mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-13 12:02:21 +00:00
Add aishell recipe
This commit is contained in:
parent
184dbb3ea5
commit
de42c0ebb5
3
egs/aishell/ASR/README.md
Normal file
3
egs/aishell/ASR/README.md
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
|
||||||
|
Please refer to <https://icefall.readthedocs.io/en/latest/recipes/aishell.html>
|
||||||
|
for how to run models in this recipe.
|
3
egs/aishell/ASR/RESULTS.md
Normal file
3
egs/aishell/ASR/RESULTS.md
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
## Results
|
||||||
|
|
||||||
|
Adding soon...
|
3
egs/aishell/ASR/conformer_ctc/README.md
Normal file
3
egs/aishell/ASR/conformer_ctc/README.md
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
Please visit
|
||||||
|
<https://icefall.readthedocs.io/en/latest/recipes/aishell/conformer_ctc.html>
|
||||||
|
for how to run this recipe.
|
0
egs/aishell/ASR/conformer_ctc/__init__.py
Normal file
0
egs/aishell/ASR/conformer_ctc/__init__.py
Normal file
1
egs/aishell/ASR/conformer_ctc/asr_datamodule.py
Symbolic link
1
egs/aishell/ASR/conformer_ctc/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../tdnn_lstm_ctc/asr_datamodule.py
|
933
egs/aishell/ASR/conformer_ctc/conformer.py
Normal file
933
egs/aishell/ASR/conformer_ctc/conformer.py
Normal file
@ -0,0 +1,933 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import math
|
||||||
|
import warnings
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import Tensor, nn
|
||||||
|
from transformer import Supervisions, Transformer, encoder_padding_mask
|
||||||
|
|
||||||
|
|
||||||
|
class Conformer(Transformer):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
num_features (int): Number of input features
|
||||||
|
num_classes (int): Number of output classes
|
||||||
|
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
||||||
|
d_model (int): attention dimension
|
||||||
|
nhead (int): number of head
|
||||||
|
dim_feedforward (int): feedforward dimention
|
||||||
|
num_encoder_layers (int): number of encoder layers
|
||||||
|
num_decoder_layers (int): number of decoder layers
|
||||||
|
dropout (float): dropout rate
|
||||||
|
cnn_module_kernel (int): Kernel size of convolution module
|
||||||
|
normalize_before (bool): whether to use layer_norm before the first block.
|
||||||
|
vgg_frontend (bool): whether to use vgg frontend.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
num_features: int,
|
||||||
|
num_classes: int,
|
||||||
|
subsampling_factor: int = 4,
|
||||||
|
d_model: int = 256,
|
||||||
|
nhead: int = 4,
|
||||||
|
dim_feedforward: int = 2048,
|
||||||
|
num_encoder_layers: int = 12,
|
||||||
|
num_decoder_layers: int = 6,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
cnn_module_kernel: int = 31,
|
||||||
|
normalize_before: bool = True,
|
||||||
|
vgg_frontend: bool = False,
|
||||||
|
is_espnet_structure: bool = False,
|
||||||
|
mmi_loss: bool = True,
|
||||||
|
use_feat_batchnorm: bool = False,
|
||||||
|
) -> None:
|
||||||
|
super(Conformer, self).__init__(
|
||||||
|
num_features=num_features,
|
||||||
|
num_classes=num_classes,
|
||||||
|
subsampling_factor=subsampling_factor,
|
||||||
|
d_model=d_model,
|
||||||
|
nhead=nhead,
|
||||||
|
dim_feedforward=dim_feedforward,
|
||||||
|
num_encoder_layers=num_encoder_layers,
|
||||||
|
num_decoder_layers=num_decoder_layers,
|
||||||
|
dropout=dropout,
|
||||||
|
normalize_before=normalize_before,
|
||||||
|
vgg_frontend=vgg_frontend,
|
||||||
|
mmi_loss=mmi_loss,
|
||||||
|
use_feat_batchnorm=use_feat_batchnorm,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.encoder_pos = RelPositionalEncoding(d_model, dropout)
|
||||||
|
|
||||||
|
encoder_layer = ConformerEncoderLayer(
|
||||||
|
d_model,
|
||||||
|
nhead,
|
||||||
|
dim_feedforward,
|
||||||
|
dropout,
|
||||||
|
cnn_module_kernel,
|
||||||
|
normalize_before,
|
||||||
|
is_espnet_structure,
|
||||||
|
)
|
||||||
|
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
||||||
|
self.normalize_before = normalize_before
|
||||||
|
self.is_espnet_structure = is_espnet_structure
|
||||||
|
if self.normalize_before and self.is_espnet_structure:
|
||||||
|
self.after_norm = nn.LayerNorm(d_model)
|
||||||
|
else:
|
||||||
|
# Note: TorchScript detects that self.after_norm could be used inside forward()
|
||||||
|
# and throws an error without this change.
|
||||||
|
self.after_norm = identity
|
||||||
|
|
||||||
|
def run_encoder(
|
||||||
|
self, x: Tensor, supervisions: Optional[Supervisions] = None
|
||||||
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
The model input. Its shape is [N, T, C].
|
||||||
|
supervisions:
|
||||||
|
Supervision in lhotse format.
|
||||||
|
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||||
|
CAUTION: It contains length information, i.e., start and number of
|
||||||
|
frames, before subsampling
|
||||||
|
It is read directly from the batch, without any sorting. It is used
|
||||||
|
to compute encoder padding mask, which is used as memory key padding
|
||||||
|
mask for the decoder.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor: Predictor tensor of dimension (input_length, batch_size, d_model).
|
||||||
|
Tensor: Mask tensor of dimension (batch_size, input_length)
|
||||||
|
"""
|
||||||
|
x = self.encoder_embed(x)
|
||||||
|
x, pos_emb = self.encoder_pos(x)
|
||||||
|
x = x.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
|
||||||
|
mask = encoder_padding_mask(x.size(0), supervisions)
|
||||||
|
if mask is not None:
|
||||||
|
mask = mask.to(x.device)
|
||||||
|
x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, B, F)
|
||||||
|
|
||||||
|
if self.normalize_before and self.is_espnet_structure:
|
||||||
|
x = self.after_norm(x)
|
||||||
|
|
||||||
|
return x, mask
|
||||||
|
|
||||||
|
|
||||||
|
class ConformerEncoderLayer(nn.Module):
|
||||||
|
"""
|
||||||
|
ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks.
|
||||||
|
See: "Conformer: Convolution-augmented Transformer for Speech Recognition"
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_model: the number of expected features in the input (required).
|
||||||
|
nhead: the number of heads in the multiheadattention models (required).
|
||||||
|
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
||||||
|
dropout: the dropout value (default=0.1).
|
||||||
|
cnn_module_kernel (int): Kernel size of convolution module.
|
||||||
|
normalize_before: whether to use layer_norm before the first block.
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
||||||
|
>>> src = torch.rand(10, 32, 512)
|
||||||
|
>>> pos_emb = torch.rand(32, 19, 512)
|
||||||
|
>>> out = encoder_layer(src, pos_emb)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
d_model: int,
|
||||||
|
nhead: int,
|
||||||
|
dim_feedforward: int = 2048,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
cnn_module_kernel: int = 31,
|
||||||
|
normalize_before: bool = True,
|
||||||
|
is_espnet_structure: bool = False,
|
||||||
|
) -> None:
|
||||||
|
super(ConformerEncoderLayer, self).__init__()
|
||||||
|
self.self_attn = RelPositionMultiheadAttention(
|
||||||
|
d_model, nhead, dropout=0.0, is_espnet_structure=is_espnet_structure
|
||||||
|
)
|
||||||
|
|
||||||
|
self.feed_forward = nn.Sequential(
|
||||||
|
nn.Linear(d_model, dim_feedforward),
|
||||||
|
Swish(),
|
||||||
|
nn.Dropout(dropout),
|
||||||
|
nn.Linear(dim_feedforward, d_model),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.feed_forward_macaron = nn.Sequential(
|
||||||
|
nn.Linear(d_model, dim_feedforward),
|
||||||
|
Swish(),
|
||||||
|
nn.Dropout(dropout),
|
||||||
|
nn.Linear(dim_feedforward, d_model),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.conv_module = ConvolutionModule(d_model, cnn_module_kernel)
|
||||||
|
|
||||||
|
self.norm_ff_macaron = nn.LayerNorm(
|
||||||
|
d_model
|
||||||
|
) # for the macaron style FNN module
|
||||||
|
self.norm_ff = nn.LayerNorm(d_model) # for the FNN module
|
||||||
|
self.norm_mha = nn.LayerNorm(d_model) # for the MHA module
|
||||||
|
|
||||||
|
self.ff_scale = 0.5
|
||||||
|
|
||||||
|
self.norm_conv = nn.LayerNorm(d_model) # for the CNN module
|
||||||
|
self.norm_final = nn.LayerNorm(
|
||||||
|
d_model
|
||||||
|
) # for the final output of the block
|
||||||
|
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
|
||||||
|
self.normalize_before = normalize_before
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
src: Tensor,
|
||||||
|
pos_emb: Tensor,
|
||||||
|
src_mask: Optional[Tensor] = None,
|
||||||
|
src_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
) -> Tensor:
|
||||||
|
"""
|
||||||
|
Pass the input through the encoder layer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
src: the sequence to the encoder layer (required).
|
||||||
|
pos_emb: Positional embedding tensor (required).
|
||||||
|
src_mask: the mask for the src sequence (optional).
|
||||||
|
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
src: (S, N, E).
|
||||||
|
pos_emb: (N, 2*S-1, E)
|
||||||
|
src_mask: (S, S).
|
||||||
|
src_key_padding_mask: (N, S).
|
||||||
|
S is the source sequence length, N is the batch size, E is the feature number
|
||||||
|
"""
|
||||||
|
|
||||||
|
# macaron style feed forward module
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_ff_macaron(src)
|
||||||
|
src = residual + self.ff_scale * self.dropout(
|
||||||
|
self.feed_forward_macaron(src)
|
||||||
|
)
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm_ff_macaron(src)
|
||||||
|
|
||||||
|
# multi-headed self-attention module
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_mha(src)
|
||||||
|
src_att = self.self_attn(
|
||||||
|
src,
|
||||||
|
src,
|
||||||
|
src,
|
||||||
|
pos_emb=pos_emb,
|
||||||
|
attn_mask=src_mask,
|
||||||
|
key_padding_mask=src_key_padding_mask,
|
||||||
|
)[0]
|
||||||
|
src = residual + self.dropout(src_att)
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm_mha(src)
|
||||||
|
|
||||||
|
# convolution module
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_conv(src)
|
||||||
|
src = residual + self.dropout(self.conv_module(src))
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm_conv(src)
|
||||||
|
|
||||||
|
# feed forward module
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_ff(src)
|
||||||
|
src = residual + self.ff_scale * self.dropout(self.feed_forward(src))
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm_ff(src)
|
||||||
|
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_final(src)
|
||||||
|
|
||||||
|
return src
|
||||||
|
|
||||||
|
|
||||||
|
class ConformerEncoder(nn.TransformerEncoder):
|
||||||
|
r"""ConformerEncoder is a stack of N encoder layers
|
||||||
|
|
||||||
|
Args:
|
||||||
|
encoder_layer: an instance of the ConformerEncoderLayer() class (required).
|
||||||
|
num_layers: the number of sub-encoder-layers in the encoder (required).
|
||||||
|
norm: the layer normalization component (optional).
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
||||||
|
>>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6)
|
||||||
|
>>> src = torch.rand(10, 32, 512)
|
||||||
|
>>> pos_emb = torch.rand(32, 19, 512)
|
||||||
|
>>> out = conformer_encoder(src, pos_emb)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, encoder_layer: nn.Module, num_layers: int, norm: nn.Module = None
|
||||||
|
) -> None:
|
||||||
|
super(ConformerEncoder, self).__init__(
|
||||||
|
encoder_layer=encoder_layer, num_layers=num_layers, norm=norm
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
src: Tensor,
|
||||||
|
pos_emb: Tensor,
|
||||||
|
mask: Optional[Tensor] = None,
|
||||||
|
src_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
) -> Tensor:
|
||||||
|
r"""Pass the input through the encoder layers in turn.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
src: the sequence to the encoder (required).
|
||||||
|
pos_emb: Positional embedding tensor (required).
|
||||||
|
mask: the mask for the src sequence (optional).
|
||||||
|
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
src: (S, N, E).
|
||||||
|
pos_emb: (N, 2*S-1, E)
|
||||||
|
mask: (S, S).
|
||||||
|
src_key_padding_mask: (N, S).
|
||||||
|
S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
|
||||||
|
|
||||||
|
"""
|
||||||
|
output = src
|
||||||
|
|
||||||
|
for mod in self.layers:
|
||||||
|
output = mod(
|
||||||
|
output,
|
||||||
|
pos_emb,
|
||||||
|
src_mask=mask,
|
||||||
|
src_key_padding_mask=src_key_padding_mask,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.norm is not None:
|
||||||
|
output = self.norm(output)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class RelPositionalEncoding(torch.nn.Module):
|
||||||
|
"""Relative positional encoding module.
|
||||||
|
|
||||||
|
See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||||
|
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_model: Embedding dimension.
|
||||||
|
dropout_rate: Dropout rate.
|
||||||
|
max_len: Maximum input length.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, d_model: int, dropout_rate: float, max_len: int = 5000
|
||||||
|
) -> None:
|
||||||
|
"""Construct an PositionalEncoding object."""
|
||||||
|
super(RelPositionalEncoding, self).__init__()
|
||||||
|
self.d_model = d_model
|
||||||
|
self.xscale = math.sqrt(self.d_model)
|
||||||
|
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||||||
|
self.pe = None
|
||||||
|
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||||||
|
|
||||||
|
def extend_pe(self, x: Tensor) -> None:
|
||||||
|
"""Reset the positional encodings."""
