Add wenetspeech kws recipe

This commit is contained in:
pkufool 2023-12-26 10:32:02 +08:00
parent 44bc60ff38
commit e257b44763
15 changed files with 2024 additions and 0 deletions

View File

@ -15,6 +15,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import math
import warnings
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple, Union
@ -31,6 +33,7 @@ from icefall.rnn_lm.model import RnnLmModel
from icefall.transformer_lm.model import TransformerLM
from icefall.utils import (
DecodingResults,
KeywordResult,
add_eos,
add_sos,
get_texts,
@ -789,6 +792,8 @@ class Hypothesis:
# It contains only one entry.
log_prob: torch.Tensor
ac_probs: Optional[List[float]] = None
# timestamp[i] is the frame index after subsampling
# on which ys[i] is decoded
timestamp: List[int] = field(default_factory=list)
@ -805,6 +810,8 @@ class Hypothesis:
# Context graph state
context_state: Optional[ContextState] = None
num_tailing_blanks: int = 0
@property
def key(self) -> str:
"""Return a string representation of self.ys"""
@ -953,6 +960,232 @@ def get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape:
return ans
def keywords_search(
model: nn.Module,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
context_graph: ContextGraph,
beam: int = 4,
ac_threshold: float = 0.15,
num_tailing_blanks: int = 8,
blank_penalty: float = 0,
) -> List[List[KeywordResult]]:
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
Args:
model:
The transducer model.
encoder_out:
Output from the encoder. Its shape is (N, T, C).
encoder_out_lens:
A 1-D tensor of shape (N,), containing number of valid frames in
encoder_out before padding.
beam:
Number of active paths during the beam search.
Returns:
Return a list of list of KeywordResult.
"""
assert encoder_out.ndim == 3, encoder_out.shape
assert encoder_out.size(0) >= 1, encoder_out.size(0)
assert context_graph is not None
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
input=encoder_out,
lengths=encoder_out_lens.cpu(),
batch_first=True,
enforce_sorted=False,
)
blank_id = model.decoder.blank_id
unk_id = getattr(model, "unk_id", blank_id)
context_size = model.decoder.context_size
device = next(model.parameters()).device
batch_size_list = packed_encoder_out.batch_sizes.tolist()
N = encoder_out.size(0)
assert torch.all(encoder_out_lens > 0), encoder_out_lens
assert N == batch_size_list[0], (N, batch_size_list)
B = [HypothesisList() for _ in range(N)]
for i in range(N):
B[i].add(
Hypothesis(
ys=[-1] * (context_size - 1) + [blank_id],
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
context_state=context_graph.root,
timestamp=[],
ac_probs=[],
)
)
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
offset = 0
finalized_B = []
sorted_ans = [[] for _ in range(N)]
for t, batch_size in enumerate(batch_size_list):
start = offset
end = offset + batch_size
current_encoder_out = encoder_out.data[start:end]
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
offset = end
finalized_B = B[batch_size:] + finalized_B
B = B[:batch_size]
hyps_shape = get_hyps_shape(B).to(device)
A = [list(b) for b in B]
B = [HypothesisList() for _ in range(batch_size)]
ys_log_probs = torch.cat(
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
) # (num_hyps, 1)
decoder_input = torch.tensor(
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
device=device,
dtype=torch.int64,
) # (num_hyps, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
decoder_out = model.joiner.decoder_proj(decoder_out)
# decoder_out is of shape (num_hyps, 1, 1, joiner_dim)
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
# as index, so we use `to(torch.int64)` below.
current_encoder_out = torch.index_select(
current_encoder_out,
dim=0,
index=hyps_shape.row_ids(1).to(torch.int64),
) # (num_hyps, 1, 1, encoder_out_dim)
logits = model.joiner(
current_encoder_out,
decoder_out,
project_input=False,
) # (num_hyps, 1, 1, vocab_size)
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
if blank_penalty != 0:
logits[:, 0] -= blank_penalty
probs = logits.softmax(dim=-1) # (num_hyps, vocab_size)
log_probs = probs.log()
log_probs.add_(ys_log_probs)
vocab_size = log_probs.size(-1)
log_probs = log_probs.reshape(-1)
row_splits = hyps_shape.row_splits(1) * vocab_size
log_probs_shape = k2.ragged.create_ragged_shape2(
row_splits=row_splits, cached_tot_size=log_probs.numel()
)
ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
ragged_probs = k2.RaggedTensor(shape=log_probs_shape, value=probs)
for i in range(batch_size):
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
hyp_probs = ragged_probs[i].tolist()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
topk_token_indexes = (topk_indexes % vocab_size).tolist()
for k in range(len(topk_hyp_indexes)):
hyp_idx = topk_hyp_indexes[k]
hyp = A[i][hyp_idx]
new_ys = hyp.ys[:]
new_token = topk_token_indexes[k]
new_timestamp = hyp.timestamp[:]
new_ac_probs = hyp.ac_probs[:]
context_score = 0
new_context_state = hyp.context_state
new_num_tailing_blanks = hyp.num_tailing_blanks + 1
if new_token not in (blank_id, unk_id):
new_ys.append(new_token)
new_timestamp.append(t)
new_ac_probs.append(math.exp(hyp_probs[topk_indexes[k]]))
(
context_score,
new_context_state,
_,
) = context_graph.forward_one_step(hyp.context_state, new_token)
new_num_tailing_blanks = 0
if new_context_state.token == -1: # root
new_ys[-context_size:] = [-1] * (context_size - 1) + [blank_id]
new_log_prob = topk_log_probs[k] + context_score
new_hyp = Hypothesis(
ys=new_ys,
log_prob=new_log_prob,
timestamp=new_timestamp,
ac_probs=new_ac_probs,
context_state=new_context_state,
num_tailing_blanks=new_num_tailing_blanks,
)
B[i].add(new_hyp)
top_hyp = B[i].get_most_probable(length_norm=True)
matched, matched_state = context_graph.is_matched(top_hyp.context_state)
if matched:
ac_prob = (
sum(top_hyp.ac_probs[-matched_state.level :]) / matched_state.level
)
if (
matched
and top_hyp.num_tailing_blanks > num_tailing_blanks
and ac_prob >= ac_threshold
):
keyword = KeywordResult(
hyps=top_hyp.ys[-matched_state.level :],
timestamps=top_hyp.timestamp[-matched_state.level :],
phrase=matched_state.phrase,
)
sorted_ans[i].append(keyword)
B[i] = HypothesisList()
B[i].add(
Hypothesis(
ys=[-1] * (context_size - 1) + [blank_id],
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
context_state=context_graph.root,
timestamp=[],
ac_probs=[],
)
)
B = B + finalized_B
for i, hyps in enumerate(B):
top_hyp = hyps.get_most_probable(length_norm=True)
matched, matched_state = context_graph.is_matched(top_hyp.context_state)
if matched:
ac_prob = (
sum(top_hyp.ac_probs[-matched_state.level :]) / matched_state.level
)
if matched and ac_prob >= ac_threshold:
keyword = KeywordResult(
hyps=top_hyp.ys[-matched_state.level :],
timestamps=top_hyp.timestamp[-matched_state.level :],
phrase=matched_state.phrase,
)
sorted_ans[i].append(keyword)
ans = []
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
for i in range(N):
ans.append(sorted_ans[unsorted_indices[i]])
return ans
def modified_beam_search(
model: nn.Module,
encoder_out: torch.Tensor,

