyin.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lr-factor",
|
||||
type=float,
|
||||
default=5.0,
|
||||
help="The lr_factor for Noam optimizer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--prune-range",
|
||||
type=int,
|
||||
default=5,
|
||||
help="The prune range for rnnt loss, it means how many symbols(context)"
|
||||
"we are using to compute the loss",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-scale",
|
||||
type=float,
|
||||
default=0.25,
|
||||
help="The scale to smooth the loss with lm "
|
||||
"(output of prediction network) part.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--am-scale",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="The scale to smooth the loss with am (output of encoder network)"
|
||||
"part.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--simple-loss-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="To get pruning ranges, we will calculate a simple version"
|
||||
"loss(joiner is just addition), this simple loss also uses for"
|
||||
"training (as a regularization item). We will scale the simple loss"
|
||||
"with this parameter before adding to the final loss.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=42,
|
||||
help="The seed for random generators intended for reproducibility",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
are saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- best_train_loss: Best training loss so far. It is used to select
|
||||
the model that has the lowest training loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_valid_loss: Best validation loss so far. It is used to select
|
||||
the model that has the lowest validation loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_train_epoch: It is the epoch that has the best training loss.
|
||||
|
||||
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||
|
||||
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||
contains number of batches trained so far across
|
||||
epochs.
|
||||
|
||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||
|
||||
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||
|
||||
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
||||
|
||||
- feature_dim: The model input dim. It has to match the one used
|
||||
in computing features.
|
||||
|
||||
- subsampling_factor: The subsampling factor for the model.
|
||||
|
||||
- attention_dim: Hidden dim for multi-head attention model.
|
||||
|
||||
- num_decoder_layers: Number of decoder layer of transformer decoder.
|
||||
|
||||
- warm_step: The warm_step for Noam optimizer.
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 50,
|
||||
"reset_interval": 200,
|
||||
"valid_interval": 3000, # For the 100h subset, use 800
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
"encoder_out_dim": 512,
|
||||
"subsampling_factor": 4,
|
||||
"attention_dim": 512,
|
||||
"nhead": 8,
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
# parameters for decoder
|
||||
"embedding_dim": 512,
|
||||
# parameters for Noam
|
||||
"warm_step": 80000,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
|
||||
return params
|
||||
|
||||
|
||||
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
||||
# TODO: We can add an option to switch between Conformer and Transformer
|
||||
encoder = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
output_dim=params.vocab_size,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
d_model=params.attention_dim,
|
||||
nhead=params.nhead,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
)
|
||||
return encoder
|
||||
|
||||
|
||||
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
||||
decoder = Decoder(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.embedding_dim,
|
||||
blank_id=params.blank_id,
|
||||
context_size=params.context_size,
|
||||
)
|
||||
return decoder
|
||||
|
||||
|
||||
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
||||
joiner = Joiner(
|
||||
input_dim=params.vocab_size,
|
||||
inner_dim=params.embedding_dim,
|
||||
output_dim=params.vocab_size,
|
||||
)
|
||||
return joiner
|
||||
|
||||
|
||||
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
||||
encoder = get_encoder_model(params)
|
||||
decoder = get_decoder_model(params)
|
||||
joiner = get_joiner_model(params)
|
||||
|
||||
model = Transducer(
|
||||
encoder=encoder,
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
) -> None:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_epoch is positive, it will load the checkpoint from
|
||||
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||
|
||||
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler we are using.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if params.start_epoch <= 0:
|
||||
return
|
||||
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
batch: dict,
|
||||
is_training: bool,
|
||||
) -> Tuple[Tensor, MetricsTracker]:
|
||||
"""
|
||||
Compute CTC loss given the model and its inputs.
|
||||
|
||||
Args:
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
model:
|
||||
The model for training. It is an instance of Conformer in our case.