|
||||||
|
if self.pe is not None:
|
||||||
|
# self.pe contains both positive and negative parts
|
||||||
|
# the length of self.pe is 2 * input_len - 1
|
||||||
|
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
||||||
|
# Note: TorchScript doesn't implement operator== for torch.Device
|
||||||
|
if self.pe.dtype != x.dtype or str(self.pe.device) != str(
|
||||||
|
x.device
|
||||||
|
):
|
||||||
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||||
|
return
|
||||||
|
# Suppose `i` means to the position of query vecotr and `j` means the
|
||||||
|
# position of key vector. We use position relative positions when keys
|
||||||
|
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
||||||
|
pe_positive = torch.zeros(x.size(1), self.d_model)
|
||||||
|
pe_negative = torch.zeros(x.size(1), self.d_model)
|
||||||
|
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||||
|
div_term = torch.exp(
|
||||||
|
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||||
|
* -(math.log(10000.0) / self.d_model)
|
||||||
|
)
|
||||||
|
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
||||||
|
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
||||||
|
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
||||||
|
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
||||||
|
|
||||||
|
# Reserve the order of positive indices and concat both positive and
|
||||||
|
# negative indices. This is used to support the shifting trick
|
||||||
|
# as in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||||
|
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
||||||
|
pe_negative = pe_negative[1:].unsqueeze(0)
|
||||||
|
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
||||||
|
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> Tuple[Tensor, Tensor]:
|
||||||
|
"""Add positional encoding.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||||||
|
torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
|
||||||
|
|
||||||
|
"""
|
||||||
|
self.extend_pe(x)
|
||||||
|
x = x * self.xscale
|
||||||
|
pos_emb = self.pe[
|
||||||
|
:,
|
||||||
|
self.pe.size(1) // 2
|
||||||
|
- x.size(1)
|
||||||
|
+ 1 : self.pe.size(1) // 2 # noqa E203
|
||||||
|
+ x.size(1),
|
||||||
|
]
|
||||||
|
return self.dropout(x), self.dropout(pos_emb)
|
||||||
|
|
||||||
|
|
||||||
|
class RelPositionMultiheadAttention(nn.Module):
|
||||||
|
r"""Multi-Head Attention layer with relative position encoding
|
||||||
|
|
||||||
|
See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||||
|
|
||||||
|
Args:
|
||||||
|
embed_dim: total dimension of the model.
|
||||||
|
num_heads: parallel attention heads.
|
||||||
|
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
|
||||||
|
>>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
|
||||||
|
>>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
embed_dim: int,
|
||||||
|
num_heads: int,
|
||||||
|
dropout: float = 0.0,
|
||||||
|
is_espnet_structure: bool = False,
|
||||||
|
) -> None:
|
||||||
|
super(RelPositionMultiheadAttention, self).__init__()
|
||||||
|
self.embed_dim = embed_dim
|
||||||
|
self.num_heads = num_heads
|
||||||
|
self.dropout = dropout
|
||||||
|
self.head_dim = embed_dim // num_heads
|
||||||
|
assert (
|
||||||
|
self.head_dim * num_heads == self.embed_dim
|
||||||
|
), "embed_dim must be divisible by num_heads"
|
||||||
|
|
||||||
|
self.in_proj = nn.Linear(embed_dim, 3 * embed_dim, bias=True)
|
||||||
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
||||||
|
|
||||||
|
# linear transformation for positional encoding.
|
||||||
|
self.linear_pos = nn.Linear(embed_dim, embed_dim, bias=False)
|
||||||
|
# these two learnable bias are used in matrix c and matrix d
|
||||||
|
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||||
|
self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||||
|
self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||||
|
|
||||||
|
self._reset_parameters()
|
||||||
|
|
||||||
|
self.is_espnet_structure = is_espnet_structure
|
||||||
|
|
||||||
|
def _reset_parameters(self) -> None:
|
||||||
|
nn.init.xavier_uniform_(self.in_proj.weight)
|
||||||
|
nn.init.constant_(self.in_proj.bias, 0.0)
|
||||||
|
nn.init.constant_(self.out_proj.bias, 0.0)
|
||||||
|
|
||||||
|
nn.init.xavier_uniform_(self.pos_bias_u)
|
||||||
|
nn.init.xavier_uniform_(self.pos_bias_v)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
query: Tensor,
|
||||||
|
key: Tensor,
|
||||||
|
value: Tensor,
|
||||||
|
pos_emb: Tensor,
|
||||||
|
key_padding_mask: Optional[Tensor] = None,
|
||||||
|
need_weights: bool = True,
|
||||||
|
attn_mask: Optional[Tensor] = None,
|
||||||
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||||
|
r"""
|
||||||
|
Args:
|
||||||
|
query, key, value: map a query and a set of key-value pairs to an output.
|
||||||
|
pos_emb: Positional embedding tensor
|
||||||
|
key_padding_mask: if provided, specified padding elements in the key will
|
||||||
|
be ignored by the attention. When given a binary mask and a value is True,
|
||||||
|
the corresponding value on the attention layer will be ignored. When given
|
||||||
|
a byte mask and a value is non-zero, the corresponding value on the attention
|
||||||
|
layer will be ignored
|
||||||
|
need_weights: output attn_output_weights.
|
||||||
|
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||||
|
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
- Inputs:
|
||||||
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||||
|
If a ByteTensor is provided, the non-zero positions will be ignored while the position
|
||||||
|
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
|
||||||
|
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||||
|
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||||
|
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||||
|
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
||||||
|
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||||
|
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||||
|
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||||
|
is provided, it will be added to the attention weight.
|
||||||
|
|
||||||
|
- Outputs:
|
||||||
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||||
|
E is the embedding dimension.
|
||||||
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||||
|
L is the target sequence length, S is the source sequence length.
|
||||||
|
"""
|
||||||
|
return self.multi_head_attention_forward(
|
||||||
|
query,
|
||||||
|
key,
|
||||||
|
value,
|
||||||
|
pos_emb,
|
||||||
|
self.embed_dim,
|
||||||
|
self.num_heads,
|
||||||
|
self.in_proj.weight,
|
||||||
|
self.in_proj.bias,
|
||||||
|
self.dropout,
|
||||||
|
self.out_proj.weight,
|
||||||
|
self.out_proj.bias,
|
||||||
|
training=self.training,
|
||||||
|
key_padding_mask=key_padding_mask,
|
||||||
|
need_weights=need_weights,
|
||||||
|
attn_mask=attn_mask,
|
||||||
|
)
|
||||||
|
|
||||||
|
def rel_shift(self, x: Tensor) -> Tensor:
|
||||||
|
"""Compute relative positional encoding.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x: Input tensor (batch, head, time1, 2*time1-1).
|
||||||
|
time1 means the length of query vector.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor: tensor of shape (batch, head, time1, time2)
|
||||||
|
(note: time2 has the same value as time1, but it is for
|
||||||
|
the key, while time1 is for the query).
|
||||||
|
"""
|
||||||
|
(batch_size, num_heads, time1, n) = x.shape
|
||||||
|
assert n == 2 * time1 - 1
|
||||||
|
# Note: TorchScript requires explicit arg for stride()
|
||||||
|
batch_stride = x.stride(0)
|
||||||
|
head_stride = x.stride(1)
|
||||||
|
time1_stride = x.stride(2)
|
||||||
|
n_stride = x.stride(3)
|
||||||
|
return x.as_strided(
|
||||||
|
(batch_size, num_heads, time1, time1),
|
||||||
|
(batch_stride, head_stride, time1_stride - n_stride, n_stride),
|
||||||
|
storage_offset=n_stride * (time1 - 1),
|
||||||
|
)
|
||||||
|
|
||||||
|
def multi_head_attention_forward(
|
||||||
|
self,
|
||||||
|
query: Tensor,
|
||||||
|
key: Tensor,
|
||||||
|
value: Tensor,
|
||||||
|
pos_emb: Tensor,
|
||||||
|
embed_dim_to_check: int,
|
||||||
|
num_heads: int,
|
||||||
|
in_proj_weight: Tensor,
|
||||||
|
in_proj_bias: Tensor,
|
||||||
|
dropout_p: float,
|
||||||
|
out_proj_weight: Tensor,
|
||||||
|
out_proj_bias: Tensor,
|
||||||
|
training: bool = True,
|
||||||
|
key_padding_mask: Optional[Tensor] = None,
|
||||||
|
need_weights: bool = True,
|
||||||
|
attn_mask: Optional[Tensor] = None,
|
||||||
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||||
|
r"""
|
||||||
|
Args:
|
||||||
|
query, key, value: map a query and a set of key-value pairs to an output.
|
||||||
|
pos_emb: Positional embedding tensor
|
||||||
|
embed_dim_to_check: total dimension of the model.
|
||||||
|
num_heads: parallel attention heads.
|
||||||
|
in_proj_weight, in_proj_bias: input projection weight and bias.
|
||||||
|
dropout_p: probability of an element to be zeroed.
|
||||||
|
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
||||||
|
training: apply dropout if is ``True``.
|
||||||
|
key_padding_mask: if provided, specified padding elements in the key will
|
||||||
|
be ignored by the attention. This is an binary mask. When the value is True,
|
||||||
|
the corresponding value on the attention layer will be filled with -inf.
|
||||||
|
need_weights: output attn_output_weights.
|
||||||
|
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||||
|
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
Inputs:
|
||||||
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
|
||||||
|
length, N is the batch size, E is the embedding dimension.
|
||||||
|
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||||
|
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
|
||||||
|
will be unchanged. If a BoolTensor is provided, the positions with the
|
||||||
|
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||||
|
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||||
|
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||||
|
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
||||||
|
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||||
|
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||||
|
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||||
|
is provided, it will be added to the attention weight.
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||||
|
E is the embedding dimension.
|
||||||
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||||
|
L is the target sequence length, S is the source sequence length.
|
||||||
|
"""
|
||||||
|
|
||||||
|
tgt_len, bsz, embed_dim = query.size()
|
||||||
|
assert embed_dim == embed_dim_to_check
|
||||||
|
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
|
||||||
|
|
||||||
|
head_dim = embed_dim // num_heads
|
||||||
|
assert (
|
||||||
|
head_dim * num_heads == embed_dim
|
||||||
|
), "embed_dim must be divisible by num_heads"
|
||||||
|
scaling = float(head_dim) ** -0.5
|
||||||
|
|
||||||
|
if torch.equal(query, key) and torch.equal(key, value):
|
||||||
|
# self-attention
|
||||||
|
q, k, v = nn.functional.linear(
|
||||||
|
query, in_proj_weight, in_proj_bias
|
||||||
|
).chunk(3, dim=-1)
|
||||||
|
|
||||||
|
elif torch.equal(key, value):
|
||||||
|
# encoder-decoder attention
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = 0
|
||||||
|
_end = embed_dim
|
||||||
|
_w = in_proj_weight[_start:_end, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:_end]
|
||||||
|
q = nn.functional.linear(query, _w, _b)
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = embed_dim
|
||||||
|
_end = None
|
||||||
|
_w = in_proj_weight[_start:, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:]
|
||||||
|
k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
|
||||||
|
|
||||||
|
else:
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = 0
|
||||||
|
_end = embed_dim
|
||||||
|
_w = in_proj_weight[_start:_end, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:_end]
|
||||||
|
q = nn.functional.linear(query, _w, _b)
|
||||||
|
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = embed_dim
|
||||||
|
_end = embed_dim * 2
|
||||||
|
_w = in_proj_weight[_start:_end, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:_end]
|
||||||
|
k = nn.functional.linear(key, _w, _b)
|
||||||
|
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = embed_dim * 2
|
||||||
|
_end = None
|
||||||
|
_w = in_proj_weight[_start:, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:]
|
||||||
|
v = nn.functional.linear(value, _w, _b)
|
||||||
|
|
||||||
|
if not self.is_espnet_structure:
|
||||||
|
q = q * scaling
|
||||||
|
|
||||||
|
if attn_mask is not None:
|
||||||
|
assert (
|
||||||
|
attn_mask.dtype == torch.float32
|
||||||
|
or attn_mask.dtype == torch.float64
|
||||||
|
or attn_mask.dtype == torch.float16
|
||||||
|
or attn_mask.dtype == torch.uint8
|
||||||
|
or attn_mask.dtype == torch.bool
|
||||||
|
), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
|
||||||
|
attn_mask.dtype
|
||||||
|
)
|
||||||
|
if attn_mask.dtype == torch.uint8:
|
||||||
|
warnings.warn(
|
||||||
|
"Byte tensor for attn_mask is deprecated. Use bool tensor instead."
|
||||||
|
)
|
||||||
|
attn_mask = attn_mask.to(torch.bool)
|
||||||
|
|
||||||
|
if attn_mask.dim() == 2:
|
||||||
|
attn_mask = attn_mask.unsqueeze(0)
|
||||||
|
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
||||||
|
raise RuntimeError(
|
||||||
|
"The size of the 2D attn_mask is not correct."
|
||||||
|
)
|
||||||
|
elif attn_mask.dim() == 3:
|
||||||
|
if list(attn_mask.size()) != [
|
||||||
|
bsz * num_heads,
|
||||||
|
query.size(0),
|
||||||
|
key.size(0),
|
||||||
|
]:
|
||||||
|
raise RuntimeError(
|
||||||
|
"The size of the 3D attn_mask is not correct."
