Merge branch 'scaled_adam_exp503' into scaled_adam_exp505

This commit is contained in:
Daniel Povey 2022-11-26 19:29:58 +08:00
commit e19118a966

View File

@ -1442,6 +1442,7 @@ class NonlinAttentionModule(nn.Module):
min_abs=0.2, max_abs=10.0,
min_prob=0.05,
)
self.pre_sigmoid = Identity() # for diagnostics.
self.sigmoid = nn.Sigmoid()
self.activation = Identity() # for diagnostics.
@ -1484,6 +1485,7 @@ attn_weights: a Tensor of shape (num_heads, batch_size, seq_len, seq_len)
v = self.whiten1(v)
# GLU mechanism
s = self.pre_sigmoid(s)
x = self.sigmoid(s) * v
x = self.balancer(x)
@ -1546,6 +1548,9 @@ class ConvolutionModule(nn.Module):
max_abs=10.0, min_positive=0.05, max_positive=1.0
)
self.pre_sigmoid = Identity() # before sigmoid; for diagnostics.
self.sigmoid = nn.Sigmoid()
self.depthwise_conv = nn.Conv1d(
channels,
channels,
@ -1594,7 +1599,13 @@ class ConvolutionModule(nn.Module):
x = self.in_proj(x) # (time, batch, 2*channels)
x = self.deriv_balancer1(x)
x = nn.functional.glu(x, dim=-1) # (time, batch, channels)
x, s = x.chunk(2, dim=-1)
s = self.pre_sigmoid(s)
s = self.sigmoid(s)
x = x * s
# (time, batch, channels)
# exchange the temporal dimension and the feature dimension
x = x.permute(1, 2, 0) # (#batch, channels, time).