mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-28 03:04:19 +00:00
Add decoding script.
This commit is contained in:
parent
73ba843d0a
commit
e38f04e70f
@ -428,8 +428,6 @@ def decode_dataset(
|
|||||||
The first is the reference transcript, and the second is the
|
The first is the reference transcript, and the second is the
|
||||||
predicted result.
|
predicted result.
|
||||||
"""
|
"""
|
||||||
results = []
|
|
||||||
|
|
||||||
num_cuts = 0
|
num_cuts = 0
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
@ -20,31 +20,22 @@ import argparse
|
|||||||
import logging
|
import logging
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Dict, List, Optional, Tuple
|
from typing import Dict, List, Tuple
|
||||||
|
|
||||||
import k2
|
|
||||||
import sentencepiece as spm
|
import sentencepiece as spm
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from asr_datamodule import LibriSpeechAsrDataModule
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
from conformer import Conformer
|
from transducer.beam_search import greedy_search
|
||||||
|
from transducer.conformer import Conformer
|
||||||
|
from transducer.decoder import Decoder
|
||||||
|
from transducer.joiner import Joiner
|
||||||
|
from transducer.model import Transducer
|
||||||
|
|
||||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
|
||||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
from icefall.decode import (
|
|
||||||
get_lattice,
|
|
||||||
nbest_decoding,
|
|
||||||
nbest_oracle,
|
|
||||||
one_best_decoding,
|
|
||||||
rescore_with_attention_decoder,
|
|
||||||
rescore_with_n_best_list,
|
|
||||||
rescore_with_whole_lattice,
|
|
||||||
)
|
|
||||||
from icefall.env import get_env_info
|
from icefall.env import get_env_info
|
||||||
from icefall.lexicon import Lexicon
|
|
||||||
from icefall.utils import (
|
from icefall.utils import (
|
||||||
AttributeDict,
|
AttributeDict,
|
||||||
get_texts,
|
|
||||||
setup_logger,
|
setup_logger,
|
||||||
store_transcripts,
|
store_transcripts,
|
||||||
write_error_stats,
|
write_error_stats,
|
||||||
@ -72,76 +63,18 @@ def get_parser():
|
|||||||
"'--epoch'. ",
|
"'--epoch'. ",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--method",
|
|
||||||
type=str,
|
|
||||||
default="attention-decoder",
|
|
||||||
help="""Decoding method.
|
|
||||||
Supported values are:
|
|
||||||
- (0) ctc-decoding. Use CTC decoding. It uses a sentence piece
|
|
||||||
model, i.e., lang_dir/bpe.model, to convert word pieces to words.
|
|
||||||
It needs neither a lexicon nor an n-gram LM.
|
|
||||||
- (1) 1best. Extract the best path from the decoding lattice as the
|
|
||||||
decoding result.
|
|
||||||
- (2) nbest. Extract n paths from the decoding lattice; the path
|
|
||||||
with the highest score is the decoding result.
|
|
||||||
- (3) nbest-rescoring. Extract n paths from the decoding lattice,
|
|
||||||
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
|
|
||||||
the highest score is the decoding result.
|
|
||||||
- (4) whole-lattice-rescoring. Rescore the decoding lattice with an
|
|
||||||
n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
|
|
||||||
is the decoding result.
|
|
||||||
- (5) attention-decoder. Extract n paths from the LM rescored
|
|
||||||
lattice, the path with the highest score is the decoding result.
|
|
||||||
- (6) nbest-oracle. Its WER is the lower bound of any n-best
|
|
||||||
rescoring method can achieve. Useful for debugging n-best
|
|
||||||
rescoring method.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--num-paths",
|
|
||||||
type=int,
|
|
||||||
default=100,
|
|
||||||
help="""Number of paths for n-best based decoding method.
|
|
||||||
Used only when "method" is one of the following values:
|
|
||||||
nbest, nbest-rescoring, attention-decoder, and nbest-oracle
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--nbest-scale",
|
|
||||||
type=float,
|
|
||||||
default=0.5,
|
|
||||||
help="""The scale to be applied to `lattice.scores`.