View File

@ -407,3 +407,10 @@ class WenetSpeechAsrDataModule:
def test_meeting_cuts(self) -> List[CutSet]:
logging.info("About to get TEST_MEETING cuts")
return load_manifest_lazy(self.args.manifest_dir / "cuts_TEST_MEETING.jsonl.gz")
@lru_cache()
def test_open_commands_cuts(self) -> CutSet:
logging.info("About to get open commands cuts")
return load_manifest_lazy(
self.args.manifest_dir / "open-commands-cn_cuts_test.jsonl.gz"
)

View File

@ -0,0 +1,416 @@
# Copyright 2021 Piotr Żelasko
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import inspect
import logging
from functools import lru_cache
from pathlib import Path
from typing import Any, Dict, List, Optional
import torch
from lhotse import (
CutSet,
Fbank,
FbankConfig,
load_manifest,
load_manifest_lazy,
set_caching_enabled,
)
from lhotse.dataset import (
CutConcatenate,
CutMix,
DynamicBucketingSampler,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SimpleCutSampler,
SpecAugment,
)
from lhotse.dataset.input_strategies import OnTheFlyFeatures
from lhotse.utils import fix_random_seed
from torch.utils.data import DataLoader
from icefall.utils import str2bool
class _SeedWorkers:
def __init__(self, seed: int):
self.seed = seed
def __call__(self, worker_id: int):
fix_random_seed(self.seed + worker_id)
class WenetSpeechAsrDataModule:
"""
DataModule for k2 ASR experiments.
It assumes there is always one train and valid dataloader,
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
and test-other).
It contains all the common data pipeline modules used in ASR
experiments, e.g.:
- dynamic batch size,
- bucketing samplers,
- cut concatenation,
- augmentation,
- on-the-fly feature extraction
This class should be derived for specific corpora used in ASR tasks.
"""
def __init__(self, args: argparse.Namespace):
self.args = args
@classmethod
def add_arguments(cls, parser: argparse.ArgumentParser):
group = parser.add_argument_group(
title="ASR data related options",
description="These options are used for the preparation of "
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
"effective batch sizes, sampling strategies, applied data "
"augmentations, etc.",
)
group.add_argument(
"--manifest-dir",
type=Path,
default=Path("data/fbank"),
help="Path to directory with train/valid/test cuts.",
)
group.add_argument(
"--max-duration",
type=int,
default=200.0,
help="Maximum pooled recordings duration (seconds) in a "
"single batch. You can reduce it if it causes CUDA OOM.",
)
group.add_argument(
"--bucketing-sampler",
type=str2bool,
default=True,
help="When enabled, the batches will come from buckets of "
"similar duration (saves padding frames).",
)
group.add_argument(
"--num-buckets",
type=int,
default=30,
help="The number of buckets for the DynamicBucketingSampler"
"(you might want to increase it for larger datasets).",
)
group.add_argument(
"--concatenate-cuts",
type=str2bool,
default=False,
help="When enabled, utterances (cuts) will be concatenated "
"to minimize the amount of padding.",
)
group.add_argument(
"--duration-factor",
type=float,
default=1.0,
help="Determines the maximum duration of a concatenated cut "
"relative to the duration of the longest cut in a batch.",
)
group.add_argument(
"--gap",
type=float,
default=1.0,
help="The amount of padding (in seconds) inserted between "
"concatenated cuts. This padding is filled with noise when "
"noise augmentation is used.",
)
group.add_argument(
"--on-the-fly-feats",
type=str2bool,
default=False,
help="When enabled, use on-the-fly cut mixing and feature "
"extraction. Will drop existing precomputed feature manifests "
"if available.",
)
group.add_argument(
"--shuffle",
type=str2bool,
default=True,
help="When enabled (=default), the examples will be "
"shuffled for each epoch.",
)
group.add_argument(
"--return-cuts",
type=str2bool,
default=True,
help="When enabled, each batch will have the "
"field: batch['supervisions']['cut'] with the cuts that "
"were used to construct it.",
)
group.add_argument(
"--num-workers",
type=int,
default=2,
help="The number of training dataloader workers that "
"collect the batches.",
)
group.add_argument(
"--enable-spec-aug",
type=str2bool,
default=True,
help="When enabled, use SpecAugment for training dataset.",
)
group.add_argument(
"--spec-aug-time-warp-factor",
type=int,
default=80,
help="Used only when --enable-spec-aug is True. "
"It specifies the factor for time warping in SpecAugment. "
"Larger values mean more warping. "
"A value less than 1 means to disable time warp.",
)
group.add_argument(
"--enable-musan",
type=str2bool,
default=True,
help="When enabled, select noise from MUSAN and mix it"
"with training dataset. ",
)
group.add_argument(
"--training-subset",
type=str,
default="L",
help="The training subset for using",
)
def train_dataloaders(
self,
cuts_train: CutSet,
sampler_state_dict: Optional[Dict[str, Any]] = None,
) -> DataLoader:
"""
Args:
cuts_train:
CutSet for training.
sampler_state_dict:
The state dict for the training sampler.
"""
logging.info("About to get Musan cuts")
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
