diff --git a/egs/tedlium2/ASR/conformer_ctc3/.train.py.swp b/egs/tedlium2/ASR/conformer_ctc3/.train.py.swp index ab8cb7b48..194e6637a 100644 Binary files a/egs/tedlium2/ASR/conformer_ctc3/.train.py.swp and b/egs/tedlium2/ASR/conformer_ctc3/.train.py.swp differ diff --git a/egs/tedlium2/ASR/conformer_ctc3/train.py b/egs/tedlium2/ASR/conformer_ctc3/train.py index b8e9c53d1..8630d5dc5 100755 --- a/egs/tedlium2/ASR/conformer_ctc3/train.py +++ b/egs/tedlium2/ASR/conformer_ctc3/train.py @@ -636,7 +636,61 @@ def compute_loss( ) ctc_loss = (1-params.interctc_weight) * ctc_loss + params.interctc_weight * inter_ctc_loss + + elif params.group_num > 0: + dense_fsa_vec = k2.DenseFsaVec( + nnet_output[0], + supervision_segments, + allow_truncate=params.subsampling_factor - 1, + ) + + dense_fsa_vec_inter = [ + #k2.DenseFsaVec( + # nnet_output[1][2], + # supervision_segments, + # allow_truncate=params.subsampling_factor - 1, + #), + #k2.DenseFsaVec( + # nnet_output[1][5], + # supervision_segments, + # allow_truncate=params.subsampling_factor - 1, + #), + k2.DenseFsaVec( + nnet_output[1][8], + supervision_segments, + allow_truncate=params.subsampling_factor - 1, + ), + #k2.DenseFsaVec( + # nnet_output[1][11], + # supervision_segments, + # allow_truncate=params.subsampling_factor - 1, + #), + #k2.DenseFsaVec( + # nnet_output[1][14], + # supervision_segments, + # allow_truncate=params.subsampling_factor - 1, + #) + ] + ctc_loss = k2.ctc_loss( + decoding_graph=decoding_graph, + dense_fsa_vec=dense_fsa_vec, + output_beam=params.beam_size, + reduction=params.reduction, + use_double_scores=params.use_double_scores, + ) + + inter_ctc_loss = 0 + for fsa in dense_fsa_vec_inter: + inter_ctc_loss += k2.ctc_loss( + decoding_graph=decoding_graph, + dense_fsa_vec=fsa, + output_beam=params.beam_size, + reduction=params.reduction, + use_double_scores=params.use_double_scores, + ) + + ctc_loss = (1-params.interctc_weight) * ctc_loss + params.interctc_weight * inter_ctc_loss else: dense_fsa_vec = k2.DenseFsaVec( nnet_output,