|
|
||||||
It's needed if you use any kinds of n-best based rescoring.
|
|
||||||
Used only when "method" is one of the following values:
|
|
||||||
nbest, nbest-rescoring, attention-decoder, and nbest-oracle
|
|
||||||
A smaller value results in more unique paths.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--exp-dir",
|
"--exp-dir",
|
||||||
type=str,
|
type=str,
|
||||||
default="conformer_ctc/exp",
|
default="transducer/exp",
|
||||||
help="The experiment dir",
|
help="The experiment dir",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--lang-dir",
|
"--bpe-model",
|
||||||
type=str,
|
type=str,
|
||||||
default="data/lang_bpe_500",
|
default="data/lang_bpe_500/bpe.model",
|
||||||
help="The lang dir",
|
help="Path to the BPE model",
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--lm-dir",
|
|
||||||
type=str,
|
|
||||||
default="data/lm",
|
|
||||||
help="""The LM dir.
|
|
||||||
It should contain either G_4_gram.pt or G_4_gram.fst.txt
|
|
||||||
""",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -151,250 +84,138 @@ def get_params() -> AttributeDict:
|
|||||||
params = AttributeDict(
|
params = AttributeDict(
|
||||||
{
|
{
|
||||||
# parameters for conformer
|
# parameters for conformer
|
||||||
|
"feature_dim": 80,
|
||||||
|
"encoder_out_dim": 512,
|
||||||
"subsampling_factor": 4,
|
"subsampling_factor": 4,
|
||||||
|
"attention_dim": 512,
|
||||||
|
"nhead": 8,
|
||||||
|
"dim_feedforward": 2048,
|
||||||
|
"num_encoder_layers": 12,
|
||||||
"vgg_frontend": False,
|
"vgg_frontend": False,
|
||||||
"use_feat_batchnorm": True,
|
"use_feat_batchnorm": True,
|
||||||
"feature_dim": 80,
|
# decoder params
|
||||||
"nhead": 8,
|
"decoder_embedding_dim": 1024,
|
||||||
"attention_dim": 512,
|
"num_decoder_layers": 4,
|
||||||
"num_decoder_layers": 6,
|
"decoder_hidden_dim": 512,
|
||||||
# parameters for decoding
|
|
||||||
"search_beam": 20,
|
|
||||||
"output_beam": 8,
|
|
||||||
"min_active_states": 30,
|
|
||||||
"max_active_states": 10000,
|
|
||||||
"use_double_scores": True,
|
|
||||||
"env_info": get_env_info(),
|
"env_info": get_env_info(),
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
return params
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def get_encoder_model(params: AttributeDict):
|
||||||
|
# TODO: We can add an option to switch between Conformer and Transformer
|
||||||
|
encoder = Conformer(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
output_dim=params.encoder_out_dim,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
d_model=params.attention_dim,
|
||||||
|
nhead=params.nhead,
|
||||||
|
dim_feedforward=params.dim_feedforward,
|
||||||
|
num_encoder_layers=params.num_encoder_layers,
|
||||||
|
vgg_frontend=params.vgg_frontend,
|
||||||
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||||
|
)
|
||||||
|
return encoder
|
||||||
|
|
||||||
|
|
||||||
|
def get_decoder_model(params: AttributeDict):
|
||||||
|
decoder = Decoder(
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
embedding_dim=params.decoder_embedding_dim,
|
||||||
|
blank_id=params.blank_id,
|
||||||
|
sos_id=params.sos_id,
|
||||||
|
num_layers=params.num_decoder_layers,
|
||||||
|
hidden_dim=params.decoder_hidden_dim,
|
||||||
|
output_dim=params.encoder_out_dim,
|
||||||
|
)
|
||||||
|
return decoder
|
||||||
|
|
||||||
|
|
||||||
|
def get_joiner_model(params: AttributeDict):
|
||||||
|
joiner = Joiner(
|
||||||
|
input_dim=params.encoder_out_dim,
|
||||||
|
output_dim=params.vocab_size,
|
||||||
|
)
|
||||||
|
return joiner
|
||||||
|
|
||||||
|
|
||||||
|