transforms = []
if self.args.enable_musan:
logging.info("Enable MUSAN")
transforms.append(
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
)
else:
logging.info("Disable MUSAN")
if self.args.concatenate_cuts:
logging.info(
f"Using cut concatenation with duration factor "
f"{self.args.duration_factor} and gap {self.args.gap}."
)
# Cut concatenation should be the first transform in the list,
# so that if we e.g. mix noise in, it will fill the gaps between
# different utterances.
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
input_transforms = []
if self.args.enable_spec_aug:
logging.info("Enable SpecAugment")
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
# Set the value of num_frame_masks according to Lhotse's version.
# In different Lhotse's versions, the default of num_frame_masks is
# different.
num_frame_masks = 10
num_frame_masks_parameter = inspect.signature(
SpecAugment.__init__
).parameters["num_frame_masks"]
if num_frame_masks_parameter.default == 1:
num_frame_masks = 2
logging.info(f"Num frame mask: {num_frame_masks}")
input_transforms.append(
SpecAugment(
time_warp_factor=self.args.spec_aug_time_warp_factor,
num_frame_masks=num_frame_masks,
features_mask_size=27,
num_feature_masks=2,
frames_mask_size=100,
)
)
else:
logging.info("Disable SpecAugment")
logging.info("About to create train dataset")
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
if self.args.on_the_fly_feats:
# NOTE: the PerturbSpeed transform should be added only if we
# remove it from data prep stage.
# Add on-the-fly speed perturbation; since originally it would
# have increased epoch size by 3, we will apply prob 2/3 and use
# 3x more epochs.
# Speed perturbation probably should come first before
# concatenation, but in principle the transforms order doesn't have
# to be strict (e.g. could be randomized)
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
# Drop feats to be on the safe side.
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
if self.args.bucketing_sampler:
logging.info("Using DynamicBucketingSampler.")
train_sampler = DynamicBucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
num_buckets=self.args.num_buckets,
buffer_size=300000,
drop_last=True,
)
else:
logging.info("Using SimpleCutSampler.")
train_sampler = SimpleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
)
logging.info("About to create train dataloader")
# 'seed' is derived from the current random state, which will have
# previously been set in the main process.
seed = torch.randint(0, 100000, ()).item()
worker_init_fn = _SeedWorkers(seed)
train_dl = DataLoader(
train,
sampler=train_sampler,
batch_size=None,
num_workers=self.args.num_workers,
persistent_workers=False,
worker_init_fn=worker_init_fn,
)
if sampler_state_dict is not None:
logging.info("Loading sampler state dict")
train_dl.sampler.load_state_dict(sampler_state_dict)
return train_dl
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
transforms = []
if self.args.concatenate_cuts:
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
logging.info("About to create dev dataset")
if self.args.on_the_fly_feats:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
return_cuts=self.args.return_cuts,
)
else:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
return_cuts=self.args.return_cuts,
)
valid_sampler = DynamicBucketingSampler(
cuts_valid,
max_duration=self.args.max_duration,
shuffle=False,
)
logging.info("About to create dev dataloader")
valid_dl = DataLoader(
validate,
batch_size=None,
sampler=valid_sampler,
num_workers=self.args.num_workers,
persistent_workers=False,
)
return valid_dl
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
logging.info("About to create test dataset")
test = K2SpeechRecognitionDataset(
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
if self.args.on_the_fly_feats
else PrecomputedFeatures(),
return_cuts=self.args.return_cuts,
)
sampler = DynamicBucketingSampler(
cuts,
max_duration=self.args.max_duration,
shuffle=False,
)
test_dl = DataLoader(
test,
batch_size=None,
sampler=sampler,
num_workers=self.args.num_workers,
)
return test_dl
@lru_cache()
def train_cuts(self) -> CutSet:
logging.info("About to get train cuts")
cuts_train = load_manifest_lazy(
self.args.manifest_dir / f"cuts_{self.args.training_subset}.jsonl.gz"
)
return cuts_train
@lru_cache()
def valid_cuts(self) -> CutSet:
logging.info("About to get dev cuts")
return load_manifest_lazy(self.args.manifest_dir / "cuts_DEV.jsonl.gz")
@lru_cache()
def test_net_cuts(self) -> List[CutSet]:
logging.info("About to get TEST_NET cuts")
return load_manifest_lazy(self.args.manifest_dir / "cuts_TEST_NET.jsonl.gz")
@lru_cache()
def test_meeting_cuts(self) -> List[CutSet]:
logging.info("About to get TEST_MEETING cuts")
return load_manifest_lazy(self.args.manifest_dir / "cuts_TEST_MEETING.jsonl.gz")
@lru_cache()
def test_open_commands_cuts(self) -> CutSet:
logging.info("About to get open commands cuts")
return load_manifest_lazy(
self.args.manifest_dir / "open-commands-cn_cuts_test.jsonl.gz"
)

