Update decode.py

This commit is contained in:
jinzr 2023-10-15 22:56:06 +08:00
parent 71e8d2d8e2
commit e20af6f28b

View File

@ -106,24 +106,18 @@ import k2
import sentencepiece as spm
import torch
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from asr_datamodule import AmiAsrDataModule
from beam_search import (
beam_search,
fast_beam_search_nbest,
fast_beam_search_nbest_LG,
fast_beam_search_nbest_oracle,
fast_beam_search_one_best,
greedy_search,
greedy_search_batch,
modified_beam_search,
modified_beam_search_lm_rescore,
modified_beam_search_lm_rescore_LODR,
modified_beam_search_lm_shallow_fusion,
modified_beam_search_LODR,
)
from train import add_model_arguments, get_model, get_params
from icefall import ContextGraph, LmScorer, NgramLm
from icefall import LmScorer
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
@ -133,7 +127,6 @@ from icefall.checkpoint import (
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
make_pad_mask,
setup_logger,
store_transcripts,
str2bool,
@ -308,68 +301,6 @@ def get_parser():
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--use-shallow-fusion",
type=str2bool,
default=False,
help="""Use neural network LM for shallow fusion.
If you want to use LODR, you will also need to set this to true
""",
)
parser.add_argument(
"--lm-type",
type=str,
default="rnn",
help="Type of NN lm",
choices=["rnn", "transformer"],
)
parser.add_argument(
"--lm-scale",
type=float,
default=0.3,
help="""The scale of the neural network LM
Used only when `--use-shallow-fusion` is set to True.
""",
)
parser.add_argument(
"--tokens-ngram",
type=int,
default=2,
help="""The order of the ngram lm.
""",
)
parser.add_argument(
"--backoff-id",
type=int,
default=500,
help="ID of the backoff symbol in the ngram LM",
)
parser.add_argument(
"--context-score",
type=float,
default=2,
help="""
The bonus score of each token for the context biasing words/phrases.
Used only when --decoding-method is modified_beam_search and
modified_beam_search_LODR.
""",
)
parser.add_argument(
"--context-file",
type=str,
default="",
help="""
The path of the context biasing lists, one word/phrase each line
Used only when --decoding-method is modified_beam_search and
modified_beam_search_LODR.
""",
)
add_model_arguments(parser)
return parser
@ -380,12 +311,8 @@ def decode_one_batch(
model: nn.Module,
sp: spm.SentencePieceProcessor,
batch: dict,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
context_graph: Optional[ContextGraph] = None,
LM: Optional[LmScorer] = None,
ngram_lm=None,
ngram_lm_scale: float = 0.0,
word_table: Optional[k2.SymbolTable] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
@ -474,35 +401,6 @@ def decode_one_batch(
)
for hyp in hyp_tokens:
hyps.append([word_table[i] for i in hyp])
elif params.decoding_method == "fast_beam_search_nbest":
hyp_tokens = fast_beam_search_nbest(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
nbest_scale=params.nbest_scale,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "fast_beam_search_nbest_oracle":
hyp_tokens = fast_beam_search_nbest_oracle(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
ref_texts=sp.encode(supervisions["text"]),
nbest_scale=params.nbest_scale,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
hyp_tokens = greedy_search_batch(
model=model,
@ -517,55 +415,9 @@ def decode_one_batch(
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
context_graph=context_graph,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search_lm_shallow_fusion":