def get_transducer_model(params: AttributeDict):
|
||||||
|
encoder = get_encoder_model(params)
|
||||||
|
decoder = get_decoder_model(params)
|
||||||
|
joiner = get_joiner_model(params)
|
||||||
|
|
||||||
|
model = Transducer(
|
||||||
|
encoder=encoder,
|
||||||
|
decoder=decoder,
|
||||||
|
joiner=joiner,
|
||||||
|
)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
def decode_one_batch(
|
def decode_one_batch(
|
||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
HLG: Optional[k2.Fsa],
|
sp: spm.SentencePieceProcessor,
|
||||||
H: Optional[k2.Fsa],
|
|
||||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
|
||||||
batch: dict,
|
batch: dict,
|
||||||
word_table: k2.SymbolTable,
|
|
||||||
sos_id: int,
|
|
||||||
eos_id: int,
|
|
||||||
G: Optional[k2.Fsa] = None,
|
|
||||||
) -> Dict[str, List[List[str]]]:
|
) -> Dict[str, List[List[str]]]:
|
||||||
"""Decode one batch and return the result in a dict. The dict has the
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
following format:
|
following format:
|
||||||
|
|
||||||
- key: It indicates the setting used for decoding. For example,
|
- key: It indicates the setting used for decoding. For example,
|
||||||
if no rescoring is used, the key is the string `no_rescore`.
|
if greedy_search is used, it would be "greedy_search"
|
||||||
If LM rescoring is used, the key is the string `lm_scale_xxx`,
|
If beam search with a beam size of 7 is used, it would be
|
||||||
where `xxx` is the value of `lm_scale`. An example key is
|
"beam_7"
|
||||||
`lm_scale_0.7`
|
|
||||||
- value: It contains the decoding result. `len(value)` equals to
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
batch size. `value[i]` is the decoding result for the i-th
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
utterance in the given batch.
|
utterance in the given batch.
|
||||||
Args:
|
Args:
|
||||||
params:
|
params:
|
||||||
It's the return value of :func:`get_params`.
|
It's the return value of :func:`get_params`.
|
||||||
|
|
||||||
- params.method is "1best", it uses 1best decoding without LM rescoring.
|
|
||||||
- params.method is "nbest", it uses nbest decoding without LM rescoring.
|
|
||||||
- params.method is "nbest-rescoring", it uses nbest LM rescoring.
|
|
||||||
- params.method is "whole-lattice-rescoring", it uses whole lattice LM
|
|
||||||
rescoring.
|
|
||||||
|
|
||||||
model:
|
model:
|
||||||
The neural model.
|
The neural model.
|
||||||
HLG:
|
sp:
|
||||||
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
The BPE model.
|
||||||
H:
|
|
||||||
The ctc topo. Used only when params.method is ctc-decoding.
|
|
||||||
bpe_model:
|
|
||||||
The BPE model. Used only when params.method is ctc-decoding.
|
|
||||||
batch:
|
batch:
|
||||||
It is the return value from iterating
|
It is the return value from iterating
|
||||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
for the format of the `batch`.
|
for the format of the `batch`.
|
||||||
word_table:
|
|
||||||
The word symbol table.
|
|
||||||
sos_id:
|
|
||||||
The token ID of the SOS.
|
|
||||||
eos_id:
|
|
||||||
The token ID of the EOS.
|
|
||||||
G:
|
|
||||||
An LM. It is not None when params.method is "nbest-rescoring"
|
|
||||||
or "whole-lattice-rescoring". In general, the G in HLG
|
|
||||||
is a 3-gram LM, while this G is a 4-gram LM.
|
|
||||||
Returns:
|
Returns:
|
||||||
Return the decoding result. See above description for the format of
|
Return the decoding result. See above description for the format of
|
||||||
the returned dict. Note: If it decodes to nothing, then return None.