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise RuntimeError(
|
||||||
|
"attn_mask's dimension {} is not supported".format(
|
||||||
|
attn_mask.dim()
|
||||||
|
)
|
||||||
|
)
|
||||||
|
# attn_mask's dim is 3 now.
|
||||||
|
|
||||||
|
# convert ByteTensor key_padding_mask to bool
|
||||||
|
if (
|
||||||
|
key_padding_mask is not None
|
||||||
|
and key_padding_mask.dtype == torch.uint8
|
||||||
|
):
|
||||||
|
warnings.warn(
|
||||||
|
"Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
|
||||||
|
)
|
||||||
|
key_padding_mask = key_padding_mask.to(torch.bool)
|
||||||
|
|
||||||
|
q = q.contiguous().view(tgt_len, bsz, num_heads, head_dim)
|
||||||
|
k = k.contiguous().view(-1, bsz, num_heads, head_dim)
|
||||||
|
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
||||||
|
|
||||||
|
src_len = k.size(0)
|
||||||
|
|
||||||
|
if key_padding_mask is not None:
|
||||||
|
assert key_padding_mask.size(0) == bsz, "{} == {}".format(
|
||||||
|
key_padding_mask.size(0), bsz
|
||||||
|
)
|
||||||
|
assert key_padding_mask.size(1) == src_len, "{} == {}".format(
|
||||||
|
key_padding_mask.size(1), src_len
|
||||||
|
)
|
||||||
|
|
||||||
|
q = q.transpose(0, 1) # (batch, time1, head, d_k)
|
||||||
|
|
||||||
|
pos_emb_bsz = pos_emb.size(0)
|
||||||
|
assert pos_emb_bsz in (1, bsz) # actually it is 1
|
||||||
|
p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
|
||||||
|
p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k)
|
||||||
|
|
||||||
|
q_with_bias_u = (q + self.pos_bias_u).transpose(
|
||||||
|
1, 2
|
||||||
|
) # (batch, head, time1, d_k)
|
||||||
|
|
||||||
|
q_with_bias_v = (q + self.pos_bias_v).transpose(
|
||||||
|
1, 2
|
||||||
|
) # (batch, head, time1, d_k)
|
||||||
|
|
||||||
|
# compute attention score
|
||||||
|
# first compute matrix a and matrix c
|
||||||
|
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||||
|
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
||||||
|
matrix_ac = torch.matmul(
|
||||||
|
q_with_bias_u, k
|
||||||
|
) # (batch, head, time1, time2)
|
||||||
|
|
||||||
|
# compute matrix b and matrix d
|
||||||
|
matrix_bd = torch.matmul(
|
||||||
|
q_with_bias_v, p.transpose(-2, -1)
|
||||||
|
) # (batch, head, time1, 2*time1-1)
|
||||||
|
matrix_bd = self.rel_shift(matrix_bd)
|
||||||
|
|
||||||
|
if not self.is_espnet_structure:
|
||||||
|
attn_output_weights = (
|
||||||
|
matrix_ac + matrix_bd
|
||||||
|
) # (batch, head, time1, time2)
|
||||||
|
else:
|
||||||
|
attn_output_weights = (
|
||||||
|
matrix_ac + matrix_bd
|
||||||
|
) * scaling # (batch, head, time1, time2)
|
||||||
|
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz * num_heads, tgt_len, -1
|
||||||
|
)
|
||||||
|
|
||||||
|
assert list(attn_output_weights.size()) == [
|
||||||
|
bsz * num_heads,
|
||||||
|
tgt_len,
|
||||||
|
src_len,
|
||||||
|
]
|
||||||
|
|
||||||
|
if attn_mask is not None:
|
||||||
|
if attn_mask.dtype == torch.bool:
|
||||||
|
attn_output_weights.masked_fill_(attn_mask, float("-inf"))
|
||||||
|
else:
|
||||||
|
attn_output_weights += attn_mask
|
||||||
|
|
||||||
|
if key_padding_mask is not None:
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz, num_heads, tgt_len, src_len
|
||||||
|
)
|
||||||
|
attn_output_weights = attn_output_weights.masked_fill(
|
||||||
|
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
||||||
|
float("-inf"),
|
||||||
|
)
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz * num_heads, tgt_len, src_len
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
|
||||||
|
attn_output_weights = nn.functional.dropout(
|
||||||
|
attn_output_weights, p=dropout_p, training=training
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output = torch.bmm(attn_output_weights, v)
|
||||||
|
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
||||||
|
attn_output = (
|
||||||
|
attn_output.transpose(0, 1)
|
||||||
|
.contiguous()
|
||||||
|
.view(tgt_len, bsz, embed_dim)
|
||||||
|
)
|
||||||
|
attn_output = nn.functional.linear(
|
||||||
|
attn_output, out_proj_weight, out_proj_bias
|
||||||
|
)
|
||||||
|
|
||||||
|
if need_weights:
|
||||||
|
# average attention weights over heads
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz, num_heads, tgt_len, src_len
|
||||||
|
)
|
||||||
|
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
||||||
|
else:
|
||||||
|
return attn_output, None
|
||||||
|
|
||||||
|
|
||||||
|
class ConvolutionModule(nn.Module):
|
||||||
|
"""ConvolutionModule in Conformer model.
|
||||||
|
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py
|
||||||
|
|
||||||
|
Args:
|
||||||
|
channels (int): The number of channels of conv layers.
|
||||||
|
kernel_size (int): Kernerl size of conv layers.
|
||||||
|
bias (bool): Whether to use bias in conv layers (default=True).
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, channels: int, kernel_size: int, bias: bool = True
|
||||||
|
) -> None:
|
||||||
|
"""Construct an ConvolutionModule object."""
|
||||||
|
super(ConvolutionModule, self).__init__()
|
||||||
|
# kernerl_size should be a odd number for 'SAME' padding
|
||||||
|
assert (kernel_size - 1) % 2 == 0
|
||||||
|
|
||||||
|
self.pointwise_conv1 = nn.Conv1d(
|
||||||
|
channels,
|
||||||
|
2 * channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0,
|
||||||
|
bias=bias,
|
||||||
|
)
|
||||||
|
self.depthwise_conv = nn.Conv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size,
|
||||||
|
stride=1,
|
||||||
|
padding=(kernel_size - 1) // 2,
|
||||||
|
groups=channels,
|
||||||
|
bias=bias,
|
||||||
|
)
|
||||||
|
self.norm = nn.BatchNorm1d(channels)
|
||||||
|
self.pointwise_conv2 = nn.Conv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0,
|
||||||
|
bias=bias,
|
||||||
|
)
|
||||||
|
self.activation = Swish()
|
||||||
|
|
||||||
|
def forward(self, x: Tensor) -> Tensor:
|
||||||
|
"""Compute convolution module.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x: Input tensor (#time, batch, channels).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor: Output tensor (#time, batch, channels).
|
||||||
|
|
||||||
|
"""
|
||||||
|
# exchange the temporal dimension and the feature dimension
|
||||||
|
x = x.permute(1, 2, 0) # (#batch, channels, time).
|
||||||
|
|
||||||
|
# GLU mechanism
|
||||||
|
x = self.pointwise_conv1(x) # (batch, 2*channels, time)
|
||||||
|
x = nn.functional.glu(x, dim=1) # (batch, channels, time)
|
||||||
|
|
||||||
|
# 1D Depthwise Conv
|
||||||
|
x = self.depthwise_conv(x)
|
||||||
|
x = self.activation(self.norm(x))
|
||||||
|
|
||||||
|
x = self.pointwise_conv2(x) # (batch, channel, time)
|
||||||
|
|
||||||
|
return x.permute(2, 0, 1)
|
||||||
|
|
||||||
|
|
||||||
|
class Swish(torch.nn.Module):
|
||||||
|
"""Construct an Swish object."""
|
||||||
|
|
||||||
|
def forward(self, x: Tensor) -> Tensor:
|
||||||
|
"""Return Swich activation function."""
|
||||||
|
return x * torch.sigmoid(x)
|
||||||
|
|
||||||
|
|
||||||
|
def identity(x):
|
||||||
|
return x
|
494
egs/aishell/ASR/conformer_ctc/decode.py
Executable file
494
egs/aishell/ASR/conformer_ctc/decode.py
Executable file
@ -0,0 +1,494 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo,
|
||||||
|
# Fangjun Kuang,
|
||||||
|
# Wei Kang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import AishellAsrDataModule
|
||||||
|
from conformer import Conformer
|
||||||
|
|
||||||
|
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
|
||||||
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
|
from icefall.decode import (
|
||||||
|
get_lattice,
|
||||||
|
nbest_decoding,
|
||||||
|
nbest_oracle,
|
||||||
|
one_best_decoding,
|
||||||
|
rescore_with_attention_decoder,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
get_texts,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=34,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=20,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="attention-decoder",
|
||||||
|
help="""Decoding method.
|
||||||
|
Supported values are:
|
||||||
|
- (1) 1best. Extract the best path from the decoding lattice as the
|
||||||
|
decoding result.
|
||||||
|
- (2) nbest. Extract n paths from the decoding lattice; the path
|
||||||
|
with the highest score is the decoding result.
|
||||||
|
- (3) attention-decoder. Extract n paths from the lattice,
|
||||||
|
the path with the highest score is the decoding result.
|
||||||
|
- (4) nbest-oracle. Its WER is the lower bound of any n-best
|
||||||
|
rescoring method can achieve. Useful for debugging n-best
|
||||||
|
rescoring method.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=100,
|
||||||
|
help="""Number of paths for n-best based decoding method.
|
||||||
|
Used only when "method" is one of the following values:
|
||||||
|
nbest, attention-decoder, and nbest-oracle
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lattice-score-scale",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="""The scale to be applied to `lattice.scores`.
|
||||||
|
It's needed if you use any kinds of n-best based rescoring.
|
||||||
|
Used only when "method" is one of the following values:
|
||||||
|
nbest, attention-decoder, and nbest-oracle
|
||||||
|
A smaller value results in more unique paths.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"exp_dir": Path("conformer_ctc/exp_char"),
|
||||||
|
"lang_dir": Path("data/lang_char"),
|
||||||
|
"lm_dir": Path("data/lm"),
|
||||||
|
"feature_dim": 80,
|
||||||
|
"nhead": 4,
|
||||||
|
"attention_dim": 512,
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"num_encoder_layers": 12,
|
||||||
|
"num_decoder_layers": 6,
|
||||||
|
"vgg_frontend": False,
|
||||||
|
"is_espnet_structure": True,
|
||||||
|
"mmi_loss": False,
|
||||||
|
"use_feat_batchnorm": True,
|
||||||
|
"search_beam": 20,
|
||||||
|
"output_beam": 7,
|
||||||
|
"min_active_states": 30,
|
||||||
|
"max_active_states": 10000,
|
||||||
|
"use_double_scores": True,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
HLG: k2.Fsa,
|
||||||
|
batch: dict,
|
||||||
|
word_table: k2.SymbolTable,
|
||||||
|
sos_id: int,
|
||||||
|
eos_id: int,
|
||||||
|
) -> Dict[str, List[List[int]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if decoding method is 1best, the key is the string `no_rescore`.
|
||||||
|
If attention rescoring is used, the key is the string
|
||||||
|
`ngram_lm_scale_xxx_attention_scale_xxx`, where `xxx` is the
|
||||||
|
value of `lm_scale` and `attention_scale`. An example key is
|
||||||
|
`ngram_lm_scale_0.7_attention_scale_0.5`
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
|
||||||
|
- params.method is "1best", it uses 1best decoding without LM rescoring.
|
||||||
|
- params.method is "nbest", it uses nbest decoding without LM rescoring.
|
||||||
|
- params.method is "attention-decoder", it uses attention rescoring.
|
||||||
|
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
HLG:
|
||||||
|
The decoding graph.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
word_table:
|
||||||
|
The word symbol table.
|
||||||
|
sos_id:
|
||||||
|
The token ID of the SOS.
|
||||||
|
eos_id:
|
||||||
|
The token ID of the EOS.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = HLG.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is [N, T, C]
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
|
||||||
|
nnet_output, memory, memory_key_padding_mask = model(feature, supervisions)
|
||||||
|
# nnet_output is [N, T, C]
|
||||||
|
|
||||||
|
supervision_segments = torch.stack(
|
||||||
|
(
|
||||||
|
supervisions["sequence_idx"],
|
||||||
|
supervisions["start_frame"] // params.subsampling_factor,
|
||||||
|
supervisions["num_frames"] // params.subsampling_factor,
|
||||||
|
),
|
||||||
|
1,
|
||||||
|
).to(torch.int32)
|
||||||
|
|
||||||
|
lattice = get_lattice(
|
||||||
|
nnet_output=nnet_output,
|
||||||
|
HLG=HLG,
|
||||||
|
supervision_segments=supervision_segments,
|
||||||
|
search_beam=params.search_beam,
|
||||||
|
output_beam=params.output_beam,
|
||||||
|
min_active_states=params.min_active_states,
|
||||||
|
max_active_states=params.max_active_states,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.method == "nbest-oracle":
|
||||||
|
# Note: You can also pass rescored lattices to it.
|
||||||
|
# We choose the HLG decoded lattice for speed reasons
|
||||||
|
# as HLG decoding is faster and the oracle WER
|
||||||
|
# is slightly worse than that of rescored lattices.
|
||||||
|
return nbest_oracle(
|
||||||
|
lattice=lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
ref_texts=supervisions["text"],
|
||||||
|
word_table=word_table,
|
||||||
|
scale=params.lattice_score_scale,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.method in ["1best", "nbest"]:
|
||||||
|
if params.method == "1best":
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
key = "no_rescore"
|
||||||
|
else:
|
||||||
|
best_path = nbest_decoding(
|
||||||
|
lattice=lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
use_double_scores=params.use_double_scores,
|
||||||
|
scale=params.lattice_score_scale,
|
||||||
|
)
|
||||||
|
key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}" # noqa
|
||||||
|
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
|
return {key: hyps}
|
||||||
|
|
||||||
|
assert params.method == "attention-decoder"
|
||||||
|
|
||||||
|
best_path_dict = rescore_with_attention_decoder(
|
||||||
|
lattice=lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
model=model,
|
||||||
|
memory=memory,
|
||||||
|
memory_key_padding_mask=memory_key_padding_mask,
|
||||||
|
sos_id=sos_id,
|
||||||
|
eos_id=eos_id,
|
||||||
|
scale=params.lattice_score_scale,
|
||||||
|
)
|
||||||
|
ans = dict()
|
||||||
|
for lm_scale_str, best_path in best_path_dict.items():
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
|
ans[lm_scale_str] = hyps
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
HLG: k2.Fsa,
|
||||||
|
word_table: k2.SymbolTable,
|
||||||
|
sos_id: int,
|
||||||
|
eos_id: int,
|
||||||
|
) -> Dict[str, List[Tuple[List[int], List[int]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
HLG:
|
||||||
|
The decoding graph.
