mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-19 05:54:20 +00:00
Fix issue with max_eig formula; restore cov_min[1]=0.0025.
This commit is contained in:
parent
3590c2fc42
commit
e2cc09a8c6
@ -163,7 +163,7 @@ param_rms_smooth1: Smoothing proportion for parameter matrix, if assumed rank of
|
||||
lr=3e-02,
|
||||
betas=(0.9, 0.98),
|
||||
size_lr_scale=0.1,
|
||||
cov_min=(0.025, 0.0, 0.02, 0.0001),
|
||||
cov_min=(0.025, 0.0025, 0.02, 0.0001),
|
||||
cov_max=(10.0, 80.0, 5.0, 400.0),
|
||||
cov_pow=(1.0, 1.0, 1.0, 1.0),
|
||||
param_rms_smooth0=0.4,
|
||||
@ -830,8 +830,8 @@ param_rms_smooth1: Smoothing proportion for parameter matrix, if assumed rank of
|
||||
# which case X is extremely tiny).
|
||||
|
||||
# eig_ceil is the maximum possible eigenvalue that X could possibly
|
||||
# have at this time.
|
||||
eig_ceil = X.shape[-1]
|
||||
# have at this time, equal to num_blocks * block_size.
|
||||
eig_ceil = X.shape[1] * X.shape[3]
|
||||
|
||||
# the next statement wslightly adjusts the target to be the same as
|
||||
# what the baseline function, eig -> 1./(1./eig + 1./max_eig) would
|
||||
@ -886,10 +886,11 @@ param_rms_smooth1: Smoothing proportion for parameter matrix, if assumed rank of
|
||||
X /= mean_eig
|
||||
|
||||
if min_eig != 0.0:
|
||||
# should be inverting as block-diag..
|
||||
X += min_eig * M.inverse()
|
||||
X = X * (1.0-min_eig) + min_eig * M.inverse()
|
||||
|
||||
eig_ceil = X.shape[-1]
|
||||
# eig_ceil is the maximum possible eigenvalue that X could possibly
|
||||
# have at this time, equal to num_blocks * block_size.
|
||||
eig_ceil = X.shape[1] * X.shape[3]
|
||||
|
||||
# the next statement wslightly adjusts the target to be the same as
|
||||
# what the baseline function, eig -> 1./(1./eig + 1./max_eig) would
|
||||
@ -1859,7 +1860,7 @@ def _test_eve_cain():
|
||||
fix_random_seed(42)
|
||||
Linear = torch.nn.Linear if iter == 0 else ScaledLinear
|
||||
|
||||
hidden_dim = 200
|
||||
hidden_dim = 300
|
||||
m = torch.nn.Sequential(Linear(E, hidden_dim),
|
||||
torch.nn.PReLU(),
|
||||
Linear(hidden_dim, hidden_dim),
|
||||
|
Loading…
x
Reference in New Issue
Block a user