View File

@ -0,0 +1 @@
../../ASR/pruned_transducer_stateless2/beam_search.py

View File

@ -0,0 +1,637 @@
#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
# Zengwei Yao
# Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
(2) modified beam search
./zipformer/decode.py \
--epoch 35 \
--avg 15 \
--exp-dir ./zipformer/exp \
--lang-dir data/lang_char \
--max-duration 600 \
--decoding-method modified_beam_search \
--beam-size 4
"""
import argparse
import logging
import math
from collections import defaultdict
from dataclasses import dataclass, field
from pathlib import Path
from typing import Dict, List, Optional, Set, Tuple
import k2
import torch
import torch.nn as nn
from asr_datamodule import WenetSpeechAsrDataModule
from beam_search import (
keywords_search,
)
from lhotse.cut import Cut
from train import add_model_arguments, get_model, get_params
from icefall import ContextGraph
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
make_pad_mask,
setup_logger,
store_transcripts,
str2bool,
text_to_pinyin,
write_error_stats,
)
LOG_EPS = math.log(1e-10)
@dataclass
class KwMetric:
TP: int = 0 # True positive
FN: int = 0 # False negative
FP: int = 0 # False positive
TN: int = 0 # True negative
FN_list: List[str] = field(default_factory=list)
FP_list: List[str] = field(default_factory=list)
TP_list: List[str] = field(default_factory=list)
def __str__(self) -> str:
return f"(TP:{self.TP}, FN:{self.FN}, FP:{self.FP}, TN:{self.TN})"
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="zipformer/exp",
help="The experiment dir",
)
parser.add_argument(
"--lang-dir",
type=Path,
default="data/lang_char",
help="The lang dir containing word table and LG graph",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --decoding-method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--blank-penalty",
type=float,
default=0.0,
help="""
The penalty applied on blank symbol during decoding.
Note: It is a positive value that would be applied to logits like
this `logits[:, 0] -= blank_penalty` (suppose logits.shape is
[batch_size, vocab] and blank id is 0).
""",
)
parser.add_argument(
"--pinyin-type",
type=str,
help="The type of pinyin used as the modeling units.",
)
parser.add_argument(
"--keyword-file",
type=str,
help="File contains keywords.",
)
parser.add_argument(
"--keyword-score",
type=float,
default=0.75,
help="The threshold (probability) to boost the keyword.",
)
add_model_arguments(parser)
return parser
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
lexicon: Lexicon,
batch: dict,
kws_graph: ContextGraph,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
- key: It indicates the setting used for decoding. For example,
if greedy_search is used, it would be "greedy_search"
If beam search with a beam size of 7 is used, it would be
"beam_7"
- value: It contains the decoding result. `len(value)` equals to
batch size. `value[i]` is the decoding result for the i-th
utterance in the given batch.
Args:
params:
It's the return value of :func:`get_params`.
model:
The neural model.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
Returns:
Return the decoding result. See above description for the format of
the returned dict.
"""
device = next(model.parameters()).device
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device)
# at entry, feature is (N, T, C)
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
if params.causal:
# this seems to cause insertions at the end of the utterance if used with zipformer.
pad_len = 30
feature_lens += pad_len
feature = torch.nn.functional.pad(
feature,
pad=(0, 0, 0, pad_len),
value=LOG_EPS,
)
x, x_lens = model.encoder_embed(feature, feature_lens)
src_key_padding_mask = make_pad_mask(x_lens)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_out, encoder_out_lens = model.encoder(x, x_lens, src_key_padding_mask)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
ans_dict = keywords_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
context_graph=kws_graph,
beam=params.beam_size,
num_tailing_blanks=8,
)
hyps = []
for ans in ans_dict:
hyp = []
for hit in ans:
hyp.append(
(
hit.phrase,
(hit.timestamps[0], hit.timestamps[-1]),
)
)
hyps.append(hyp)
return hyps
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
lexicon: Lexicon,
kws_graph: ContextGraph,
keywords: Set[str],
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
Returns:
Return a dict, whose key may be "greedy_search" if greedy search
is used, or it may be "beam_7" if beam size of 7 is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
log_interval = 20
results = []
metric = {"all": KwMetric()}
for k in keywords:
metric[k] = KwMetric()
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
hyps = decode_one_batch(
params=params,
model=model,
lexicon=lexicon,
kws_graph=kws_graph,
batch=batch,
)
this_batch = []
assert len(hyps) == len(texts)
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
ref_words = list(ref_text)
hyp_words = [x[0] for x in hyp_words]
this_batch.append((cut_id, ref_words, list("".join(hyp_words))))
hyp_set = set(hyp_words)
hyp_str = " | ".join(hyp_words)
for x in hyp_set:
assert x in keywords, x
if x in ref_text and x in keywords:
metric["all"].TP += 1
metric[x].TP += 1
metric[x].TP_list.append(f"({ref_text} -> {x})")
if x not in ref_text and x in keywords:
metric["all"].FP += 1