|
||||||
|
word_table:
|
||||||
|
It is the word symbol table.
|
||||||
|
sos_id:
|
||||||
|
The token ID for SOS.
|
||||||
|
eos_id:
|
||||||
|
The token ID for EOS.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "no-rescore" if the decoding method is
|
||||||
|
1best or it may be "ngram_lm_scale_0.7_attention_scale_0.5" if attention
|
||||||
|
rescoring is used. Its value is a list of tuples. Each tuple contains two
|
||||||
|
elements: The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
results = []
|
||||||
|
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
HLG=HLG,
|
||||||
|
batch=batch,
|
||||||
|
word_table=word_table,
|
||||||
|
sos_id=sos_id,
|
||||||
|
eos_id=eos_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
for lm_scale, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
for hyp_words, ref_text in zip(hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((ref_words, hyp_words))
|
||||||
|
|
||||||
|
results[lm_scale].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
if batch_idx % 100 == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||||
|
)
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||||
|
):
|
||||||
|
if params.method == "attention-decoder":
|
||||||
|
# Set it to False since there are too many logs.
|
||||||
|
enable_log = False
|
||||||
|
else:
|
||||||
|
enable_log = True
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
if enable_log:
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=enable_log
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
if enable_log:
|
||||||
|
logging.info(
|
||||||
|
"Wrote detailed error stats to {}".format(errs_filename)
|
||||||
|
)
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt"
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AishellAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
max_token_id = max(lexicon.tokens)
|
||||||
|
num_classes = max_token_id + 1 # +1 for the blank
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
graph_compiler = CharCtcTrainingGraphCompiler(
|
||||||
|
lexicon=lexicon,
|
||||||
|
device=device,
|
||||||
|
sos_token="<sos/eos>",
|
||||||
|
eos_token="<sos/eos>",
|
||||||
|
)
|
||||||
|
sos_id = graph_compiler.sos_id
|
||||||
|
eos_id = graph_compiler.eos_id
|
||||||
|
|
||||||
|
HLG = k2.Fsa.from_dict(
|
||||||
|
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
|
||||||
|
)
|
||||||
|
HLG = HLG.to(device)
|
||||||
|
assert HLG.requires_grad is False
|
||||||
|
|
||||||
|
if not hasattr(HLG, "lm_scores"):
|
||||||
|
HLG.lm_scores = HLG.scores.clone()
|
||||||
|
|
||||||
|
model = Conformer(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
nhead=params.nhead,
|
||||||
|
d_model=params.attention_dim,
|
||||||
|
num_classes=num_classes,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
num_encoder_layers=params.num_encoder_layers,
|
||||||
|
num_decoder_layers=params.num_decoder_layers,
|
||||||
|
vgg_frontend=params.vgg_frontend,
|
||||||
|
is_espnet_structure=params.is_espnet_structure,
|
||||||
|
mmi_loss=params.mmi_loss,
|
||||||
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.load_state_dict(average_checkpoints(filenames))
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
aishell = AishellAsrDataModule(args)
|
||||||
|
# CAUTION: `test_sets` is for displaying only.
|
||||||
|
# If you want to skip test-clean, you have to skip
|
||||||
|
# it inside the for loop. That is, use
|
||||||
|
#
|
||||||
|
# if test_set == 'test-clean': continue
|
||||||
|
#
|
||||||
|
test_sets = ["test"]
|
||||||
|
for test_set, test_dl in zip(test_sets, aishell.test_dataloaders()):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
HLG=HLG,
|
||||||
|
word_table=lexicon.word_table,
|
||||||
|
sos_id=sos_id,
|
||||||
|
eos_id=eos_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params, test_set_name=test_set, results_dict=results_dict
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
161
egs/aishell/ASR/conformer_ctc/subsampling.py
Normal file
161
egs/aishell/ASR/conformer_ctc/subsampling.py
Normal file
@ -0,0 +1,161 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
class Conv2dSubsampling(nn.Module):
|
||||||
|
"""Convolutional 2D subsampling (to 1/4 length).
|
||||||
|
|
||||||
|
Convert an input of shape [N, T, idim] to an output
|
||||||
|
with shape [N, T', odim], where
|
||||||
|
T' = ((T-1)//2 - 1)//2, which approximates T' == T//4
|
||||||
|
|
||||||
|
It is based on
|
||||||
|
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, idim: int, odim: int) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
idim:
|
||||||
|
Input dim. The input shape is [N, T, idim].
|
||||||
|
Caution: It requires: T >=7, idim >=7
|
||||||
|
odim:
|
||||||
|
Output dim. The output shape is [N, ((T-1)//2 - 1)//2, odim]
|
||||||
|
"""
|
||||||
|
assert idim >= 7
|
||||||
|
super().__init__()
|
||||||
|
self.conv = nn.Sequential(
|
||||||
|
nn.Conv2d(
|
||||||
|
in_channels=1, out_channels=odim, kernel_size=3, stride=2
|
||||||
|
),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Conv2d(
|
||||||
|
in_channels=odim, out_channels=odim, kernel_size=3, stride=2
|
||||||
|
),
|
||||||
|
nn.ReLU(),
|
||||||
|
)
|
||||||
|
self.out = nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Subsample x.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
Its shape is [N, T, idim].
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape [N, ((T-1)//2 - 1)//2, odim]
|
||||||
|
"""
|
||||||
|
# On entry, x is [N, T, idim]
|
||||||
|
x = x.unsqueeze(1) # [N, T, idim] -> [N, 1, T, idim] i.e., [N, C, H, W]
|
||||||
|
x = self.conv(x)
|
||||||
|
# Now x is of shape [N, odim, ((T-1)//2 - 1)//2, ((idim-1)//2 - 1)//2]
|
||||||
|
b, c, t, f = x.size()
|
||||||
|
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||||
|
# Now x is of shape [N, ((T-1)//2 - 1))//2, odim]
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class VggSubsampling(nn.Module):
|
||||||
|
"""Trying to follow the setup described in the following paper:
|
||||||
|
https://arxiv.org/pdf/1910.09799.pdf
|
||||||
|
|
||||||
|
This paper is not 100% explicit so I am guessing to some extent,
|
||||||
|
and trying to compare with other VGG implementations.
|
||||||
|
|
||||||
|
Convert an input of shape [N, T, idim] to an output
|
||||||
|
with shape [N, T', odim], where
|
||||||
|
T' = ((T-1)//2 - 1)//2, which approximates T' = T//4
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, idim: int, odim: int) -> None:
|
||||||
|
"""Construct a VggSubsampling object.
|
||||||
|
|
||||||
|
This uses 2 VGG blocks with 2 Conv2d layers each,
|
||||||
|
subsampling its input by a factor of 4 in the time dimensions.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
idim:
|
||||||
|
Input dim. The input shape is [N, T, idim].
|
||||||
|
Caution: It requires: T >=7, idim >=7
|
||||||
|
odim:
|
||||||
|
Output dim. The output shape is [N, ((T-1)//2 - 1)//2, odim]
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
cur_channels = 1
|
||||||
|
layers = []
|
||||||
|
block_dims = [32, 64]
|
||||||
|
|
||||||
|
# The decision to use padding=1 for the 1st convolution, then padding=0
|
||||||
|
# for the 2nd and for the max-pooling, and ceil_mode=True, was driven by
|
||||||
|
# a back-compatibility concern so that the number of frames at the
|
||||||
|
# output would be equal to:
|
||||||
|
# (((T-1)//2)-1)//2.
|
||||||
|
# We can consider changing this by using padding=1 on the
|
||||||
|
# 2nd convolution, so the num-frames at the output would be T//4.
|
||||||
|
for block_dim in block_dims:
|
||||||
|
layers.append(
|
||||||
|
torch.nn.Conv2d(
|
||||||
|
in_channels=cur_channels,
|
||||||
|
out_channels=block_dim,
|
||||||
|
kernel_size=3,
|
||||||
|
padding=1,
|
||||||
|
stride=1,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
layers.append(torch.nn.ReLU())
|
||||||
|
layers.append(
|
||||||
|
torch.nn.Conv2d(
|
||||||
|
in_channels=block_dim,
|
||||||
|
out_channels=block_dim,
|
||||||
|
kernel_size=3,
|
||||||
|
padding=0,
|
||||||
|
stride=1,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
layers.append(
|
||||||
|
torch.nn.MaxPool2d(
|
||||||
|
kernel_size=2, stride=2, padding=0, ceil_mode=True
|
||||||
|
)
|
||||||
|
)
|
||||||
|
cur_channels = block_dim
|
||||||
|
|
||||||
|
self.layers = nn.Sequential(*layers)
|
||||||
|
|
||||||
|
self.out = nn.Linear(
|
||||||
|
block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Subsample x.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
Its shape is [N, T, idim].
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape [N, ((T-1)//2 - 1)//2, odim]
|
||||||
|
"""
|
||||||
|
x = x.unsqueeze(1)
|
||||||
|
x = self.layers(x)
|
||||||
|
b, c, t, f = x.size()
|
||||||
|
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||||
|
return x
|
49
egs/aishell/ASR/conformer_ctc/test_subsampling.py
Executable file
49
egs/aishell/ASR/conformer_ctc/test_subsampling.py
Executable file
@ -0,0 +1,49 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
from subsampling import Conv2dSubsampling
|
||||||
|
from subsampling import VggSubsampling
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def test_conv2d_subsampling():
|
||||||
|
N = 3
|
||||||
|
odim = 2
|
||||||
|
|
||||||
|
for T in range(7, 19):
|
||||||
|
for idim in range(7, 20):
|
||||||
|
model = Conv2dSubsampling(idim=idim, odim=odim)
|
||||||
|
x = torch.empty(N, T, idim)
|
||||||
|
y = model(x)
|
||||||
|
assert y.shape[0] == N
|
||||||
|
assert y.shape[1] == ((T - 1) // 2 - 1) // 2
|
||||||
|
assert y.shape[2] == odim
|
||||||
|
|
||||||
|
|
||||||
|
def test_vgg_subsampling():
|
||||||
|
N = 3
|
||||||
|
odim = 2
|
||||||
|
|
||||||
|
for T in range(7, 19):
|
||||||
|
for idim in range(7, 20):
|
||||||
|
model = VggSubsampling(idim=idim, odim=odim)
|
||||||
|
x = torch.empty(N, T, idim)
|
||||||
|
y = model(x)
|
||||||
|
assert y.shape[0] == N
|
||||||
|
assert y.shape[1] == ((T - 1) // 2 - 1) // 2
|
||||||
|
assert y.shape[2] == odim
|
105
egs/aishell/ASR/conformer_ctc/test_transformer.py
Normal file
105
egs/aishell/ASR/conformer_ctc/test_transformer.py
Normal file
@ -0,0 +1,105 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from transformer import (
|
||||||
|
Transformer,
|
||||||
|
encoder_padding_mask,
|
||||||
|
generate_square_subsequent_mask,
|
||||||
|
decoder_padding_mask,
|
||||||
|
add_sos,
|
||||||
|
add_eos,
|
||||||
|
)
|
||||||
|
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
|
||||||
|
|
||||||
|
def test_encoder_padding_mask():
|
||||||
|
supervisions = {
|
||||||
|
"sequence_idx": torch.tensor([0, 1, 2]),
|
||||||
|
"start_frame": torch.tensor([0, 0, 0]),
|
||||||
|
"num_frames": torch.tensor([18, 7, 13]),
|
||||||
|
}
|
||||||
|
|
||||||
|
max_len = ((18 - 1) // 2 - 1) // 2
|
||||||
|
mask = encoder_padding_mask(max_len, supervisions)
|
||||||
|
expected_mask = torch.tensor(
|
||||||
|
[
|
||||||
|
[False, False, False], # ((18 - 1)//2 - 1)//2 = 3,
|
||||||
|
[False, True, True], # ((7 - 1)//2 - 1)//2 = 1,
|
||||||
|
[False, False, True], # ((13 - 1)//2 - 1)//2 = 2,
|
||||||
|
]
|
||||||
|
)
|
||||||
|
assert torch.all(torch.eq(mask, expected_mask))
|
||||||
|
|
||||||
|
|
||||||
|
def test_transformer():
|
||||||
|
num_features = 40
|
||||||
|
num_classes = 87
|
||||||
|
model = Transformer(num_features=num_features, num_classes=num_classes)
|
||||||
|
|
||||||
|
N = 31
|
||||||
|
|
||||||
|
for T in range(7, 30):
|
||||||
|
x = torch.rand(N, T, num_features)
|
||||||
|
y, _, _ = model(x)
|
||||||
|
assert y.shape == (N, (((T - 1) // 2) - 1) // 2, num_classes)
|
||||||
|
|
||||||
|
|
||||||
|
def test_generate_square_subsequent_mask():
|
||||||
|
s = 5
|
||||||
|
mask = generate_square_subsequent_mask(s)
|
||||||
|
inf = float("inf")
|
||||||
|
expected_mask = torch.tensor(
|
||||||
|
[
|
||||||
|
[0.0, -inf, -inf, -inf, -inf],
|
||||||
|
[0.0, 0.0, -inf, -inf, -inf],
|
||||||
|
[0.0, 0.0, 0.0, -inf, -inf],
|
||||||
|
[0.0, 0.0, 0.0, 0.0, -inf],
|
||||||
|
[0.0, 0.0, 0.0, 0.0, 0.0],
|
||||||
|
]
|
||||||
|
)
|
||||||
|
assert torch.all(torch.eq(mask, expected_mask))
|
||||||
|
|
||||||
|
|
||||||
|
def test_decoder_padding_mask():
|
||||||
|
x = [torch.tensor([1, 2]), torch.tensor([3]), torch.tensor([2, 5, 8])]
|
||||||
|
y = pad_sequence(x, batch_first=True, padding_value=-1)
|
||||||
|
mask = decoder_padding_mask(y, ignore_id=-1)
|
||||||
|
expected_mask = torch.tensor(
|
||||||
|
[
|
||||||
|
[False, False, True],
|
||||||
|
[False, True, True],
|
||||||
|
[False, False, False],
|
||||||
|
]
|
||||||
|
)
|
||||||
|
assert torch.all(torch.eq(mask, expected_mask))
|
||||||
|
|
||||||
|
|
||||||
|
def test_add_sos():
|
||||||
|
x = [[1, 2], [3], [2, 5, 8]]
|
||||||
|
y = add_sos(x, sos_id=0)
|
||||||
|
expected_y = [[0, 1, 2], [0, 3], [0, 2, 5, 8]]
|
||||||
|
assert y == expected_y
|
||||||
|
|
||||||
|
|
||||||
|
def test_add_eos():
|
||||||
|
x = [[1, 2], [3], [2, 5, 8]]
|
||||||
|
y = add_eos(x, eos_id=0)
|
||||||
|
expected_y = [[1, 2, 0], [3, 0], [2, 5, 8, 0]]
|
||||||
|
assert y == expected_y
|
735
egs/aishell/ASR/conformer_ctc/train.py
Executable file
735
egs/aishell/ASR/conformer_ctc/train.py
Executable file
@ -0,0 +1,735 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from shutil import copyfile
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import AishellAsrDataModule
|
||||||
|
from conformer import Conformer
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from torch.nn.utils import clip_grad_norm_
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
from transformer import Noam
|
||||||
|
|
||||||
|
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
|
||||||
|
from icefall.checkpoint import load_checkpoint
|
||||||
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||||
|
from icefall.dist import cleanup_dist, setup_dist
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
encode_supervisions,
|
||||||
|
setup_logger,
|
||||||
|
str2bool,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--world-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of GPUs for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--master-port",
|
||||||
|
type=int,
|
||||||
|
default=12354,
|
||||||
|
help="Master port to use for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tensorboard",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Should various information be logged in tensorboard.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-epochs",
|
||||||
|
type=int,
|
||||||
|
default=35,
|
||||||
|
help="Number of epochs to train.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start-epoch",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""Resume training from from this epoch.