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
is_training:
|
||||
True for training. False for validation. When it is True, this
|
||||
function enables autograd during computation; when it is False, it
|
||||
disables autograd.
|
||||
"""
|
||||
device = model.device
|
||||
feature = batch["inputs"]
|
||||
# at entry, feature is (N, T, C)
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
texts = batch["supervisions"]["text"]
|
||||
y = ""
|
||||
if params.token_type == "char":
|
||||
y = graph_compiler.texts_to_ids(texts)
|
||||
else:
|
||||
y = token2id(
|
||||
texts=texts,
|
||||
token_table=graph_compiler.token_table,
|
||||
token_type=params.token_type,
|
||||
)
|
||||
y = k2.RaggedTensor(y).to(device)
|
||||
|
||||
with torch.set_grad_enabled(is_training):
|
||||
simple_loss, pruned_loss = model(
|
||||
x=feature,
|
||||
x_lens=feature_lens,
|
||||
y=y,
|
||||
prune_range=params.prune_range,
|
||||
am_scale=params.am_scale,
|
||||
lm_scale=params.lm_scale,
|
||||
)
|
||||
loss = params.simple_loss_scale * simple_loss + pruned_loss
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
info = MetricsTracker()
|
||||
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||
|
||||
# Note: We use reduction=sum while computing the loss.
|
||||
info["loss"] = loss.detach().cpu().item()
|
||||
info["simple_loss"] = simple_loss.detach().cpu().item()
|
||||
info["pruned_loss"] = pruned_loss.detach().cpu().item()
|
||||
|
||||
return loss, info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process."""
|
||||
model.eval()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
graph_compiler=graph_compiler,
|
||||
batch=batch,
|
||||
is_training=False,
|
||||
)
|
||||
assert loss.requires_grad is False
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all frames is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
graph_compiler=graph_compiler,
|
||||
batch=batch,
|
||||
is_training=True,
|
||||
)
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||
# in the batch and there is no normalization to it so far.
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], batch size: {batch_size}"
|
||||
)
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
|
||||
if tb_writer is not None:
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(
|
||||
tb_writer, "train/tot_", params.batch_idx_train
|
||||
)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
logging.info("Computing validation loss")
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
graph_compiler=graph_compiler,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
graph_compiler = CharCtcTrainingGraphCompiler(
|
||||
lexicon=lexicon, device=device, oov="<unk>"
|
||||
)
|
||||
params.blank_id = lexicon.token_table["<blk>"]
|
||||
params.vocab_size = max(lexicon.tokens) + 1
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
logging.info("Using DDP")
|
||||
model = DDP(model, device_ids=[rank])
|
||||
model.device = device
|
||||
|
||||
optimizer = Noam(
|
||||
model.parameters(),
|
||||
model_size=params.attention_dim,
|
||||
factor=params.lr_factor,
|
||||
warm_step=params.warm_step,
|
||||
)
|
||||
|
||||
if checkpoints and "optimizer" in checkpoints:
|
||||
logging.info("Loading optimizer state dict")
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
wenetspeech = WenetSpeechAsrDataModule(args)
|
||||
|
||||
train_cuts = wenetspeech.train_cuts()
|
||||
|
||||
train_dl = wenetspeech.train_dataloaders(train_cuts)
|
||||
valid_cuts = wenetspeech.valid_cuts()
|
||||
valid_dl = wenetspeech.valid_dataloaders(valid_cuts)
|
||||
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
fix_random_seed(params.seed + epoch)
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
cur_lr = optimizer._rate
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||
)
|
||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||
|
||||
if rank == 0:
|
||||
logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
graph_compiler=graph_compiler,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
if world_size > 1:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
WenetSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/wenetspeech/ASR/pruned_transducer_stateless/transformer.py
Symbolic link
1
egs/wenetspeech/ASR/pruned_transducer_stateless/transformer.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/transducer_stateless/transformer.py
|
1
egs/wenetspeech/ASR/shared
Symbolic link
1
egs/wenetspeech/ASR/shared
Symbolic link
@ -0,0 +1 @@
|
||||
../../../icefall/shared/
|
Loading…
x
Reference in New Issue
Block a user