hyp_tokens = modified_beam_search_lm_shallow_fusion(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
LM=LM,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search_LODR":
hyp_tokens = modified_beam_search_LODR(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
LODR_lm=ngram_lm,
LODR_lm_scale=ngram_lm_scale,
LM=LM,
context_graph=context_graph,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search_lm_rescore":
lm_scale_list = [0.01 * i for i in range(10, 50)]
ans_dict = modified_beam_search_lm_rescore(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
LM=LM,
lm_scale_list=lm_scale_list,
)
elif params.decoding_method == "modified_beam_search_lm_rescore_LODR":
lm_scale_list = [0.02 * i for i in range(2, 30)]
ans_dict = modified_beam_search_lm_rescore_LODR(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
LM=LM,
LODR_lm=ngram_lm,
sp=sp,
lm_scale_list=lm_scale_list,
)
else:
batch_size = encoder_out.size(0)
@ -593,6 +445,14 @@ def decode_one_batch(
if params.decoding_method == "greedy_search":
return {"greedy_search": hyps}
elif params.decoding_method == "fast_beam_search":
return {
(
f"beam_{params.beam}_"
f"max_contexts_{params.max_contexts}_"
f"max_states_{params.max_states}"
): hyps
}
elif "fast_beam_search" in params.decoding_method:
key = f"beam_{params.beam}_"
key += f"max_contexts_{params.max_contexts}_"
@ -604,22 +464,6 @@ def decode_one_batch(
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
return {key: hyps}
elif "modified_beam_search" in params.decoding_method:
prefix = f"beam_size_{params.beam_size}"
if params.decoding_method in (
"modified_beam_search_lm_rescore",
"modified_beam_search_lm_rescore_LODR",
):
ans = dict()
assert ans_dict is not None
for key, hyps in ans_dict.items():
hyps = [sp.decode(hyp).split() for hyp in hyps]
ans[f"{prefix}_{key}"] = hyps
return ans
else:
if params.has_contexts:
prefix += f"-context-score-{params.context_score}"
return {prefix: hyps}
else:
return {f"beam_size_{params.beam_size}": hyps}
@ -629,12 +473,8 @@ def decode_dataset(
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
context_graph: Optional[ContextGraph] = None,
LM: Optional[LmScorer] = None,
ngram_lm=None,
ngram_lm_scale: float = 0.0,
word_table: Optional[k2.SymbolTable] = None,
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
"""Decode dataset.
@ -682,12 +522,8 @@ def decode_dataset(
model=model,
sp=sp,
decoding_graph=decoding_graph,
context_graph=context_graph,
word_table=word_table,
batch=batch,
LM=LM,
ngram_lm=ngram_lm,
ngram_lm_scale=ngram_lm_scale,
)
for name, hyps in hyps_dict.items():
@ -755,7 +591,7 @@ def save_results(
@torch.no_grad()
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
AmiAsrDataModule.add_arguments(parser)
LmScorer.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
@ -767,37 +603,16 @@ def main():
"greedy_search",
"beam_search",
"fast_beam_search",
"fast_beam_search_nbest",
"fast_beam_search_nbest_LG",
"fast_beam_search_nbest_oracle",
"modified_beam_search",
"modified_beam_search_LODR",
"modified_beam_search_lm_shallow_fusion",
"modified_beam_search_lm_rescore",
"modified_beam_search_lm_rescore_LODR",
)
params.res_dir = params.exp_dir / params.decoding_method
if os.path.exists(params.context_file):
params.has_contexts = True
else:
params.has_contexts = False
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
if params.causal:
assert (
"," not in params.chunk_size
), "chunk_size should be one value in decoding."
assert (
"," not in params.left_context_frames
), "left_context_frames should be one value in decoding."