|
||||||
|
If it is positive, it will load checkpoint from
|
||||||
|
conformer_ctc/exp/epoch-{start_epoch-1}.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
"""Return a dict containing training parameters.
|
||||||
|
|
||||||
|
All training related parameters that are not passed from the commandline
|
||||||
|
is saved in the variable `params`.
|
||||||
|
|
||||||
|
Commandline options are merged into `params` after they are parsed, so
|
||||||
|
you can also access them via `params`.
|
||||||
|
|
||||||
|
Explanation of options saved in `params`:
|
||||||
|
|
||||||
|
- exp_dir: It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
|
||||||
|
- lang_dir: It contains language related input files such as
|
||||||
|
"lexicon.txt"
|
||||||
|
|
||||||
|
- lr: It specifies the initial learning rate
|
||||||
|
|
||||||
|
- feature_dim: The model input dim. It has to match the one used
|
||||||
|
in computing features.
|
||||||
|
|
||||||
|
- weight_decay: The weight_decay for the optimizer.
|
||||||
|
|
||||||
|
- subsampling_factor: The subsampling factor for the model.
|
||||||
|
|
||||||
|
- best_train_loss: Best training loss so far. It is used to select
|
||||||
|
the model that has the lowest training loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_valid_loss: Best validation loss so far. It is used to select
|
||||||
|
the model that has the lowest validation loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_train_epoch: It is the epoch that has the best training loss.
|
||||||
|
|
||||||
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||||
|
|
||||||
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||||
|
contains number of batches trained so far across
|
||||||
|
epochs.
|
||||||
|
|
||||||
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||||
|
|
||||||
|
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
||||||
|
|
||||||
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||||
|
|
||||||
|
- beam_size: It is used in k2.ctc_loss
|
||||||
|
|
||||||
|
- reduction: It is used in k2.ctc_loss
|
||||||
|
|
||||||
|
- use_double_scores: It is used in k2.ctc_loss
|
||||||
|
"""
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"exp_dir": Path("conformer_ctc/exp_char"),
|
||||||
|
"lang_dir": Path("data/lang_char"),
|
||||||
|
"feature_dim": 80,
|
||||||
|
"weight_decay": 1e-6,
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"best_train_loss": float("inf"),
|
||||||
|
"best_valid_loss": float("inf"),
|
||||||
|
"best_train_epoch": -1,
|
||||||
|
"best_valid_epoch": -1,
|
||||||
|
"batch_idx_train": 0,
|
||||||
|
"log_interval": 10,
|
||||||
|
"reset_interval": 200,
|
||||||
|
"valid_interval": 3000,
|
||||||
|
"beam_size": 10,
|
||||||
|
"reduction": "sum",
|
||||||
|
"use_double_scores": True,
|
||||||
|
"accum_grad": 1,
|
||||||
|
"att_rate": 0.7,
|
||||||
|
"attention_dim": 512,
|
||||||
|
"nhead": 4,
|
||||||
|
"num_decoder_layers": 6,
|
||||||
|
"num_encoder_layers": 12,
|
||||||
|
"is_espnet_structure": True,
|
||||||
|
"mmi_loss": False,
|
||||||
|
"use_feat_batchnorm": True,
|
||||||
|
"lr_factor": 5.0,
|
||||||
|
"warm_step": 36000,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def load_checkpoint_if_available(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||||
|
) -> None:
|
||||||
|
"""Load checkpoint from file.
|
||||||
|
|
||||||
|
If params.start_epoch is positive, it will load the checkpoint from
|
||||||
|
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||||
|
|
||||||
|
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||||
|
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||||
|
and `best_valid_loss` in `params`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
The return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
optimizer:
|
||||||
|
The optimizer that we are using.
|
||||||
|
scheduler:
|
||||||
|
The learning rate scheduler we are using.
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
if params.start_epoch <= 0:
|
||||||
|
return
|
||||||
|
|
||||||
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||||
|
saved_params = load_checkpoint(
|
||||||
|
filename,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
)
|
||||||
|
|
||||||
|
keys = [
|
||||||
|
"best_train_epoch",
|
||||||
|
"best_valid_epoch",
|
||||||
|
"batch_idx_train",
|
||||||
|
"best_train_loss",
|
||||||
|
"best_valid_loss",
|
||||||
|
]
|
||||||
|
for k in keys:
|
||||||
|
params[k] = saved_params[k]
|
||||||
|
|
||||||
|
return saved_params
|
||||||
|
|
||||||
|
|
||||||
|
def save_checkpoint(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||||
|
rank: int = 0,
|
||||||
|
) -> None:
|
||||||
|
"""Save model, optimizer, scheduler and training stats to file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
"""
|
||||||
|
if rank != 0:
|
||||||
|
return
|
||||||
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||||
|
save_checkpoint_impl(
|
||||||
|
filename=filename,
|
||||||
|
model=model,
|
||||||
|
params=params,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.best_train_epoch == params.cur_epoch:
|
||||||
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_train_filename)
|
||||||
|
|
||||||
|
if params.best_valid_epoch == params.cur_epoch:
|
||||||
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_valid_filename)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
batch: dict,
|
||||||
|
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||||
|
is_training: bool,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Compute CTC loss given the model and its inputs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
Parameters for training. See :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training. It is an instance of Conformer in our case.
|
||||||
|
batch:
|
||||||
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||||
|
for the content in it.
|
||||||
|
graph_compiler:
|
||||||
|
It is used to build a decoding graph from a ctc topo and training
|
||||||
|
transcript. The training transcript is contained in the given `batch`,
|
||||||
|
while the ctc topo is built when this compiler is instantiated.
|
||||||
|
is_training:
|
||||||
|
True for training. False for validation. When it is True, this
|
||||||
|
function enables autograd during computation; when it is False, it
|
||||||
|
disables autograd.
|
||||||
|
"""
|
||||||
|
device = graph_compiler.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
# at entry, feature is [N, T, C]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
with torch.set_grad_enabled(is_training):
|
||||||
|
nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
|
||||||
|
# nnet_output is [N, T, C]
|
||||||
|
|
||||||
|
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||||
|
# different duration in decreasing order, required by
|
||||||
|
# `k2.intersect_dense` called in `k2.ctc_loss`
|
||||||
|
supervision_segments, texts = encode_supervisions(
|
||||||
|
supervisions, subsampling_factor=params.subsampling_factor
|
||||||
|
)
|
||||||
|
|
||||||
|
token_ids = graph_compiler.texts_to_ids(texts)
|
||||||
|
|
||||||
|
decoding_graph = graph_compiler.compile(token_ids)
|
||||||
|
|
||||||
|
dense_fsa_vec = k2.DenseFsaVec(
|
||||||
|
nnet_output,
|
||||||
|
supervision_segments,
|
||||||
|
allow_truncate=params.subsampling_factor - 1,
|
||||||
|
)
|
||||||
|
|
||||||
|
ctc_loss = k2.ctc_loss(
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
dense_fsa_vec=dense_fsa_vec,
|
||||||
|
output_beam=params.beam_size,
|
||||||
|
reduction=params.reduction,
|
||||||
|
use_double_scores=params.use_double_scores,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.att_rate != 0.0:
|
||||||
|
with torch.set_grad_enabled(is_training):
|
||||||
|
if hasattr(model, "module"):
|
||||||
|
att_loss = model.module.decoder_forward(
|
||||||
|
encoder_memory,
|
||||||
|
memory_mask,
|
||||||
|
token_ids=token_ids,
|
||||||
|
sos_id=graph_compiler.sos_id,
|
||||||
|
eos_id=graph_compiler.eos_id,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
att_loss = model.decoder_forward(
|
||||||
|
encoder_memory,
|
||||||
|
memory_mask,
|
||||||
|
token_ids=token_ids,
|
||||||
|
sos_id=graph_compiler.sos_id,
|
||||||
|
eos_id=graph_compiler.eos_id,
|
||||||
|
)
|
||||||
|
loss = (1.0 - params.att_rate) * ctc_loss + params.att_rate * att_loss
|
||||||
|
else:
|
||||||
|
loss = ctc_loss
|
||||||
|
att_loss = torch.tensor([0])
|
||||||
|
|
||||||
|
# train_frames and valid_frames are used for printing.
|
||||||
|
if is_training:
|
||||||
|
params.train_frames = supervision_segments[:, 2].sum().item()
|
||||||
|
else:
|
||||||
|
params.valid_frames = supervision_segments[:, 2].sum().item()
|
||||||
|
|
||||||
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
|
return loss, ctc_loss.detach(), att_loss.detach()
|
||||||
|
|
||||||
|
|
||||||
|
def compute_validation_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> None:
|
||||||
|
"""Run the validation process. The validation loss
|
||||||
|
is saved in `params.valid_loss`.
|
||||||
|
"""
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
tot_loss = 0.0
|
||||||
|
tot_ctc_loss = 0.0
|
||||||
|
tot_att_loss = 0.0
|
||||||
|
tot_frames = 0.0
|
||||||
|
for batch_idx, batch in enumerate(valid_dl):
|
||||||
|
loss, ctc_loss, att_loss = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
is_training=False,
|
||||||
|
)
|
||||||
|
assert loss.requires_grad is False
|
||||||
|
assert ctc_loss.requires_grad is False
|
||||||
|
assert att_loss.requires_grad is False
|
||||||
|
|
||||||
|
loss_cpu = loss.detach().cpu().item()
|
||||||
|
tot_loss += loss_cpu
|
||||||
|
|
||||||
|
tot_ctc_loss += ctc_loss.detach().cpu().item()
|
||||||
|
tot_att_loss += att_loss.detach().cpu().item()
|
||||||
|
|
||||||
|
tot_frames += params.valid_frames
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
s = torch.tensor(
|
||||||
|
[tot_loss, tot_ctc_loss, tot_att_loss, tot_frames],
|
||||||
|
device=loss.device,
|
||||||
|
)
|
||||||
|
dist.all_reduce(s, op=dist.ReduceOp.SUM)
|
||||||
|
s = s.cpu().tolist()
|
||||||
|
tot_loss = s[0]
|
||||||
|
tot_ctc_loss = s[1]
|
||||||
|
tot_att_loss = s[2]
|
||||||
|
tot_frames = s[3]
|
||||||
|
|
||||||
|
params.valid_loss = tot_loss / tot_frames
|
||||||
|
params.valid_ctc_loss = tot_ctc_loss / tot_frames
|
||||||
|
params.valid_att_loss = tot_att_loss / tot_frames
|
||||||
|
|
||||||
|
if params.valid_loss < params.best_valid_loss:
|
||||||
|
params.best_valid_epoch = params.cur_epoch
|
||||||
|
params.best_valid_loss = params.valid_loss
|
||||||
|
|
||||||
|
|
||||||
|
def train_one_epoch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
tb_writer: Optional[SummaryWriter] = None,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> None:
|
||||||
|
"""Train the model for one epoch.
|
||||||
|
|
||||||
|
The training loss from the mean of all frames is saved in
|
||||||
|
`params.train_loss`. It runs the validation process every
|
||||||
|
`params.valid_interval` batches.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
optimizer:
|
||||||
|
The optimizer we are using.
|
||||||
|
graph_compiler:
|
||||||
|
It is used to convert transcripts to FSAs.
|
||||||
|
train_dl:
|
||||||
|
Dataloader for the training dataset.
|
||||||
|
valid_dl:
|
||||||
|
Dataloader for the validation dataset.
|
||||||
|
tb_writer:
|
||||||
|
Writer to write log messages to tensorboard.