metric[x].FP += 1
metric[x].FP_list.append(f"({ref_text} -> {x}/{cut_id})")
for x in keywords:
if x not in ref_text and x not in hyp_set:
metric["all"].TN += 1
metric[x].TN += 1
if x in ref_text:
fn = True
for y in hyp_set:
if y in ref_text:
fn = False
break
if fn and ref_text.endswith(x):
metric["all"].FN += 1
metric[x].FN += 1
metric[x].FN_list.append(f"({ref_text} -> {hyp_str}/{cut_id})")
results.extend(this_batch)
num_cuts += len(texts)
if batch_idx % log_interval == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
return results, metric
def save_results(
params: AttributeDict,
test_set_name: str,
results: List[Tuple[str, List[str], List[str]]],
metric: KwMetric,
):
recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
with open(errs_filename, "w") as f:
wer = write_error_stats(f, f"{test_set_name}", results, enable_log=True)
logging.info("Wrote detailed error stats to {}".format(errs_filename))
metric_filename = params.res_dir / f"metric-{test_set_name}-{params.suffix}.txt"
print_s = ""
with open(metric_filename, "w") as of:
width = 10
for key, item in sorted(
metric.items(), key=lambda x: (x[1].FP, x[1].FN), reverse=True
):
acc = (item.TP + item.TN) / (item.TP + item.TN + item.FP + item.FN)
precision = (item.TP + 1) / (item.TP + item.FP + 1)
recall = (item.TP + 1) / (item.TP + item.FN + 1)
fpr = (item.FP + 1) / (item.FP + item.TN + 1)
s = f"{key}:\n"
s += f"\t{'TP':{width}}{'FP':{width}}{'FN':{width}}{'TN':{width}}\n"
s += f"\t{str(item.TP):{width}}{str(item.FP):{width}}{str(item.FN):{width}}{str(item.TN):{width}}\n"
s += f"\tAccuracy: {acc:.3f}\n"
s += f"\tPrecision: {precision:.3f}\n"
s += f"\tRecall(PPR): {recall:.3f}\n"
s += f"\tFPR: {fpr:.3f}\n"
s += f"\tF1: {2 * precision * recall / (precision + recall):.3f}\n"
s += f"\tTP list: {' # '.join(item.TP_list)}\n"
s += f"\tFP list: {' # '.join(item.FP_list)}\n"
s += f"\tFN list: {' # '.join(item.FN_list)}\n"
of.write(s + "\n")
if key == "all":
logging.info(s)
logging.info("Wrote metric stats to {}".format(metric_filename))
@torch.no_grad()
def main():
parser = get_parser()
WenetSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
params.res_dir = params.exp_dir / "kws"
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
if params.causal:
assert (
"," not in params.chunk_size
), "chunk_size should be one value in decoding."
assert (
"," not in params.left_context_frames
), "left_context_frames should be one value in decoding."
params.suffix += f"-chunk-{params.chunk_size}"
params.suffix += f"-left-context-{params.left_context_frames}"
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
params.suffix += f"-keyword-score-{params.keyword_score}"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
lexicon = Lexicon(params.lang_dir)
params.blank_id = lexicon.token_table["<blk>"]
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)
keywords = []
keywords_id = []
with open(params.keyword_file, "r") as f:
for line in f.readlines():
score = 0
kws = line.strip().upper().split()
if kws[-1][0] == ":":
score = float(kws[-1][1:])
kws = kws[0:-1]
tmp_ids = []
kws = "".join(kws)
kws_py = text_to_pinyin(kws, mode=params.pinyin_type)
for k in kws_py:
if k in lexicon.token_table:
tmp_ids.append(lexicon.token_table[k])
else:
logging.warning(f"Containing OOV tokens, skipping line : {line}")
tmp_ids = []
break
if tmp_ids:
logging.info(f"Adding keyword : {kws}")
keywords.append(kws)
keywords_id.append((tmp_ids, score, kws))
kws_graph = ContextGraph(context_score=params.keyword_score)
kws_graph.build(keywords_id)
logging.info("About to create model")
model = get_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device)
model.eval()
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
# we need cut ids to display recognition results.
args.return_cuts = True
wenetspeech = WenetSpeechAsrDataModule(args)
def remove_short_utt(c: Cut):
T = ((c.num_frames - 7) // 2 + 1) // 2
if T <= 0:
logging.warning(
f"Exclude cut with ID {c.id} from decoding, num_frames : {c.num_frames}."
)
return T > 0
def select_keywords(c: Cut):
text = c.supervisions[0].text.strip()
return text in keywords
commands_cuts = wenetspeech.test_open_commands_cuts()
commands_cuts = commands_cuts.filter(select_keywords)
commands_cuts = commands_cuts.filter(remove_short_utt)
commands_dl = wenetspeech.test_dataloaders(commands_cuts)
test_net_cuts = wenetspeech.test_net_cuts()
test_net_cuts = test_net_cuts.filter(remove_short_utt)
test_net_dl = wenetspeech.test_dataloaders(test_net_cuts)
test_sets = ["COMMANDS"] # , "TEST_NET"]
test_dls = [commands_dl] # , test_net_dl]
for test_set, test_dl in zip(test_sets, test_dls):
results, metric = decode_dataset(
dl=test_dl,
params=params,
model=model,
lexicon=lexicon,
kws_graph=kws_graph,
keywords=set(keywords),
)
save_results(
params=params,
test_set_name=test_set,
results=results,
metric=metric,
)
logging.info("Done!")
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/decoder.py

View File

@ -0,0 +1 @@
../../ASR/pruned_transducer_stateless2/encoder_interface.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/joiner.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/model.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/optim.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/scaling.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/subsampling.py