params.suffix += f"-chunk-{params.chunk_size}"
params.suffix += f"-left-context-{params.left_context_frames}"
if "fast_beam_search" in params.decoding_method:
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
@ -809,27 +624,10 @@ def main():
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
elif "beam_search" in params.decoding_method:
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
if params.decoding_method in (
"modified_beam_search",
"modified_beam_search_LODR",
):
if params.has_contexts:
params.suffix += f"-context-score-{params.context_score}"
else:
params.suffix += f"-context-{params.context_size}"
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
if params.use_shallow_fusion:
params.suffix += f"-{params.lm_type}-lm-scale-{params.lm_scale}"
if "LODR" in params.decoding_method:
params.suffix += (
f"-LODR-{params.tokens_ngram}gram-scale-{params.ngram_lm_scale}"
)
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
@ -932,54 +730,6 @@ def main():
model.to(device)
model.eval()
# only load the neural network LM if required
if params.use_shallow_fusion or params.decoding_method in (
"modified_beam_search_lm_rescore",
"modified_beam_search_lm_rescore_LODR",
"modified_beam_search_lm_shallow_fusion",
"modified_beam_search_LODR",
):
LM = LmScorer(
lm_type=params.lm_type,
params=params,
device=device,
lm_scale=params.lm_scale,
)
LM.to(device)
LM.eval()
else:
LM = None
# only load N-gram LM when needed
if params.decoding_method == "modified_beam_search_lm_rescore_LODR":
try:
import kenlm
except ImportError:
print("Please install kenlm first. You can use")
print(" pip install https://github.com/kpu/kenlm/archive/master.zip")
print("to install it")
import sys
sys.exit(-1)
ngram_file_name = str(params.lang_dir / f"{params.tokens_ngram}gram.arpa")
logging.info(f"lm filename: {ngram_file_name}")
ngram_lm = kenlm.Model(ngram_file_name)
ngram_lm_scale = None # use a list to search
elif params.decoding_method == "modified_beam_search_LODR":
lm_filename = f"{params.tokens_ngram}gram.fst.txt"
logging.info(f"Loading token level lm: {lm_filename}")
ngram_lm = NgramLm(
str(params.lang_dir / lm_filename),
backoff_id=params.backoff_id,
is_binary=False,
)
logging.info(f"num states: {ngram_lm.lm.num_states}")
ngram_lm_scale = params.ngram_lm_scale
else:
ngram_lm = None
ngram_lm_scale = None
if "fast_beam_search" in params.decoding_method:
if params.decoding_method == "fast_beam_search_nbest_LG":
lexicon = Lexicon(params.lang_dir)
@ -997,46 +747,51 @@ def main():
decoding_graph = None
word_table = None
if "modified_beam_search" in params.decoding_method:
if os.path.exists(params.context_file):
contexts = []
for line in open(params.context_file).readlines():
contexts.append(line.strip())
context_graph = ContextGraph(params.context_score)
context_graph.build(sp.encode(contexts))
else:
context_graph = None
else:
context_graph = None
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
# we need cut ids to display recognition results.
args.return_cuts = True
librispeech = LibriSpeechAsrDataModule(args)
test_clean_cuts = librispeech.test_clean_cuts()
test_other_cuts = librispeech.test_other_cuts()
ami = AmiAsrDataModule(args)
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
dev_ihm_cuts = ami.dev_ihm_cuts()
test_ihm_cuts = ami.test_ihm_cuts()
dev_sdm_cuts = ami.dev_sdm_cuts()
test_sdm_cuts = ami.test_sdm_cuts()
dev_gss_cuts = ami.dev_gss_cuts()
test_gss_cuts = ami.test_gss_cuts()
test_sets = ["test-clean", "test-other"]
test_dl = [test_clean_dl, test_other_dl]
dev_ihm_dl = ami.test_dataloaders(dev_ihm_cuts)
test_ihm_dl = ami.test_dataloaders(test_ihm_cuts)
dev_sdm_dl = ami.test_dataloaders(dev_sdm_cuts)
test_sdm_dl = ami.test_dataloaders(test_sdm_cuts)
if dev_gss_cuts is not None:
dev_gss_dl = ami.test_dataloaders(dev_gss_cuts)
if test_gss_cuts is not None:
test_gss_dl = ami.test_dataloaders(test_gss_cuts)
for test_set, test_dl in zip(test_sets, test_dl):
test_sets = {
"dev_ihm": (dev_ihm_dl, dev_ihm_cuts),
"test_ihm": (test_ihm_dl, test_ihm_cuts),
"dev_sdm": (dev_sdm_dl, dev_sdm_cuts),
"test_sdm": (test_sdm_dl, test_sdm_cuts),
}
if dev_gss_cuts is not None:
test_sets["dev_gss"] = (dev_gss_dl, dev_gss_cuts)
if test_gss_cuts is not None:
test_sets["test_gss"] = (test_gss_dl, test_gss_cuts)
for test_set in test_sets:
logging.info(f"Decoding {test_set}")
dl, cuts = test_sets[test_set]
results_dict = decode_dataset(
dl=test_dl,
dl=dl,
params=params,
model=model,
sp=sp,
word_table=word_table,
decoding_graph=decoding_graph,
context_graph=context_graph,
LM=LM,
ngram_lm=ngram_lm,
ngram_lm_scale=ngram_lm_scale,
)
save_results(