|
||||||
|
world_size:
|
||||||
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||||
|
"""
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
tot_loss = 0.0 # sum of losses over all batches
|
||||||
|
tot_ctc_loss = 0.0
|
||||||
|
tot_att_loss = 0.0
|
||||||
|
|
||||||
|
tot_frames = 0.0 # sum of frames over all batches
|
||||||
|
params.tot_loss = 0.0
|
||||||
|
params.tot_frames = 0.0
|
||||||
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
|
params.batch_idx_train += 1
|
||||||
|
batch_size = len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
loss, ctc_loss, att_loss = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
is_training=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||||
|
# in the batch and there is no normalization to it so far.
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
loss_cpu = loss.detach().cpu().item()
|
||||||
|
ctc_loss_cpu = ctc_loss.detach().cpu().item()
|
||||||
|
att_loss_cpu = att_loss.detach().cpu().item()
|
||||||
|
|
||||||
|
tot_frames += params.train_frames
|
||||||
|
tot_loss += loss_cpu
|
||||||
|
tot_ctc_loss += ctc_loss_cpu
|
||||||
|
tot_att_loss += att_loss_cpu
|
||||||
|
|
||||||
|
params.tot_frames += params.train_frames
|
||||||
|
params.tot_loss += loss_cpu
|
||||||
|
|
||||||
|
tot_avg_loss = tot_loss / tot_frames
|
||||||
|
tot_avg_ctc_loss = tot_ctc_loss / tot_frames
|
||||||
|
tot_avg_att_loss = tot_att_loss / tot_frames
|
||||||
|
|
||||||
|
if batch_idx % params.log_interval == 0:
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
||||||
|
f"batch avg ctc loss {ctc_loss_cpu/params.train_frames:.4f}, "
|
||||||
|
f"batch avg att loss {att_loss_cpu/params.train_frames:.4f}, "
|
||||||
|
f"batch avg loss {loss_cpu/params.train_frames:.4f}, "
|
||||||
|
f"total avg ctc loss: {tot_avg_ctc_loss:.4f}, "
|
||||||
|
f"total avg att loss: {tot_avg_att_loss:.4f}, "
|
||||||
|
f"total avg loss: {tot_avg_loss:.4f}, "
|
||||||
|
f"batch size: {batch_size}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/current_ctc_loss",
|
||||||
|
ctc_loss_cpu / params.train_frames,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/current_att_loss",
|
||||||
|
att_loss_cpu / params.train_frames,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/current_loss",
|
||||||
|
loss_cpu / params.train_frames,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/tot_avg_ctc_loss",
|
||||||
|
tot_avg_ctc_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/tot_avg_att_loss",
|
||||||
|
tot_avg_att_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/tot_avg_loss",
|
||||||
|
tot_avg_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
if batch_idx > 0 and batch_idx % params.reset_interval == 0:
|
||||||
|
tot_loss = 0.0 # sum of losses over all batches
|
||||||
|
tot_ctc_loss = 0.0
|
||||||
|
tot_att_loss = 0.0
|
||||||
|
|
||||||
|
tot_frames = 0.0 # sum of frames over all batches
|
||||||
|
|
||||||
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
|
compute_validation_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
model.train()
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, "
|
||||||
|
f"valid ctc loss {params.valid_ctc_loss:.4f},"
|
||||||
|
f"valid att loss {params.valid_att_loss:.4f},"
|
||||||
|
f"valid loss {params.valid_loss:.4f},"
|
||||||
|
f" best valid loss: {params.best_valid_loss:.4f} "
|
||||||
|
f"best valid epoch: {params.best_valid_epoch}"
|
||||||
|
)
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/valid_ctc_loss",
|
||||||
|
params.valid_ctc_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/valid_att_loss",
|
||||||
|
params.valid_att_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/valid_loss",
|
||||||
|
params.valid_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
|
||||||
|
params.train_loss = params.tot_loss / params.tot_frames
|
||||||
|
|
||||||
|
if params.train_loss < params.best_train_loss:
|
||||||
|
params.best_train_epoch = params.cur_epoch
|
||||||
|
params.best_train_loss = params.train_loss
|
||||||
|
|
||||||
|
|
||||||
|
def run(rank, world_size, args):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
rank:
|
||||||
|
It is a value between 0 and `world_size-1`, which is
|
||||||
|
passed automatically by `mp.spawn()` in :func:`main`.
|
||||||
|
The node with rank 0 is responsible for saving checkpoint.
|
||||||
|
world_size:
|
||||||
|
Number of GPUs for DDP training.
|
||||||
|
args:
|
||||||
|
The return value of get_parser().parse_args()
|
||||||
|
"""
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
fix_random_seed(42)
|
||||||
|
if world_size > 1:
|
||||||
|
setup_dist(rank, world_size, params.master_port)
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||||
|
logging.info("Training started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
if args.tensorboard and rank == 0:
|
||||||
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||||
|
else:
|
||||||
|
tb_writer = None
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
max_token_id = max(lexicon.tokens)
|
||||||
|
num_classes = max_token_id + 1 # +1 for the blank
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", rank)
|
||||||
|
|
||||||
|
graph_compiler = CharCtcTrainingGraphCompiler(
|
||||||
|
lexicon=lexicon,
|
||||||
|
device=device,
|
||||||
|
sos_token="<sos/eos>",
|
||||||
|
eos_token="<sos/eos>",
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = Conformer(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
nhead=params.nhead,
|
||||||
|
d_model=params.attention_dim,
|
||||||
|
num_classes=num_classes,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
num_encoder_layers=params.num_encoder_layers,
|
||||||
|
num_decoder_layers=params.num_decoder_layers,
|
||||||
|
vgg_frontend=False,
|
||||||
|
is_espnet_structure=params.is_espnet_structure,
|
||||||
|
mmi_loss=params.mmi_loss,
|
||||||
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||||
|
)
|
||||||
|
|
||||||
|
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
if world_size > 1:
|
||||||
|
model = DDP(model, device_ids=[rank])
|
||||||
|
|
||||||
|
optimizer = Noam(
|
||||||
|
model.parameters(),
|
||||||
|
model_size=params.attention_dim,
|
||||||
|
factor=params.lr_factor,
|
||||||
|
warm_step=params.warm_step,
|
||||||
|
weight_decay=params.weight_decay,
|
||||||
|
)
|
||||||
|
|
||||||
|
if checkpoints:
|
||||||
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||||
|
|
||||||
|
aishell = AishellAsrDataModule(args)
|
||||||
|
train_dl = aishell.train_dataloaders()
|
||||||
|
valid_dl = aishell.valid_dataloaders()
|
||||||
|
|
||||||
|
for epoch in range(params.start_epoch, params.num_epochs):
|
||||||
|
train_dl.sampler.set_epoch(epoch)
|
||||||
|
|
||||||
|
cur_lr = optimizer._rate
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
|
if rank == 0:
|
||||||
|
logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
|
||||||
|
|
||||||
|
params.cur_epoch = epoch
|
||||||
|
|
||||||
|
train_one_epoch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
train_dl=train_dl,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
tb_writer=tb_writer,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_checkpoint(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
cleanup_dist()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AishellAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
world_size = args.world_size
|
||||||
|
assert world_size >= 1
|
||||||
|
if world_size > 1:
|
||||||
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||||
|
else:
|
||||||
|
run(rank=0, world_size=1, args=args)
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1005
egs/aishell/ASR/conformer_ctc/transformer.py
Normal file
1005
egs/aishell/ASR/conformer_ctc/transformer.py
Normal file
File diff suppressed because it is too large
Load Diff
0
egs/aishell/ASR/local/__init__.py
Normal file
0
egs/aishell/ASR/local/__init__.py
Normal file
156
egs/aishell/ASR/local/compile_hlg.py
Executable file
156
egs/aishell/ASR/local/compile_hlg.py
Executable file
@ -0,0 +1,156 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script takes as input lang_dir and generates HLG from
|
||||||
|
|
||||||
|
- H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt
|
||||||
|
- L, the lexicon, built from lang_dir/L_disambig.pt
|
||||||
|
|
||||||
|
Caution: We use a lexicon that contains disambiguation symbols
|
||||||
|
|
||||||
|
- G, the LM, built from data/lm/G_3_gram.fst.txt
|
||||||
|
|
||||||
|
The generated HLG is saved in $lang_dir/HLG.pt
|
||||||
|
"""
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
help="""Input and output directory.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def compile_HLG(lang_dir: str) -> k2.Fsa:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
lang_dir:
|
||||||
|
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
An FSA representing HLG.
|
||||||
|
"""
|
||||||
|
lexicon = Lexicon(lang_dir)
|
||||||
|
max_token_id = max(lexicon.tokens)
|
||||||
|
logging.info(f"Building ctc_topo. max_token_id: {max_token_id}")
|
||||||
|
H = k2.ctc_topo(max_token_id)
|
||||||
|
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
|
||||||
|
|
||||||
|
if Path("data/lm/G_3_gram.pt").is_file():
|
||||||
|
logging.info("Loading pre-compiled G_3_gram")
|
||||||
|
d = torch.load("data/lm/G_3_gram.pt")
|
||||||
|
G = k2.Fsa.from_dict(d)
|
||||||
|
else:
|
||||||
|
logging.info("Loading G_3_gram.fst.txt")
|
||||||
|
with open("data/lm/G_3_gram.fst.txt") as f:
|
||||||
|
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||||
|
torch.save(G.as_dict(), "data/lm/G_3_gram.pt")
|
||||||
|
|
||||||
|
first_token_disambig_id = lexicon.token_table["#0"]
|
||||||
|
first_word_disambig_id = lexicon.word_table["#0"]
|
||||||
|
|
||||||
|
L = k2.arc_sort(L)
|
||||||
|
G = k2.arc_sort(G)
|
||||||
|
|
||||||
|
logging.info("Intersecting L and G")
|
||||||
|
LG = k2.compose(L, G)
|
||||||
|
logging.info(f"LG shape: {LG.shape}")
|
||||||
|
|
||||||
|
logging.info("Connecting LG")
|
||||||
|
LG = k2.connect(LG)
|
||||||
|
logging.info(f"LG shape after k2.connect: {LG.shape}")
|
||||||
|
|
||||||
|
logging.info(type(LG.aux_labels))
|
||||||
|
logging.info("Determinizing LG")
|
||||||
|
|
||||||
|
LG = k2.determinize(LG)
|
||||||
|
logging.info(type(LG.aux_labels))
|
||||||
|
|
||||||
|
logging.info("Connecting LG after k2.determinize")
|
||||||
|
LG = k2.connect(LG)
|
||||||
|
|
||||||
|
logging.info("Removing disambiguation symbols on LG")
|
||||||
|
|
||||||
|
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
||||||
|
|
||||||
|
assert isinstance(LG.aux_labels, k2.RaggedInt)
|
||||||
|
LG.aux_labels.values()[LG.aux_labels.values() >= first_word_disambig_id] = 0
|
||||||
|
|
||||||
|
LG = k2.remove_epsilon(LG)
|
||||||
|
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
||||||
|
|
||||||
|
LG = k2.connect(LG)
|
||||||
|
LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0)
|
||||||
|
|
||||||
|
logging.info("Arc sorting LG")
|
||||||
|
LG = k2.arc_sort(LG)
|
||||||
|
|
||||||
|
logging.info("Composing H and LG")
|
||||||
|
# CAUTION: The name of the inner_labels is fixed
|
||||||
|
# to `tokens`. If you want to change it, please
|
||||||
|
# also change other places in icefall that are using
|
||||||
|
# it.
|
||||||
|
HLG = k2.compose(H, LG, inner_labels="tokens")
|
||||||
|
|
||||||
|
logging.info("Connecting LG")
|
||||||
|
HLG = k2.connect(HLG)
|
||||||
|
|
||||||
|
logging.info("Arc sorting LG")
|
||||||
|
HLG = k2.arc_sort(HLG)
|
||||||
|
logging.info(f"HLG.shape: {HLG.shape}")
|
||||||
|
|
||||||
|
return HLG
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
lang_dir = Path(args.lang_dir)
|
||||||
|
|
||||||
|
if (lang_dir / "HLG.pt").is_file():
|
||||||
|
logging.info(f"{lang_dir}/HLG.pt already exists - skipping")
|
||||||
|
return
|
||||||
|
|
||||||
|
logging.info(f"Processing {lang_dir}")
|
||||||
|
|
||||||
|
HLG = compile_HLG(lang_dir)
|
||||||
|
logging.info(f"Saving HLG.pt to {lang_dir}")
|
||||||
|
torch.save(HLG.as_dict(), f"{lang_dir}/HLG.pt")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
main()
|
109
egs/aishell/ASR/local/compute_fbank_aishell.py
Executable file
109
egs/aishell/ASR/local/compute_fbank_aishell.py
Executable file
@ -0,0 +1,109 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file computes fbank features of the aishell dataset.
|
||||||
|
It looks for manifests in the directory data/manifests.
|
||||||
|
|
||||||
|
The generated fbank features are saved in data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
from icefall.utils import get_executor
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_aishell(num_mel_bins: int = 80):
|
||||||
|
src_dir = Path("data/manifests")
|
||||||
|
output_dir = Path("data/fbank40")
|
||||||
|
num_jobs = min(15, os.cpu_count())
|
||||||
|
|
||||||
|
dataset_parts = (
|
||||||
|
"train",
|
||||||
|
"dev",
|
||||||
|
"test",
|
||||||
|
)
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=dataset_parts, output_dir=src_dir
|
||||||
|
)
|
||||||
|
assert manifests is not None
|
||||||
|
|
||||||
|
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||||
|
|
||||||
|
with get_executor() as ex: # Initialize the executor only once.
|
||||||
|
for partition, m in manifests.items():
|
||||||
|
if (output_dir / f"cuts_{partition}.json.gz").is_file():
|
||||||
|
logging.info(f"{partition} already exists - skipping.")
|
||||||
|
continue
|
||||||
|
logging.info(f"Processing {partition}")
|
||||||
|
cut_set = CutSet.from_manifests(
|
||||||
|
recordings=m["recordings"],
|
||||||
|
supervisions=m["supervisions"],
|
||||||
|
)
|
||||||
|
if "train" in partition:
|
||||||
|
cut_set = (
|
||||||
|
cut_set
|
||||||
|
+ cut_set.perturb_speed(0.9)
|
||||||
|
+ cut_set.perturb_speed(1.1)
|
||||||
|
)
|
||||||
|
cut_set = cut_set.compute_and_store_features(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{output_dir}/feats_{partition}",
|
||||||
|
# when an executor is specified, make more partitions
|
||||||
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
|
executor=ex,
|
||||||
|
storage_type=LilcomHdf5Writer,
|
||||||
|
)
|
||||||
|
cut_set.to_json(output_dir / f"cuts_{partition}.json.gz")
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-mel-bins",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="""The number of mel bins for Fbank""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
args = get_args()
|
||||||
|
compute_fbank_aishell(num_mel_bins=args.num_mel_bins)
|
||||||
|
|
109
egs/aishell/ASR/local/compute_fbank_musan.py
Executable file
109
egs/aishell/ASR/local/compute_fbank_musan.py
Executable file
@ -0,0 +1,109 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file computes fbank features of the musan dataset.