|
the returned dict.
|
||||||
"""
|
"""
|
||||||
if HLG is not None:
|
device = model.device
|
||||||
device = HLG.device
|
|
||||||
else:
|
|
||||||
device = H.device
|
|
||||||
feature = batch["inputs"]
|
feature = batch["inputs"]
|
||||||
assert feature.ndim == 3
|
assert feature.ndim == 3
|
||||||
|
|
||||||
feature = feature.to(device)
|
feature = feature.to(device)
|
||||||
# at entry, feature is (N, T, C)
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
supervisions = batch["supervisions"]
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
nnet_output, memory, memory_key_padding_mask = model(feature, supervisions)
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
# nnet_output is (N, T, C)
|
x=feature, x_lens=feature_lens
|
||||||
|
|
||||||
supervision_segments = torch.stack(
|
|
||||||
(
|
|
||||||
supervisions["sequence_idx"],
|
|
||||||
supervisions["start_frame"] // params.subsampling_factor,
|
|
||||||
supervisions["num_frames"] // params.subsampling_factor,
|
|
||||||
),
|
|
||||||
1,
|
|
||||||
).to(torch.int32)
|
|
||||||
|
|
||||||
if H is None:
|
|
||||||
assert HLG is not None
|
|
||||||
decoding_graph = HLG
|
|
||||||
else:
|
|
||||||
assert HLG is None
|
|
||||||
assert bpe_model is not None
|
|
||||||
decoding_graph = H
|
|
||||||
|
|
||||||
lattice = get_lattice(
|
|
||||||
nnet_output=nnet_output,
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
supervision_segments=supervision_segments,
|
|
||||||
search_beam=params.search_beam,
|
|
||||||
output_beam=params.output_beam,
|
|
||||||
min_active_states=params.min_active_states,
|
|
||||||
max_active_states=params.max_active_states,
|
|
||||||
subsampling_factor=params.subsampling_factor,
|
|
||||||
)
|
)
|
||||||
|
hyps = []
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
if params.method == "ctc-decoding":
|
for i in range(batch_size):
|
||||||
best_path = one_best_decoding(
|
# fmt: off
|
||||||
lattice=lattice, use_double_scores=params.use_double_scores
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
)
|
# fmt: on
|
||||||
# Note: `best_path.aux_labels` contains token IDs, not word IDs
|
hyp = greedy_search(model=model, encoder_out=encoder_out_i)
|
||||||
# since we are using H, not HLG here.
|
hyps.append(sp.decode(hyp).split())
|
||||||
#
|
|
||||||
# token_ids is a lit-of-list of IDs
|
|
||||||
token_ids = get_texts(best_path)
|
|
||||||
|
|
||||||
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
|
return {"greedy_search": hyps}
|
||||||
hyps = bpe_model.decode(token_ids)
|
# TODO: Implement beam search
|
||||||
|
|
||||||
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
|
||||||
hyps = [s.split() for s in hyps]
|
|
||||||
key = "ctc-decoding"
|
|
||||||
return {key: hyps}
|
|
||||||
|
|
||||||
if params.method == "nbest-oracle":
