mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-07 08:04:18 +00:00
Change model.py and joiner.py to use torchaudio's RNN-T loss.
This commit is contained in:
parent
e83dcdc3b4
commit
e4d45adf5a
@ -14,6 +14,7 @@ The following table lists the differences among them.
|
|||||||
| `transducer` | Conformer | LSTM | |
|
| `transducer` | Conformer | LSTM | |
|
||||||
| `transducer_stateless` | Conformer | Embedding + Conv1d | Using optimized_transducer from computing RNN-T loss |
|
| `transducer_stateless` | Conformer | Embedding + Conv1d | Using optimized_transducer from computing RNN-T loss |
|
||||||
| `transducer_stateless2` | Conformer | Embedding + Conv1d | Using torchaudio for computing RNN-T loss |
|
| `transducer_stateless2` | Conformer | Embedding + Conv1d | Using torchaudio for computing RNN-T loss |
|
||||||
|
| `transducer_stateless3` | Conformer(modified) | Embedding + Conv1d | Using torchaudio for computing RNN-T loss |
|
||||||
| `transducer_lstm` | LSTM | LSTM | |
|
| `transducer_lstm` | LSTM | LSTM | |
|
||||||
| `transducer_stateless_multi_datasets` | Conformer | Embedding + Conv1d | Using data from GigaSpeech as extra training data |
|
| `transducer_stateless_multi_datasets` | Conformer | Embedding + Conv1d | Using data from GigaSpeech as extra training data |
|
||||||
| `pruned_transducer_stateless` | Conformer | Embedding + Conv1d | Using k2 pruned RNN-T loss |
|
| `pruned_transducer_stateless` | Conformer | Embedding + Conv1d | Using k2 pruned RNN-T loss |
|
||||||
|
@ -33,6 +33,10 @@ class Joiner(nn.Module):
|
|||||||
self.decoder_proj = ScaledLinear(decoder_dim, joiner_dim)
|
self.decoder_proj = ScaledLinear(decoder_dim, joiner_dim)
|
||||||
self.output_linear = ScaledLinear(joiner_dim, vocab_size)
|
self.output_linear = ScaledLinear(joiner_dim, vocab_size)
|
||||||
|
|
||||||
|
self.encoder_dim = encoder_dim
|
||||||
|
self.decoder_dim = decoder_dim
|
||||||
|
self.joiner_dim = joiner_dim
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
encoder_out: torch.Tensor,
|
encoder_out: torch.Tensor,
|
||||||
@ -42,9 +46,9 @@ class Joiner(nn.Module):
|
|||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
encoder_out:
|
encoder_out:
|
||||||
Output from the encoder. Its shape is (N, T, s_range, C).
|
Output from the encoder. Its shape is (N, T, joiner_dim).
|
||||||
decoder_out:
|
decoder_out:
|
||||||
Output from the decoder. Its shape is (N, T, s_range, C).
|
Output from the decoder. Its shape is (N, U, joiner_dim).
|
||||||
project_input:
|
project_input:
|
||||||
If true, apply input projections encoder_proj and decoder_proj.
|
If true, apply input projections encoder_proj and decoder_proj.
|
||||||
If this is false, it is the user's responsibility to do this
|
If this is false, it is the user's responsibility to do this
|
||||||
@ -52,16 +56,30 @@ class Joiner(nn.Module):
|
|||||||
Returns:
|
Returns:
|
||||||
Return a tensor of shape (N, T, s_range, C).
|
Return a tensor of shape (N, T, s_range, C).
|
||||||
"""
|
"""
|
||||||
assert encoder_out.ndim == decoder_out.ndim == 4
|
assert encoder_out.ndim == decoder_out.ndim == 3
|
||||||
assert encoder_out.shape[:-1] == decoder_out.shape[:-1]
|
assert encoder_out.size(0) == decoder_out.size(0)
|
||||||
|
|
||||||
if project_input:
|
if project_input:
|
||||||
logit = self.encoder_proj(encoder_out) + self.decoder_proj(
|
assert encoder_out.size(2) == self.encoder_dim
|
||||||
decoder_out
|
assert decoder_out.size(2) == self.decoder_dim
|
||||||
)
|
encoder_out = self.encoder_proj(encoder_out)
|
||||||
|
decoder_out = self.decoder_proj(decoder_out)
|
||||||
else:
|
else:
|
||||||
logit = encoder_out + decoder_out
|
assert encoder_out.size(2) == self.joiner_dim
|
||||||
|
assert decoder_out.size(2) == self.joiner_dim
|
||||||
|
|
||||||
logit = self.output_linear(torch.tanh(logit))
|
encoder_out = encoder_out.unsqueeze(2) # (N, T, 1, C)
|
||||||
|
decoder_out = decoder_out.unsqueeze(1) # (N, 1, U, C)
|
||||||
|
x = encoder_out + decoder_out # (N, T, U, C)
|
||||||
|
|
||||||
return logit
|
activations = torch.tanh(x)
|
||||||
|
|
||||||
|
logits = self.output_linear(activations)
|
||||||
|
|
||||||
|
if not self.training:
|
||||||
|
# We reuse the beam_search.py from transducer_stateless,
|
||||||
|
# which expects that the joiner network outputs
|
||||||
|
# a 2-D tensor.
|
||||||
|
logits = logits.squeeze(2).squeeze(1)
|
||||||
|
|
||||||
|
return logits
|
||||||
|
@ -63,19 +63,11 @@ class Transducer(nn.Module):
|
|||||||
self.decoder = decoder
|
self.decoder = decoder
|
||||||
self.joiner = joiner
|
self.joiner = joiner
|
||||||
|
|
||||||
self.simple_am_proj = ScaledLinear(
|
|
||||||
encoder_dim, vocab_size, initial_speed=0.5
|
|
||||||
)
|
|
||||||
self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size)
|
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
x_lens: torch.Tensor,
|
x_lens: torch.Tensor,
|
||||||
y: k2.RaggedTensor,
|
y: k2.RaggedTensor,
|
||||||
prune_range: int = 5,
|
|
||||||
am_scale: float = 0.0,
|
|
||||||
lm_scale: float = 0.0,
|
|
||||||
warmup: float = 1.0,
|
warmup: float = 1.0,
|
||||||
) -> torch.Tensor:
|
) -> torch.Tensor:
|
||||||
"""
|
"""
|
||||||
@ -88,26 +80,11 @@ class Transducer(nn.Module):
|
|||||||
y:
|
y:
|
||||||
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||||
utterance.
|
utterance.
|
||||||
prune_range:
|
|
||||||
The prune range for rnnt loss, it means how many symbols(context)
|
|
||||||
we are considering for each frame to compute the loss.
|
|
||||||
am_scale:
|
|
||||||
The scale to smooth the loss with am (output of encoder network)
|
|
||||||
part
|
|
||||||
lm_scale:
|
|
||||||
The scale to smooth the loss with lm (output of predictor network)
|
|
||||||
part
|
|
||||||
warmup:
|
warmup:
|
||||||
A value warmup >= 0 that determines which modules are active, values
|
A value warmup >= 0 that determines which modules are active, values
|
||||||
warmup > 1 "are fully warmed up" and all modules will be active.
|
warmup > 1 "are fully warmed up" and all modules will be active.
|
||||||
Returns:
|
Returns:
|
||||||
Return the transducer loss.
|
Return the transducer loss.
|
||||||
|
|
||||||
Note:
|
|
||||||
Regarding am_scale & lm_scale, it will make the loss-function one of
|
|
||||||
the form:
|
|
||||||
lm_scale * lm_probs + am_scale * am_probs +
|
|
||||||
(1-lm_scale-am_scale) * combined_probs
|
|
||||||
"""
|
"""
|
||||||
assert x.ndim == 3, x.shape
|
assert x.ndim == 3, x.shape
|
||||||
assert x_lens.ndim == 1, x_lens.shape
|
assert x_lens.ndim == 1, x_lens.shape
|
||||||
@ -115,8 +92,8 @@ class Transducer(nn.Module):
|
|||||||
|
|
||||||
assert x.size(0) == x_lens.size(0) == y.dim0
|
assert x.size(0) == x_lens.size(0) == y.dim0
|
||||||
|
|
||||||
encoder_out, x_lens = self.encoder(x, x_lens, warmup=warmup)
|
encoder_out, encoder_out_lens = self.encoder(x, x_lens, warmup=warmup)
|
||||||
assert torch.all(x_lens > 0)
|
assert torch.all(encoder_out_lens > 0)
|
||||||
|
|
||||||
# Now for the decoder, i.e., the prediction network
|
# Now for the decoder, i.e., the prediction network
|
||||||
row_splits = y.shape.row_splits(1)
|
row_splits = y.shape.row_splits(1)
|
||||||
@ -125,69 +102,34 @@ class Transducer(nn.Module):
|
|||||||
blank_id = self.decoder.blank_id
|
blank_id = self.decoder.blank_id
|
||||||
sos_y = add_sos(y, sos_id=blank_id)
|
sos_y = add_sos(y, sos_id=blank_id)