|
||||||
|
It looks for manifests in the directory data/manifests.
|
||||||
|
|
||||||
|
The generated fbank features are saved in data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer, combine
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
from icefall.utils import get_executor
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_musan(num_mel_bins: int = 80):
|
||||||
|
src_dir = Path("data/manifests")
|
||||||
|
output_dir = Path("data/fbank40")
|
||||||
|
num_jobs = min(15, os.cpu_count())
|
||||||
|
|
||||||
|
dataset_parts = (
|
||||||
|
"music",
|
||||||
|
"speech",
|
||||||
|
"noise",
|
||||||
|
)
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=dataset_parts, output_dir=src_dir
|
||||||
|
)
|
||||||
|
assert manifests is not None
|
||||||
|
|
||||||
|
musan_cuts_path = output_dir / "cuts_musan.json.gz"
|
||||||
|
|
||||||
|
if musan_cuts_path.is_file():
|
||||||
|
logging.info(f"{musan_cuts_path} already exists - skipping")
|
||||||
|
return
|
||||||
|
|
||||||
|
logging.info("Extracting features for Musan")
|
||||||
|
|
||||||
|
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||||
|
|
||||||
|
with get_executor() as ex: # Initialize the executor only once.
|
||||||
|
# create chunks of Musan with duration 5 - 10 seconds
|
||||||
|
musan_cuts = (
|
||||||
|
CutSet.from_manifests(
|
||||||
|
recordings=combine(
|
||||||
|
part["recordings"] for part in manifests.values()
|
||||||
|
)
|
||||||
|
)
|
||||||
|
.cut_into_windows(10.0)
|
||||||
|
.filter(lambda c: c.duration > 5)
|
||||||
|
.compute_and_store_features(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{output_dir}/feats_musan",
|
||||||
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
|
executor=ex,
|
||||||
|
storage_type=LilcomHdf5Writer,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
musan_cuts.to_json(musan_cuts_path)
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-mel-bins",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="""The number of mel bins for Fbank""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
args = get_args()
|
||||||
|
compute_fbank_musan(num_mel_bins=args.num_mel_bins)
|
||||||
|
|
247
egs/aishell/ASR/local/prepare_char.py
Executable file
247
egs/aishell/ASR/local/prepare_char.py
Executable file
@ -0,0 +1,247 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||||
|
# Wei Kang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
This script takes as input `lang_dir`, which should contain::
|
||||||
|
|
||||||
|
- lang_dir/text,
|
||||||
|
- lang_dir/words.txt
|
||||||
|
|
||||||
|
and generates the following files in the directory `lang_dir`:
|
||||||
|
|
||||||
|
- lexicon.txt
|
||||||
|
- lexicon_disambig.txt
|
||||||
|
- L.pt
|
||||||
|
- L_disambig.pt
|
||||||
|
- tokens.txt
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import re
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
from prepare_lang import (
|
||||||
|
Lexicon,
|
||||||
|
add_disambig_symbols,
|
||||||
|
add_self_loops,
|
||||||
|
write_lexicon,
|
||||||
|
write_mapping,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def lexicon_to_fst_no_sil(
|
||||||
|
lexicon: Lexicon,
|
||||||
|
token2id: Dict[str, int],
|
||||||
|
word2id: Dict[str, int],
|
||||||
|
need_self_loops: bool = False,
|
||||||
|
) -> k2.Fsa:
|
||||||
|
"""Convert a lexicon to an FST (in k2 format).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lexicon:
|
||||||
|
The input lexicon. See also :func:`read_lexicon`
|
||||||
|
token2id:
|
||||||
|
A dict mapping tokens to IDs.
|
||||||
|
word2id:
|
||||||
|
A dict mapping words to IDs.
|
||||||
|
need_self_loops:
|
||||||
|
If True, add self-loop to states with non-epsilon output symbols
|
||||||
|
on at least one arc out of the state. The input label for this
|
||||||
|
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
||||||
|
Returns:
|
||||||
|
Return an instance of `k2.Fsa` representing the given lexicon.
|
||||||
|
"""
|
||||||
|
loop_state = 0 # words enter and leave from here
|
||||||
|
next_state = 1 # the next un-allocated state, will be incremented as we go
|
||||||
|
|
||||||
|
arcs = []
|
||||||
|
|
||||||
|
# The blank symbol <blk> is defined in local/train_bpe_model.py
|
||||||
|
assert token2id["<blk>"] == 0
|
||||||
|
assert word2id["<eps>"] == 0
|
||||||
|
|
||||||
|
eps = 0
|
||||||
|
|
||||||
|
for word, pieces in lexicon:
|
||||||
|
assert len(pieces) > 0, f"{word} has no pronunciations"
|
||||||
|
cur_state = loop_state
|
||||||
|
|
||||||
|
word = word2id[word]
|
||||||
|
pieces = [token2id[i] if i in token2id else token2id['<unk>'] for i in pieces]
|
||||||
|
|
||||||
|
for i in range(len(pieces) - 1):
|
||||||
|
w = word if i == 0 else eps
|
||||||
|
arcs.append([cur_state, next_state, pieces[i], w, 0])
|
||||||
|
|
||||||
|
cur_state = next_state
|
||||||
|
next_state += 1
|
||||||
|
|
||||||
|
# now for the last piece of this word
|
||||||
|
i = len(pieces) - 1
|
||||||
|
w = word if i == 0 else eps
|
||||||
|
arcs.append([cur_state, loop_state, pieces[i], w, 0])
|
||||||
|
|
||||||
|
if need_self_loops:
|
||||||
|
disambig_token = token2id["#0"]
|
||||||
|
disambig_word = word2id["#0"]
|
||||||
|
arcs = add_self_loops(
|
||||||
|
arcs,
|
||||||
|
disambig_token=disambig_token,
|
||||||
|
disambig_word=disambig_word,
|
||||||
|
)
|
||||||
|
|
||||||
|
final_state = next_state
|
||||||
|
arcs.append([loop_state, final_state, -1, -1, 0])
|
||||||
|
arcs.append([final_state])
|
||||||
|
|
||||||
|
arcs = sorted(arcs, key=lambda arc: arc[0])
|
||||||
|
arcs = [[str(i) for i in arc] for arc in arcs]
|
||||||
|
arcs = [" ".join(arc) for arc in arcs]
|
||||||
|
arcs = "\n".join(arcs)
|
||||||
|
|
||||||
|
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
||||||
|
return fsa
|
||||||
|
|
||||||
|
|
||||||
|
def contain_oov(token_sym_table: Dict[str, int], tokens: List[str]) -> bool:
|
||||||
|
"""Return if all the tokens are in token symbol table.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
token_sym_table:
|
||||||
|
Token symbol table that contains all the valid tokens.
|
||||||
|
tokens:
|
||||||
|
A list of tokens.
|
||||||
|
Returns:
|
||||||
|
Return True if there is any token not in the token_sym_table,
|
||||||
|
otherwise False.
|
||||||
|
"""
|
||||||
|
for tok in tokens:
|
||||||
|
if not tok in token_sym_table:
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def generate_lexicon(
|
||||||
|
token_sym_table: Dict[str, int], words: List[str]
|
||||||
|
) -> Lexicon:
|
||||||
|
"""Generate a lexicon from a word list and token_sym_table.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
token_sym_table:
|
||||||
|
Token symbol table that mapping token to token ids.
|
||||||
|
words:
|
||||||
|
A list of strings representing words.
|
||||||
|
Returns:
|
||||||
|
Return a dict whose keys are words and values are the corresponding
|
||||||
|
tokens.
|
||||||
|
"""
|
||||||
|
lexicon = []
|
||||||
|
for word in words:
|
||||||
|
chars = list(word.strip(" \t"))
|
||||||
|
if contain_oov(token_sym_table, chars):
|
||||||
|
continue
|
||||||
|
lexicon.append((word, chars))
|
||||||
|
|
||||||
|
# The OOV word is <UNK>
|
||||||
|
lexicon.append(("<UNK>", ["<unk>"]))
|
||||||
|
return lexicon
|
||||||
|
|
||||||
|
|
||||||
|
def generate_tokens(text_file: str) -> Dict[str, int]:
|
||||||
|
"""Generate tokens from the given text file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text_file:
|
||||||
|
A file that contains text lines to generate tokens.
|
||||||
|
Returns:
|
||||||
|
Return a dict whose keys are tokens and values are token ids ranged
|
||||||
|
from 0 to len(keys) - 1.
|
||||||
|
"""
|
||||||
|
tokens: Dict[str, int] = dict()
|
||||||
|
tokens['<blk>'] = 0
|
||||||
|
tokens['<sos/eos>'] = 1
|
||||||
|
tokens['<unk>'] = 2
|
||||||
|
whitespace = re.compile(r"([ \t\r\n]+)")
|
||||||
|
with open(text_file, "r", encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
line = re.sub(whitespace, "", line)
|
||||||
|
chars = list(line)
|
||||||
|
for char in chars:
|
||||||
|
if not char in tokens:
|
||||||
|
tokens[char] = len(tokens)
|
||||||
|
return tokens
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
lang_dir = Path("data/lang_char")
|
||||||
|
text_file = lang_dir / "text"
|
||||||
|
|
||||||
|
word_sym_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||||
|
|
||||||
|
words = word_sym_table.symbols
|
||||||
|
|
||||||
|
excluded = ["<eps>", "!SIL", "<SPOKEN_NOISE>", "<UNK>", "#0", "<s>", "</s>"]
|
||||||
|
for w in excluded:
|
||||||
|
if w in words:
|
||||||
|
words.remove(w)
|
||||||
|
|
||||||
|
token_sym_table = generate_tokens(text_file)
|
||||||
|
|
||||||
|
lexicon = generate_lexicon(token_sym_table, words)
|
||||||
|
|
||||||
|
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||||
|
|
||||||
|
next_token_id = max(token_sym_table.values()) + 1
|
||||||
|
for i in range(max_disambig + 1):
|
||||||
|
disambig = f"#{i}"
|
||||||
|
assert disambig not in token_sym_table
|
||||||
|
token_sym_table[disambig] = next_token_id
|
||||||
|
next_token_id += 1
|
||||||
|
|
||||||
|
word_sym_table.add("#0")
|
||||||
|
word_sym_table.add("<s>")
|
||||||
|
word_sym_table.add("</s>")
|
||||||
|
|
||||||
|
write_mapping(lang_dir / "tokens.txt", token_sym_table)
|
||||||
|
|
||||||
|
write_lexicon(lang_dir / "lexicon.txt", lexicon)
|
||||||
|
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
||||||
|
|
||||||
|
L = lexicon_to_fst_no_sil(
|
||||||
|
lexicon,
|
||||||
|
token2id=token_sym_table,
|
||||||
|
word2id=word_sym_table,
|
||||||
|
)
|
||||||
|
|
||||||
|
L_disambig = lexicon_to_fst_no_sil(
|
||||||
|
lexicon_disambig,
|
||||||
|
token2id=token_sym_table,
|
||||||
|
word2id=word_sym_table,
|
||||||
|
need_self_loops=True,
|
||||||
|
)
|
||||||
|
torch.save(L.as_dict(), lang_dir / "L.pt")
|
||||||
|
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
381
egs/aishell/ASR/local/prepare_lang.py
Executable file
381
egs/aishell/ASR/local/prepare_lang.py
Executable file
@ -0,0 +1,381 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script takes as input a lexicon file "data/lang_phone/lexicon.txt"
|
||||||
|
consisting of words and tokens (i.e., phones) and does the following:
|
||||||
|
|
||||||
|
1. Add disambiguation symbols to the lexicon and generate lexicon_disambig.txt
|
||||||
|
|
||||||
|
2. Generate tokens.txt, the token table mapping a token to a unique integer.
|
||||||
|
|
||||||
|
3. Generate words.txt, the word table mapping a word to a unique integer.
|
||||||
|
|
||||||
|
4. Generate L.pt, in k2 format. It can be loaded by
|
||||||
|
|
||||||
|
d = torch.load("L.pt")
|
||||||
|
lexicon = k2.Fsa.from_dict(d)
|
||||||
|
|
||||||
|
5. Generate L_disambig.pt, in k2 format.
|
||||||
|
"""
|
||||||
|
import math
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict, List, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from icefall.lexicon import read_lexicon, write_lexicon
|
||||||
|
|
||||||
|
Lexicon = List[Tuple[str, List[str]]]
|
||||||
|
|
||||||
|
|
||||||
|
def write_mapping(filename: str, sym2id: Dict[str, int]) -> None:
|
||||||
|
"""Write a symbol to ID mapping to a file.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
No need to implement `read_mapping` as it can be done
|
||||||
|
through :func:`k2.SymbolTable.from_file`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
filename:
|
||||||
|
Filename to save the mapping.
|
||||||
|
sym2id:
|
||||||
|
A dict mapping symbols to IDs.