|
|
||||||
# Note: You can also pass rescored lattices to it.
|
|
||||||
# We choose the HLG decoded lattice for speed reasons
|
|
||||||
# as HLG decoding is faster and the oracle WER
|
|
||||||
# is only slightly worse than that of rescored lattices.
|
|
||||||
best_path = nbest_oracle(
|
|
||||||
lattice=lattice,
|
|
||||||
num_paths=params.num_paths,
|
|
||||||
ref_texts=supervisions["text"],
|
|
||||||
word_table=word_table,
|
|
||||||
nbest_scale=params.nbest_scale,
|
|
||||||
oov="<UNK>",
|
|
||||||
)
|
|
||||||
hyps = get_texts(best_path)
|
|
||||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
|
||||||
key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa
|
|
||||||
return {key: hyps}
|
|
||||||
|
|
||||||
if params.method in ["1best", "nbest"]:
|
|
||||||
if params.method == "1best":
|
|
||||||
best_path = one_best_decoding(
|
|
||||||
lattice=lattice, use_double_scores=params.use_double_scores
|
|
||||||
)
|
|
||||||
key = "no_rescore"
|
|
||||||
else:
|
|
||||||
best_path = nbest_decoding(
|
|
||||||
lattice=lattice,
|
|
||||||
num_paths=params.num_paths,
|
|
||||||
use_double_scores=params.use_double_scores,
|
|
||||||
nbest_scale=params.nbest_scale,
|
|
||||||
)
|
|
||||||
key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa
|
|
||||||
|
|
||||||
hyps = get_texts(best_path)
|
|
||||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
|
||||||
return {key: hyps}
|
|
||||||
|
|
||||||
assert params.method in [
|
|
||||||
"nbest-rescoring",
|
|
||||||
"whole-lattice-rescoring",
|
|
||||||
"attention-decoder",
|
|
||||||
]
|
|
||||||
|
|
||||||
lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
|
|
||||||
lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
|
||||||
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
|
|
||||||
|
|
||||||
if params.method == "nbest-rescoring":
|
|
||||||
best_path_dict = rescore_with_n_best_list(
|
|
||||||
lattice=lattice,
|
|
||||||
G=G,
|
|
||||||
num_paths=params.num_paths,
|
|
||||||
lm_scale_list=lm_scale_list,
|
|
||||||
nbest_scale=params.nbest_scale,
|
|
||||||
)
|
|
||||||
elif params.method == "whole-lattice-rescoring":
|
|
||||||
best_path_dict = rescore_with_whole_lattice(
|
|
||||||
lattice=lattice,
|
|
||||||
G_with_epsilon_loops=G,
|
|
||||||
lm_scale_list=lm_scale_list,
|
|
||||||
)
|
|
||||||
elif params.method == "attention-decoder":
|
|
||||||
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
|
||||||
rescored_lattice = rescore_with_whole_lattice(
|
|
||||||
lattice=lattice,
|
|
||||||
G_with_epsilon_loops=G,
|
|
||||||
lm_scale_list=None,
|
|
||||||
)
|
|
||||||
# TODO: pass `lattice` instead of `rescored_lattice` to
|
|
||||||
# `rescore_with_attention_decoder`
|
|
||||||
|
|
||||||
best_path_dict = rescore_with_attention_decoder(
|
|
||||||
lattice=rescored_lattice,
|
|
||||||
num_paths=params.num_paths,
|
|
||||||
model=model,
|
|
||||||
memory=memory,
|
|
||||||
memory_key_padding_mask=memory_key_padding_mask,
|
|
||||||
sos_id=sos_id,
|
|
||||||
eos_id=eos_id,
|
|
||||||
nbest_scale=params.nbest_scale,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
assert False, f"Unsupported decoding method: {params.method}"
|
|
||||||
|
|
||||||
ans = dict()
|
|
||||||
if best_path_dict is not None:
|
|
||||||
for lm_scale_str, best_path in best_path_dict.items():
|
|
||||||
hyps = get_texts(best_path)
|
|
||||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
|
||||||
ans[lm_scale_str] = hyps
|
|
||||||
else:
|
|
||||||
ans = None
|
|
||||||
return ans
|
|
||||||
|
|
||||||
|
|
||||||
def decode_dataset(
|
def decode_dataset(
|
||||||
dl: torch.utils.data.DataLoader,
|
dl: torch.utils.data.DataLoader,
|
||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
HLG: Optional[k2.Fsa],
|
sp: spm.SentencePieceProcessor,
|
||||||
H: Optional[k2.Fsa],
|
|
||||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
|
||||||
word_table: k2.SymbolTable,
|
|
||||||
sos_id: int,
|
|
||||||
eos_id: int,
|
|
||||||
G: Optional[k2.Fsa] = None,
|
|
||||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
"""Decode dataset.
|
"""Decode dataset.