View File

@ -0,0 +1,704 @@
#!/usr/bin/env python3
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang,
# Wei Kang,
# Mingshuang Luo,
# Zengwei Yao,
# Daniel Povey)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
export CUDA_VISIBLE_DEVICES="0,1,2,3"
# For non-streaming model training:
./zipformer/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 1 \
--use-fp16 1 \
--exp-dir zipformer/exp \
--max-duration 1000
# For streaming model training:
./zipformer/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 1 \
--use-fp16 1 \
--exp-dir zipformer/exp \
--causal 1 \
--max-duration 1000
It supports training with:
- transducer loss (default), with `--use-transducer True --use-ctc False`
- ctc loss (not recommended), with `--use-transducer False --use-ctc True`
- transducer loss & ctc loss, with `--use-transducer True --use-ctc True`
"""
import argparse
import copy
import logging
import warnings
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, Optional, Tuple, Union
import k2
import optim
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from asr_datamodule import WenetSpeechAsrDataModule
from lhotse.cut import Cut
from lhotse.dataset.sampling.base import CutSampler
from lhotse.utils import fix_random_seed
from model import AsrModel
from optim import Eden, ScaledAdam
from scaling import ScheduledFloat
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from icefall import diagnostics
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
from icefall.checkpoint import remove_checkpoints
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
from icefall.checkpoint import (
save_checkpoint_with_global_batch_idx,
update_averaged_model,
)
from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.hooks import register_inf_check_hooks
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
MetricsTracker,
get_parameter_groups_with_lrs,
setup_logger,
str2bool,
text_to_pinyin,
)
from train import (
add_model_arguments,
add_training_arguments,
compute_validation_loss,
display_and_save_batch,
get_adjusted_batch_count,
get_model,
get_params,
load_checkpoint_if_available,
save_checkpoint,
scan_pessimistic_batches_for_oom,
set_batch_count,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_partial_tone",
help="Path to the pinyin lang directory",
)
parser.add_argument(
"--pinyin-type",
type=str,
default="partial_with_tone",
help="""
The style of the output pinyin, should be:
full_with_tone : zhong1 guo2
full_no_tone : zhong guo
partial_with_tone : zh ong1 g uo2
partial_no_tone : zh ong g uo
""",
)
parser.add_argument(
"--pinyin-errors",
default="split",
type=str,
help="""How to handle characters that has no pinyin,
see `text_to_pinyin` in icefall/utils.py for details
""",
)
add_training_arguments(parser)
add_model_arguments(parser)
return parser
def compute_loss(
params: AttributeDict,
model: Union[nn.Module, DDP],
graph_compiler: CharCtcTrainingGraphCompiler,
batch: dict,
is_training: bool,
) -> Tuple[Tensor, MetricsTracker]:
"""
Compute CTC loss given the model and its inputs.
Args:
params:
Parameters for training. See :func:`get_params`.
model:
The model for training. It is an instance of Zipformer in our case.
batch:
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
for the content in it.
is_training:
True for training. False for validation. When it is True, this
function enables autograd during computation; when it is False, it
disables autograd.
warmup: a floating point value which increases throughout training;
values >= 1.0 are fully warmed up and have all modules present.
"""
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
feature = batch["inputs"]
# at entry, feature is (N, T, C)
assert feature.ndim == 3
feature = feature.to(device)
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
batch_idx_train = params.batch_idx_train
warm_step = params.warm_step
texts = batch["supervisions"]["text"]
y = graph_compiler.texts_to_ids(texts, sep="/")
y = k2.RaggedTensor(y).to(device)
with torch.set_grad_enabled(is_training):
simple_loss, pruned_loss, _ = model(
x=feature,
x_lens=feature_lens,
y=y,
prune_range=params.prune_range,
am_scale=params.am_scale,
lm_scale=params.lm_scale,
)
s = params.simple_loss_scale
# take down the scale on the simple loss from 1.0 at the start
# to params.simple_loss scale by warm_step.
simple_loss_scale = (
s
if batch_idx_train >= warm_step
else 1.0 - (batch_idx_train / warm_step) * (1.0 - s)
)
pruned_loss_scale = (
1.0
if batch_idx_train >= warm_step
else 0.1 + 0.9 * (batch_idx_train / warm_step)
)
loss = simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
assert loss.requires_grad == is_training
info = MetricsTracker()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
# Note: We use reduction=sum while computing the loss.
info["loss"] = loss.detach().cpu().item()
info["simple_loss"] = simple_loss.detach().cpu().item()
info["pruned_loss"] = pruned_loss.detach().cpu().item()
return loss, info
def compute_validation_loss(
params: AttributeDict,
model: Union[nn.Module, DDP],
graph_compiler: CharCtcTrainingGraphCompiler,
valid_dl: torch.utils.data.DataLoader,
world_size: int = 1,
) -> MetricsTracker:
"""Run the validation process."""
model.eval()
tot_loss = MetricsTracker()
for batch_idx, batch in enumerate(valid_dl):
loss, loss_info = compute_loss(
params=params,
model=model,
graph_compiler=graph_compiler,
batch=batch,
is_training=False,
)
assert loss.requires_grad is False
tot_loss = tot_loss + loss_info
if world_size > 1:
tot_loss.reduce(loss.device)
loss_value = tot_loss["loss"] / tot_loss["frames"]
if loss_value < params.best_valid_loss:
params.best_valid_epoch = params.cur_epoch