|
||||||
|
|
||||||
# sos_y_padded: [B, S + 1], start with SOS.
|
# sos_y_padded: [B, U + 1], start with SOS.
|
||||||
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||||
|
|
||||||
# decoder_out: [B, S + 1, decoder_dim]
|
# decoder_out: [B, U + 1, decoder_dim]
|
||||||
decoder_out = self.decoder(sos_y_padded)
|
decoder_out = self.decoder(sos_y_padded)
|
||||||
|
|
||||||
|
logits = self.joiner(
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
decoder_out=decoder_out,
|
||||||
|
project_input=True,
|
||||||
|
)
|
||||||
|
|
||||||
# Note: y does not start with SOS
|
# Note: y does not start with SOS
|
||||||
# y_padded : [B, S]
|
# y_padded : [B, U]
|
||||||
y_padded = y.pad(mode="constant", padding_value=0)
|
y_padded = y.pad(mode="constant", padding_value=0)
|
||||||
|
|
||||||
y_padded = y_padded.to(torch.int64)
|
assert hasattr(torchaudio.functional, "rnnt_loss"), (
|
||||||
boundary = torch.zeros(
|
f"Current torchaudio version: {torchaudio.__version__}\n"
|
||||||
(x.size(0), 4), dtype=torch.int64, device=x.device
|
"Please install a version >= 0.10.0"
|
||||||
)
|
|
||||||
boundary[:, 2] = y_lens
|
|
||||||
boundary[:, 3] = x_lens
|
|
||||||
|
|
||||||
lm = self.simple_lm_proj(decoder_out)
|
|
||||||
am = self.simple_am_proj(encoder_out)
|
|
||||||
|
|
||||||
with torch.cuda.amp.autocast(enabled=False):
|
|
||||||
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
|
|
||||||
lm=lm.float(),
|
|
||||||
am=am.float(),
|
|
||||||
symbols=y_padded,
|
|
||||||
termination_symbol=blank_id,
|
|
||||||
lm_only_scale=lm_scale,
|
|
||||||
am_only_scale=am_scale,
|
|
||||||
boundary=boundary,
|
|
||||||
reduction="sum",
|
|
||||||
return_grad=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
# ranges : [B, T, prune_range]
|
|
||||||
ranges = k2.get_rnnt_prune_ranges(
|
|
||||||
px_grad=px_grad,
|
|
||||||
py_grad=py_grad,
|
|
||||||
boundary=boundary,
|
|
||||||
s_range=prune_range,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
# am_pruned : [B, T, prune_range, encoder_dim]
|
loss = torchaudio.functional.rnnt_loss(
|
||||||
# lm_pruned : [B, T, prune_range, decoder_dim]
|
logits=logits,
|
||||||
am_pruned, lm_pruned = k2.do_rnnt_pruning(
|
targets=y_padded,
|
||||||
am=self.joiner.encoder_proj(encoder_out),
|
logit_lengths=encoder_out_lens,
|
||||||
lm=self.joiner.decoder_proj(decoder_out),
|
target_lengths=y_lens,
|
||||||
ranges=ranges,
|
blank=blank_id,
|
||||||
|
reduction="sum",
|
||||||
)
|
)
|
||||||
|
|
||||||
# logits : [B, T, prune_range, vocab_size]
|
return loss
|
||||||
|
|
||||||
# project_input=False since we applied the decoder's input projections
|
|
||||||
# prior to do_rnnt_pruning (this is an optimization for speed).
|
|
||||||
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
|
|
||||||
|
|
||||||
with torch.cuda.amp.autocast(enabled=False):
|
|
||||||
pruned_loss = k2.rnnt_loss_pruned(
|
|
||||||
logits=logits.float(),
|
|
||||||
symbols=y_padded,
|
|
||||||
ranges=ranges,
|
|
||||||
termination_symbol=blank_id,
|
|
||||||
boundary=boundary,
|
|
||||||
reduction="sum",
|
|
||||||
)
|
|
||||||
|
|
||||||
return (simple_loss, pruned_loss)
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user