|
||||||
|
|
||||||
@ -405,31 +226,15 @@ def decode_dataset(
|
|||||||
It is returned by :func:`get_params`.
|
It is returned by :func:`get_params`.
|
||||||
model:
|
model:
|
||||||
The neural model.
|
The neural model.
|
||||||
HLG:
|
sp:
|
||||||
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
The BPE model.
|
||||||
H:
|
|
||||||
The ctc topo. Used only when params.method is ctc-decoding.
|
|
||||||
bpe_model:
|
|
||||||
The BPE model. Used only when params.method is ctc-decoding.
|
|
||||||
word_table:
|
|
||||||
It is the word symbol table.
|
|
||||||
sos_id:
|
|
||||||
The token ID for SOS.
|
|
||||||
eos_id:
|
|
||||||
The token ID for EOS.
|
|
||||||
G:
|
|
||||||
An LM. It is not None when params.method is "nbest-rescoring"
|
|
||||||
or "whole-lattice-rescoring". In general, the G in HLG
|
|
||||||
is a 3-gram LM, while this G is a 4-gram LM.
|
|
||||||
Returns:
|
Returns:
|
||||||
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
Its value is a list of tuples. Each tuple contains two elements:
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
The first is the reference transcript, and the second is the
|
The first is the reference transcript, and the second is the
|
||||||
predicted result.
|
predicted result.
|
||||||
"""
|
"""
|
||||||
results = []
|
|
||||||
|
|
||||||
num_cuts = 0
|
num_cuts = 0
|
||||||
|
|
||||||
try:
|
try:
|
||||||
@ -444,37 +249,18 @@ def decode_dataset(
|
|||||||
hyps_dict = decode_one_batch(
|
hyps_dict = decode_one_batch(
|
||||||
params=params,
|
params=params,
|
||||||
model=model,
|
model=model,
|
||||||
HLG=HLG,
|
sp=sp,
|
||||||
H=H,
|
|
||||||
bpe_model=bpe_model,
|
|
||||||
batch=batch,
|
batch=batch,
|
||||||
word_table=word_table,
|
|
||||||
G=G,
|
|
||||||
sos_id=sos_id,
|
|
||||||
eos_id=eos_id,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
if hyps_dict is not None:
|
for name, hyps in hyps_dict.items():
|
||||||
for lm_scale, hyps in hyps_dict.items():
|
|
||||||
this_batch = []
|
|
||||||
assert len(hyps) == len(texts)
|
|
||||||
for hyp_words, ref_text in zip(hyps, texts):
|
|
||||||
ref_words = ref_text.split()
|
|
||||||
this_batch.append((ref_words, hyp_words))
|
|
||||||
|
|
||||||
results[lm_scale].extend(this_batch)
|
|
||||||
else:
|
|
||||||
assert (
|
|
||||||
len(results) > 0
|
|
||||||
), "It should not decode to empty in the first batch!"
|
|
||||||
this_batch = []
|
this_batch = []
|
||||||
hyp_words = []
|
assert len(hyps) == len(texts)
|
||||||
for ref_text in texts:
|
for hyp_words, ref_text in zip(hyps, texts):
|
||||||
ref_words = ref_text.split()
|
ref_words = ref_text.split()
|
||||||
this_batch.append((ref_words, hyp_words))
|
this_batch.append((ref_words, hyp_words))
|
||||||
|
|
||||||
for lm_scale in results.keys():
|
results[name].extend(this_batch)
|
||||||
results[lm_scale].extend(this_batch)
|
|
||||||
|
|
||||||
num_cuts += len(texts)
|
num_cuts += len(texts)
|
||||||
|
|
||||||
@ -492,31 +278,22 @@ def save_results(
|
|||||||
test_set_name: str,
|
test_set_name: str,
|
||||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||||
):
|
):
|
||||||
if params.method == "attention-decoder":