params.best_valid_loss = loss_value
return tot_loss
def train_one_epoch(
params: AttributeDict,
model: Union[nn.Module, DDP],
optimizer: torch.optim.Optimizer,
scheduler: LRSchedulerType,
graph_compiler: CharCtcTrainingGraphCompiler,
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
scaler: GradScaler,
model_avg: Optional[nn.Module] = None,
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
rank: int = 0,
) -> None:
"""Train the model for one epoch.
The training loss from the mean of all frames is saved in
`params.train_loss`. It runs the validation process every
`params.valid_interval` batches.
Args:
params:
It is returned by :func:`get_params`.
model:
The model for training.
optimizer:
The optimizer we are using.
scheduler:
The learning rate scheduler, we call step() every step.
train_dl:
Dataloader for the training dataset.
valid_dl:
Dataloader for the validation dataset.
scaler:
The scaler used for mix precision training.
model_avg:
The stored model averaged from the start of training.
tb_writer:
Writer to write log messages to tensorboard.
world_size:
Number of nodes in DDP training. If it is 1, DDP is disabled.
rank:
The rank of the node in DDP training. If no DDP is used, it should
be set to 0.
"""
model.train()
tot_loss = MetricsTracker()
cur_batch_idx = params.get("cur_batch_idx", 0)
saved_bad_model = False
def save_bad_model(suffix: str = ""):
save_checkpoint_impl(
filename=params.exp_dir / f"bad-model{suffix}-{rank}.pt",
model=model,
model_avg=model_avg,
params=params,
optimizer=optimizer,
scheduler=scheduler,
sampler=train_dl.sampler,
scaler=scaler,
rank=0,
)
for batch_idx, batch in enumerate(train_dl):
if batch_idx % 10 == 0:
set_batch_count(model, get_adjusted_batch_count(params))
if batch_idx < cur_batch_idx:
continue
cur_batch_idx = batch_idx
params.batch_idx_train += 1
batch_size = len(batch["supervisions"]["text"])
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
graph_compiler=graph_compiler,
batch=batch,
is_training=True,
)
# summary stats
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
# NOTE: We use reduction==sum and loss is computed over utterances
# in the batch and there is no normalization to it so far.
scaler.scale(loss).backward()
scheduler.step_batch(params.batch_idx_train)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
except: # noqa
save_bad_model()
display_and_save_batch(batch, params=params, graph_compiler=graph_compiler)
raise
if params.print_diagnostics and batch_idx == 5:
return
if (
rank == 0
and params.batch_idx_train > 0
and params.batch_idx_train % params.average_period == 0
):
update_averaged_model(
params=params,
model_cur=model,
model_avg=model_avg,
)
if (
params.batch_idx_train > 0
and params.batch_idx_train % params.save_every_n == 0
):
params.cur_batch_idx = batch_idx
save_checkpoint_with_global_batch_idx(
out_dir=params.exp_dir,
global_batch_idx=params.batch_idx_train,
model=model,
model_avg=model_avg,
params=params,
optimizer=optimizer,
scheduler=scheduler,
sampler=train_dl.sampler,
scaler=scaler,
rank=rank,
)
del params.cur_batch_idx
remove_checkpoints(
out_dir=params.exp_dir,
topk=params.keep_last_k,
rank=rank,
)
if batch_idx % 100 == 0 and params.use_fp16:
# If the grad scale was less than 1, try increasing it. The _growth_interval
# of the grad scaler is configurable, but we can't configure it to have different
# behavior depending on the current grad scale.
cur_grad_scale = scaler._scale.item()
if cur_grad_scale < 8.0 or (cur_grad_scale < 32.0 and batch_idx % 400 == 0):
scaler.update(cur_grad_scale * 2.0)
if cur_grad_scale < 0.01:
if not saved_bad_model:
save_bad_model(suffix="-first-warning")
saved_bad_model = True
logging.warning(f"Grad scale is small: {cur_grad_scale}")
if cur_grad_scale < 1.0e-05:
save_bad_model()
raise RuntimeError(
f"grad_scale is too small, exiting: {cur_grad_scale}"
)
if batch_idx % params.log_interval == 0:
cur_lr = max(scheduler.get_last_lr())
cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0
logging.info(
f"Epoch {params.cur_epoch}, "
f"batch {batch_idx}, loss[{loss_info}], "
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
f"lr: {cur_lr:.2e}, "
+ (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "")
)
if tb_writer is not None:
tb_writer.add_scalar(
"train/learning_rate", cur_lr, params.batch_idx_train
)
loss_info.write_summary(
tb_writer, "train/current_", params.batch_idx_train
)
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
if params.use_fp16:
tb_writer.add_scalar(
"train/grad_scale", cur_grad_scale, params.batch_idx_train
)
if batch_idx % params.valid_interval == 0 and not params.print_diagnostics:
logging.info("Computing validation loss")
valid_info = compute_validation_loss(
params=params,
model=model,
graph_compiler=graph_compiler,
valid_dl=valid_dl,
world_size=world_size,
)
model.train()
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
logging.info(
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
)
if tb_writer is not None:
valid_info.write_summary(
tb_writer, "train/valid_", params.batch_idx_train
)
loss_value = tot_loss["loss"] / tot_loss["frames"]
params.train_loss = loss_value
if params.train_loss < params.best_train_loss:
params.best_train_epoch = params.cur_epoch
params.best_train_loss = params.train_loss
def run(rank, world_size, args):
"""
Args:
rank:
It is a value between 0 and `world_size-1`, which is
passed automatically by `mp.spawn()` in :func:`main`.
The node with rank 0 is responsible for saving checkpoint.
world_size:
Number of GPUs for DDP training.
args:
The return value of get_parser().parse_args()
"""
params = get_params()
params.update(vars(args))
fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