|
|
||||||
# Set it to False since there are too many logs.
|
|
||||||
enable_log = False
|
|
||||||
else:
|
|
||||||
enable_log = True
|
|
||||||
test_set_wers = dict()
|
test_set_wers = dict()
|
||||||
for key, results in results_dict.items():
|
for key, results in results_dict.items():
|
||||||
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
|
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
|
||||||
store_transcripts(filename=recog_path, texts=results)
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
if enable_log:
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
logging.info(f"The transcripts are stored in {recog_path}")
|
|
||||||
|
|
||||||
# The following prints out WERs, per-word error statistics and aligned
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
# ref/hyp pairs.
|
# ref/hyp pairs.
|
||||||
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
||||||
with open(errs_filename, "w") as f:
|
with open(errs_filename, "w") as f:
|
||||||
wer = write_error_stats(
|
wer = write_error_stats(
|
||||||
f, f"{test_set_name}-{key}", results, enable_log=enable_log
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
)
|
)
|
||||||
test_set_wers[key] = wer
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
if enable_log:
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
logging.info(
|
|
||||||
"Wrote detailed error stats to {}".format(errs_filename)
|
|
||||||
)
|
|
||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt"
|
errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt"
|
||||||
@ -539,113 +316,31 @@ def main():
|
|||||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
args.exp_dir = Path(args.exp_dir)
|
args.exp_dir = Path(args.exp_dir)
|
||||||
args.lang_dir = Path(args.lang_dir)
|
|
||||||
args.lm_dir = Path(args.lm_dir)
|
|
||||||
|
|
||||||
params = get_params()
|
params = get_params()
|
||||||
params.update(vars(args))
|
params.update(vars(args))
|
||||||
|
|
||||||
setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode")
|
setup_logger(f"{params.exp_dir}/log-decode")
|
||||||
logging.info("Decoding started")
|
logging.info("Decoding started")
|
||||||
logging.info(params)
|
|
||||||
|
|
||||||
lexicon = Lexicon(params.lang_dir)
|
|
||||||
max_token_id = max(lexicon.tokens)
|
|
||||||
num_classes = max_token_id + 1 # +1 for the blank
|
|
||||||
|
|
||||||
device = torch.device("cpu")
|
device = torch.device("cpu")
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
device = torch.device("cuda", 0)
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
logging.info(f"device: {device}")
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
graph_compiler = BpeCtcTrainingGraphCompiler(
|
sp = spm.SentencePieceProcessor()
|
||||||
params.lang_dir,
|
sp.load(params.bpe_model)
|
||||||
device=device,
|
|
||||||
sos_token="<sos/eos>",
|
|
||||||
eos_token="<sos/eos>",
|
|
||||||
)
|
|
||||||
sos_id = graph_compiler.sos_id
|
|
||||||
eos_id = graph_compiler.eos_id
|
|
||||||
|
|
||||||
if params.method == "ctc-decoding":
|
# <blk> and <sos/eos> are defined in local/train_bpe_model.py
|
||||||
HLG = None
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
H = k2.ctc_topo(
|
params.sos_id = sp.piece_to_id("<sos/eos>")
|
||||||
max_token=max_token_id,
|
params.vocab_size = sp.get_piece_size()
|
||||||
modified=False,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
bpe_model = spm.SentencePieceProcessor()
|
|
||||||
bpe_model.load(str(params.lang_dir / "bpe.model"))
|
|
||||||
else:
|
|
||||||
H = None
|
|
||||||
bpe_model = None
|
|
||||||
HLG = k2.Fsa.from_dict(
|
|
||||||
torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
|
|
||||||
)
|
|
||||||
assert HLG.requires_grad is False
|
|
||||||
|
|
||||||
if not hasattr(HLG, "lm_scores"):
|
logging.info(params)
|
||||||
HLG.lm_scores = HLG.scores.clone()
|
|
||||||
|
|
||||||
if params.method in (
|
logging.info("About to create model")
|
||||||
"nbest-rescoring",
|
model = get_transducer_model(params)
|
||||||
"whole-lattice-rescoring",
|
|
||||||
"attention-decoder",
|
|
||||||
):
|
|
||||||
if not (params.lm_dir / "G_4_gram.pt").is_file():
|
|
||||||
logging.info("Loading G_4_gram.fst.txt")
|
|
||||||
logging.warning("It may take 8 minutes.")