setup_logger(f"{params.exp_dir}/log/log-train")
logging.info("Training started")
if args.tensorboard and rank == 0:
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
else:
tb_writer = None
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", rank)
logging.info(f"Device: {device}")
lexicon = Lexicon(params.lang_dir)
graph_compiler = CharCtcTrainingGraphCompiler(
lexicon=lexicon,
device=device,
)
params.blank_id = lexicon.token_table["<blk>"]
params.vocab_size = max(lexicon.tokens) + 1
if not params.use_transducer:
params.ctc_loss_scale = 1.0
logging.info(params)
logging.info("About to create model")
model = get_model(params)
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
assert params.save_every_n >= params.average_period
model_avg: Optional[nn.Module] = None
if rank == 0:
# model_avg is only used with rank 0
model_avg = copy.deepcopy(model).to(torch.float64)
assert params.start_epoch > 0, params.start_epoch
checkpoints = load_checkpoint_if_available(
params=params, model=model, model_avg=model_avg
)
model.to(device)
if world_size > 1:
logging.info("Using DDP")
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
optimizer = ScaledAdam(
get_parameter_groups_with_lrs(model, lr=params.base_lr, include_names=True),
lr=params.base_lr, # should have no effect
clipping_scale=2.0,
)
scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
if checkpoints and "optimizer" in checkpoints:
logging.info("Loading optimizer state dict")
optimizer.load_state_dict(checkpoints["optimizer"])
if (
checkpoints
and "scheduler" in checkpoints
and checkpoints["scheduler"] is not None
):
logging.info("Loading scheduler state dict")
scheduler.load_state_dict(checkpoints["scheduler"])
if params.print_diagnostics:
opts = diagnostics.TensorDiagnosticOptions(
2**22
) # allow 4 megabytes per sub-module
diagnostic = diagnostics.attach_diagnostics(model, opts)
if params.inf_check:
register_inf_check_hooks(model)
wenetspeech = WenetSpeechAsrDataModule(args)
train_cuts = wenetspeech.train_cuts()
def remove_short_and_long_utt(c: Cut):
# Keep only utterances with duration between 1 second and 20 seconds
#
# Caution: There is a reason to select 20.0 here. Please see
# ../local/display_manifest_statistics.py
#
# You should use ../local/display_manifest_statistics.py to get
# an utterance duration distribution for your dataset to select
# the threshold
if c.duration < 1.0 or c.duration > 15.0:
# logging.warning(
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
# )
return False
return True
def encode_text(c: Cut):
# Text normalize for each sample
text = c.supervisions[0].text
text = "/".join(
text_to_pinyin(text, mode=params.pinyin_type, errors=params.pinyin_errors)
)
c.supervisions[0].text = text
return c
train_cuts = train_cuts.filter(remove_short_and_long_utt)
train_cuts = train_cuts.map(encode_text)
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
# We only load the sampler's state dict when it loads a checkpoint
# saved in the middle of an epoch
sampler_state_dict = checkpoints["sampler"]
else:
sampler_state_dict = None
train_dl = wenetspeech.train_dataloaders(
train_cuts, sampler_state_dict=sampler_state_dict
)
valid_cuts = wenetspeech.valid_cuts()
valid_cuts = valid_cuts.map(encode_text)
valid_dl = wenetspeech.valid_dataloaders(valid_cuts)
if not params.print_diagnostics:
# scan_pessimistic_batches_for_oom(
# model=model,
# train_dl=train_dl,
# optimizer=optimizer,
# graph_compiler=graph_compiler,
# params=params,
# )
pass
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
if checkpoints and "grad_scaler" in checkpoints:
logging.info("Loading grad scaler state dict")
scaler.load_state_dict(checkpoints["grad_scaler"])
for epoch in range(params.start_epoch, params.num_epochs + 1):
scheduler.step_epoch(epoch - 1)
fix_random_seed(params.seed + epoch - 1)
train_dl.sampler.set_epoch(epoch - 1)
if tb_writer is not None:
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
params.cur_epoch = epoch
train_one_epoch(
params=params,
model=model,
model_avg=model_avg,
optimizer=optimizer,
scheduler=scheduler,
graph_compiler=graph_compiler,
train_dl=train_dl,
valid_dl=valid_dl,
scaler=scaler,
tb_writer=tb_writer,
world_size=world_size,
rank=rank,
)
if params.print_diagnostics:
diagnostic.print_diagnostics()
break
save_checkpoint(
params=params,
model=model,
model_avg=model_avg,
optimizer=optimizer,
scheduler=scheduler,
sampler=train_dl.sampler,
scaler=scaler,
rank=rank,
)
logging.info("Done!")
if world_size > 1:
torch.distributed.barrier()
cleanup_dist()
def main():
parser = get_parser()
WenetSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.lang_dir = Path(args.lang_dir)
args.exp_dir = Path(args.exp_dir)
world_size = args.world_size
assert world_size >= 1
if world_size > 1:
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
else:
run(rank=0, world_size=1, args=args)
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/zipformer.py

View File

@ -322,6 +322,24 @@ class ContextGraph:
)
return (score + node.output_score, node, matched_node)
def is_matched(self, state: ContextState) -> Tuple[bool, ContextState]:
"""Whether current state matches any phrase (i.e. current state is the
end state or the output of current state is not None.
Args:
state:
The given state(trie node).
Returns:
Return a tuple of status and matched state.
"""
if state.is_end:
return True, state
else:
if state.output is not None:
return True, state.output
return False, None
def finalize(self, state: ContextState) -> Tuple[float, ContextState]:
"""When reaching the end of the decoded sequence, we need to finalize
the matching, the purpose is to subtract the added bonus score for the