|
|
||||||
with open(params.lm_dir / "G_4_gram.fst.txt") as f:
|
|
||||||
first_word_disambig_id = lexicon.word_table["#0"]
|
|
||||||
|
|
||||||
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
|
||||||
# G.aux_labels is not needed in later computations, so
|
|
||||||
# remove it here.
|
|
||||||
del G.aux_labels
|
|
||||||
# CAUTION: The following line is crucial.
|
|
||||||
# Arcs entering the back-off state have label equal to #0.
|
|
||||||
# We have to change it to 0 here.
|
|
||||||
G.labels[G.labels >= first_word_disambig_id] = 0
|
|
||||||
# See https://github.com/k2-fsa/k2/issues/874
|
|
||||||
# for why we need to set G.properties to None
|
|
||||||
G.__dict__["_properties"] = None
|
|
||||||
G = k2.Fsa.from_fsas([G]).to(device)
|
|
||||||
G = k2.arc_sort(G)
|
|
||||||
# Save a dummy value so that it can be loaded in C++.
|
|
||||||
# See https://github.com/pytorch/pytorch/issues/67902
|
|
||||||
# for why we need to do this.
|
|
||||||
G.dummy = 1
|
|
||||||
|
|
||||||
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
|
|
||||||
else:
|
|
||||||
logging.info("Loading pre-compiled G_4_gram.pt")
|
|
||||||
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device)
|
|
||||||
G = k2.Fsa.from_dict(d)
|
|
||||||
|
|
||||||
if params.method in ["whole-lattice-rescoring", "attention-decoder"]:
|
|
||||||
# Add epsilon self-loops to G as we will compose
|
|
||||||
# it with the whole lattice later
|
|
||||||
G = k2.add_epsilon_self_loops(G)
|
|
||||||
G = k2.arc_sort(G)
|
|
||||||
G = G.to(device)
|
|
||||||
|
|
||||||
# G.lm_scores is used to replace HLG.lm_scores during
|
|
||||||
# LM rescoring.
|
|
||||||
G.lm_scores = G.scores.clone()
|
|
||||||
else:
|
|
||||||
G = None
|
|
||||||
|
|
||||||
model = Conformer(
|
|
||||||
num_features=params.feature_dim,
|
|
||||||
nhead=params.nhead,
|
|
||||||
d_model=params.attention_dim,
|
|
||||||
num_classes=num_classes,
|
|
||||||
subsampling_factor=params.subsampling_factor,
|
|
||||||
num_decoder_layers=params.num_decoder_layers,
|
|
||||||
vgg_frontend=params.vgg_frontend,
|
|
||||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
|
||||||
)
|
|
||||||
|
|
||||||
if params.avg == 1:
|
if params.avg == 1:
|
||||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
@ -661,6 +356,8 @@ def main():
|
|||||||
|
|
||||||
model.to(device)
|
model.to(device)
|
||||||
model.eval()
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
logging.info(f"Number of model parameters: {num_param}")
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
@ -680,17 +377,13 @@ def main():
|
|||||||
dl=test_dl,
|
dl=test_dl,
|
||||||
params=params,
|
params=params,
|
||||||
model=model,
|
model=model,
|
||||||
HLG=HLG,
|
sp=sp,
|
||||||
H=H,
|
|
||||||
bpe_model=bpe_model,
|
|
||||||
word_table=lexicon.word_table,
|
|
||||||
G=G,
|
|
||||||
sos_id=sos_id,
|
|
||||||
eos_id=eos_id,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
save_results(
|
save_results(
|
||||||
params=params, test_set_name=test_set, results_dict=results_dict
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
)
|
)
|
||||||
|
|
||||||
logging.info("Done!")
|
logging.info("Done!")
|
||||||
|
Loading…
x
Reference in New Issue
Block a user