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
with open(filename, "w", encoding="utf-8") as f:
|
||||||
|
for sym, i in sym2id.items():
|
||||||
|
f.write(f"{sym} {i}\n")
|
||||||
|
|
||||||
|
|
||||||
|
def get_tokens(lexicon: Lexicon) -> List[str]:
|
||||||
|
"""Get tokens from a lexicon.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lexicon:
|
||||||
|
It is the return value of :func:`read_lexicon`.
|
||||||
|
Returns:
|
||||||
|
Return a list of unique tokens.
|
||||||
|
"""
|
||||||
|
ans = set()
|
||||||
|
for _, tokens in lexicon:
|
||||||
|
ans.update(tokens)
|
||||||
|
sorted_ans = sorted(list(ans))
|
||||||
|
return sorted_ans
|
||||||
|
|
||||||
|
|
||||||
|
def get_words(lexicon: Lexicon) -> List[str]:
|
||||||
|
"""Get words from a lexicon.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lexicon:
|
||||||
|
It is the return value of :func:`read_lexicon`.
|
||||||
|
Returns:
|
||||||
|
Return a list of unique words.
|
||||||
|
"""
|
||||||
|
ans = set()
|
||||||
|
for word, _ in lexicon:
|
||||||
|
ans.add(word)
|
||||||
|
sorted_ans = sorted(list(ans))
|
||||||
|
return sorted_ans
|
||||||
|
|
||||||
|
|
||||||
|
def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]:
|
||||||
|
"""It adds pseudo-token disambiguation symbols #1, #2 and so on
|
||||||
|
at the ends of tokens to ensure that all pronunciations are different,
|
||||||
|
and that none is a prefix of another.
|
||||||
|
|
||||||
|
See also add_lex_disambig.pl from kaldi.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lexicon:
|
||||||
|
It is returned by :func:`read_lexicon`.
|
||||||
|
Returns:
|
||||||
|
Return a tuple with two elements:
|
||||||
|
|
||||||
|
- The output lexicon with disambiguation symbols
|
||||||
|
- The ID of the max disambiguation symbol that appears
|
||||||
|
in the lexicon
|
||||||
|
"""
|
||||||
|
|
||||||
|
# (1) Work out the count of each token-sequence in the
|
||||||
|
# lexicon.
|
||||||
|
count = defaultdict(int)
|
||||||
|
for _, tokens in lexicon:
|
||||||
|
count[" ".join(tokens)] += 1
|
||||||
|
|
||||||
|
# (2) For each left sub-sequence of each token-sequence, note down
|
||||||
|
# that it exists (for identifying prefixes of longer strings).
|
||||||
|
issubseq = defaultdict(int)
|
||||||
|
for _, tokens in lexicon:
|
||||||
|
tokens = tokens.copy()
|
||||||
|
tokens.pop()
|
||||||
|
while tokens:
|
||||||
|
issubseq[" ".join(tokens)] = 1
|
||||||
|
tokens.pop()
|
||||||
|
|
||||||
|
# (3) For each entry in the lexicon:
|
||||||
|
# if the token sequence is unique and is not a
|
||||||
|
# prefix of another word, no disambig symbol.
|
||||||
|
# Else output #1, or #2, #3, ... if the same token-seq
|
||||||
|
# has already been assigned a disambig symbol.
|
||||||
|
ans = []
|
||||||
|
|
||||||
|
# We start with #1 since #0 has its own purpose
|
||||||
|
first_allowed_disambig = 1
|
||||||
|
max_disambig = first_allowed_disambig - 1
|
||||||
|
last_used_disambig_symbol_of = defaultdict(int)
|
||||||
|
|
||||||
|
for word, tokens in lexicon:
|
||||||
|
tokenseq = " ".join(tokens)
|
||||||
|
assert tokenseq != ""
|
||||||
|
if issubseq[tokenseq] == 0 and count[tokenseq] == 1:
|
||||||
|
ans.append((word, tokens))
|
||||||
|
continue
|
||||||
|
|
||||||
|
cur_disambig = last_used_disambig_symbol_of[tokenseq]
|
||||||
|
if cur_disambig == 0:
|
||||||
|
cur_disambig = first_allowed_disambig
|
||||||
|
else:
|
||||||
|
cur_disambig += 1
|
||||||
|
|
||||||
|
if cur_disambig > max_disambig:
|
||||||
|
max_disambig = cur_disambig
|
||||||
|
last_used_disambig_symbol_of[tokenseq] = cur_disambig
|
||||||
|
tokenseq += f" #{cur_disambig}"
|
||||||
|
ans.append((word, tokenseq.split()))
|
||||||
|
return ans, max_disambig
|
||||||
|
|
||||||
|
|
||||||
|
def generate_id_map(symbols: List[str]) -> Dict[str, int]:
|
||||||
|
"""Generate ID maps, i.e., map a symbol to a unique ID.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
symbols:
|
||||||
|
A list of unique symbols.
|
||||||
|
Returns:
|
||||||
|
A dict containing the mapping between symbols and IDs.
|
||||||
|
"""
|
||||||
|
return {sym: i for i, sym in enumerate(symbols)}
|
||||||
|
|
||||||
|
|
||||||
|
def add_self_loops(
|
||||||
|
arcs: List[List[Any]], disambig_token: int, disambig_word: int
|
||||||
|
) -> List[List[Any]]:
|
||||||
|
"""Adds self-loops to states of an FST to propagate disambiguation symbols
|
||||||
|
through it. They are added on each state with non-epsilon output symbols
|
||||||
|
on at least one arc out of the state.
|
||||||
|
|
||||||
|
See also fstaddselfloops.pl from Kaldi. One difference is that
|
||||||
|
Kaldi uses OpenFst style FSTs and it has multiple final states.
|
||||||
|
This function uses k2 style FSTs and it does not need to add self-loops
|
||||||
|
to the final state.
|
||||||
|
|
||||||
|
The input label of a self-loop is `disambig_token`, while the output
|
||||||
|
label is `disambig_word`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
arcs:
|
||||||
|
A list-of-list. The sublist contains
|
||||||
|
`[src_state, dest_state, label, aux_label, score]`
|
||||||
|
disambig_token:
|
||||||
|
It is the token ID of the symbol `#0`.
|
||||||
|
disambig_word:
|
||||||
|
It is the word ID of the symbol `#0`.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
Return new `arcs` containing self-loops.
|
||||||
|
"""
|
||||||
|
states_needs_self_loops = set()
|
||||||
|
for arc in arcs:
|
||||||
|
src, dst, ilabel, olabel, score = arc
|
||||||
|
if olabel != 0:
|
||||||
|
states_needs_self_loops.add(src)
|
||||||
|
|
||||||
|
ans = []
|
||||||
|
for s in states_needs_self_loops:
|
||||||
|
ans.append([s, s, disambig_token, disambig_word, 0])
|
||||||
|
|
||||||
|
return arcs + ans
|
||||||
|
|
||||||
|
|
||||||
|
def lexicon_to_fst(
|
||||||
|
lexicon: Lexicon,
|
||||||
|
token2id: Dict[str, int],
|
||||||
|
word2id: Dict[str, int],
|
||||||
|
sil_token: str = "SIL",
|
||||||
|
sil_prob: float = 0.5,
|
||||||
|
need_self_loops: bool = False,
|
||||||
|
) -> k2.Fsa:
|
||||||
|
"""Convert a lexicon to an FST (in k2 format) with optional silence at
|
||||||
|
the beginning and end of each word.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lexicon:
|
||||||
|
The input lexicon. See also :func:`read_lexicon`
|
||||||
|
token2id:
|
||||||
|
A dict mapping tokens to IDs.
|
||||||
|
word2id:
|
||||||
|
A dict mapping words to IDs.
|
||||||
|
sil_token:
|
||||||
|
The silence token.
|
||||||
|
sil_prob:
|
||||||
|
The probability for adding a silence at the beginning and end
|
||||||
|
of the word.
|
||||||
|
need_self_loops:
|
||||||
|
If True, add self-loop to states with non-epsilon output symbols
|
||||||
|
on at least one arc out of the state. The input label for this
|
||||||
|
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
||||||
|
Returns:
|
||||||
|
Return an instance of `k2.Fsa` representing the given lexicon.
|
||||||
|
"""
|
||||||
|
assert sil_prob > 0.0 and sil_prob < 1.0
|
||||||
|
# CAUTION: we use score, i.e, negative cost.
|
||||||
|
sil_score = math.log(sil_prob)
|
||||||
|
no_sil_score = math.log(1.0 - sil_prob)
|
||||||
|
|
||||||
|
start_state = 0
|
||||||
|
loop_state = 1 # words enter and leave from here
|
||||||
|
sil_state = 2 # words terminate here when followed by silence; this state
|
||||||
|
# has a silence transition to loop_state.
|
||||||
|
next_state = 3 # the next un-allocated state, will be incremented as we go.
|
||||||
|
arcs = []
|
||||||
|
|
||||||
|
assert token2id["<eps>"] == 0
|
||||||
|
assert word2id["<eps>"] == 0
|
||||||
|
|
||||||
|
eps = 0
|
||||||
|
|
||||||
|
sil_token = token2id[sil_token]
|
||||||
|
|
||||||
|
arcs.append([start_state, loop_state, eps, eps, no_sil_score])
|
||||||
|
arcs.append([start_state, sil_state, eps, eps, sil_score])
|
||||||
|
arcs.append([sil_state, loop_state, sil_token, eps, 0])
|
||||||
|
|
||||||
|
for word, tokens in lexicon:
|
||||||
|
assert len(tokens) > 0, f"{word} has no pronunciations"
|
||||||
|
cur_state = loop_state
|
||||||
|
|
||||||
|
word = word2id[word]
|
||||||
|
tokens = [token2id[i] for i in tokens]
|
||||||
|
|
||||||
|
for i in range(len(tokens) - 1):
|
||||||
|
w = word if i == 0 else eps
|
||||||
|
arcs.append([cur_state, next_state, tokens[i], w, 0])
|
||||||
|
|
||||||
|
cur_state = next_state
|
||||||
|
next_state += 1
|
||||||
|
|
||||||
|
# now for the last token of this word
|
||||||
|
# It has two out-going arcs, one to the loop state,
|
||||||
|
# the other one to the sil_state.
|
||||||
|
i = len(tokens) - 1
|
||||||
|
w = word if i == 0 else eps
|
||||||
|
arcs.append([cur_state, loop_state, tokens[i], w, no_sil_score])
|
||||||
|
arcs.append([cur_state, sil_state, tokens[i], w, sil_score])
|
||||||
|
|
||||||
|
if need_self_loops:
|
||||||
|
disambig_token = token2id["#0"]
|
||||||
|
disambig_word = word2id["#0"]
|
||||||
|
arcs = add_self_loops(
|
||||||
|
arcs,
|
||||||
|
disambig_token=disambig_token,
|
||||||
|
disambig_word=disambig_word,
|
||||||
|
)
|
||||||
|
|
||||||
|
final_state = next_state
|
||||||
|
arcs.append([loop_state, final_state, -1, -1, 0])
|
||||||
|
arcs.append([final_state])
|
||||||
|
|
||||||
|
arcs = sorted(arcs, key=lambda arc: arc[0])
|
||||||
|
arcs = [[str(i) for i in arc] for arc in arcs]
|
||||||
|
arcs = [" ".join(arc) for arc in arcs]
|
||||||
|
arcs = "\n".join(arcs)
|
||||||
|
|
||||||
|
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
||||||
|
return fsa
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
out_dir = Path("data/lang_phone")
|
||||||
|
lexicon_filename = out_dir / "lexicon.txt"
|
||||||
|
sil_token = "SIL"
|
||||||
|
sil_prob = 0.5
|
||||||
|
|
||||||
|
lexicon = read_lexicon(lexicon_filename)
|
||||||
|
tokens = get_tokens(lexicon)
|
||||||
|
words = get_words(lexicon)
|
||||||
|
|
||||||
|
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||||
|
|
||||||
|
for i in range(max_disambig + 1):
|
||||||
|
disambig = f"#{i}"
|
||||||
|
assert disambig not in tokens
|
||||||
|
tokens.append(f"#{i}")
|
||||||
|
|
||||||
|
assert "<eps>" not in tokens
|
||||||
|
tokens = ["<eps>"] + tokens
|
||||||
|
|
||||||
|
assert "<eps>" not in words
|
||||||
|
assert "#0" not in words
|
||||||
|
assert "<s>" not in words
|
||||||
|
assert "</s>" not in words
|
||||||
|
|
||||||
|
words = ["<eps>"] + words + ["#0", "<s>", "</s>"]
|
||||||
|
|
||||||
|
token2id = generate_id_map(tokens)
|
||||||
|
word2id = generate_id_map(words)
|
||||||
|
|
||||||
|
write_mapping(out_dir / "tokens.txt", token2id)
|
||||||
|
write_mapping(out_dir / "words.txt", word2id)
|
||||||
|
write_lexicon(out_dir / "lexicon_disambig.txt", lexicon_disambig)
|
||||||
|
|
||||||
|
L = lexicon_to_fst(
|
||||||
|
lexicon,
|
||||||
|
token2id=token2id,
|
||||||
|
word2id=word2id,
|
||||||
|
sil_token=sil_token,
|
||||||
|
sil_prob=sil_prob,
|
||||||
|
)
|
||||||
|
|
||||||
|
L_disambig = lexicon_to_fst(
|
||||||
|
lexicon_disambig,
|
||||||
|
token2id=token2id,
|
||||||
|
word2id=word2id,
|
||||||
|
sil_token=sil_token,
|
||||||
|
sil_prob=sil_prob,
|
||||||
|
need_self_loops=True,
|
||||||
|
)
|
||||||
|
torch.save(L.as_dict(), out_dir / "L.pt")
|
||||||
|
torch.save(L_disambig.as_dict(), out_dir / "L_disambig.pt")
|
||||||
|
|
||||||
|
if False:
|
||||||
|
# Just for debugging, will remove it
|
||||||
|
L.labels_sym = k2.SymbolTable.from_file(out_dir / "tokens.txt")
|
||||||
|
L.aux_labels_sym = k2.SymbolTable.from_file(out_dir / "words.txt")
|
||||||
|
L_disambig.labels_sym = L.labels_sym
|
||||||
|
L_disambig.aux_labels_sym = L.aux_labels_sym
|
||||||
|
L.draw(out_dir / "L.png", title="L")
|
||||||
|
L_disambig.draw(out_dir / "L_disambig.png", title="L_disambig")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
106
egs/aishell/ASR/local/test_prepare_lang.py
Executable file
106
egs/aishell/ASR/local/test_prepare_lang.py
Executable file
@ -0,0 +1,106 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||||
|
|
||||||
|
import os
|
||||||
|
import tempfile
|
||||||
|
|
||||||
|
import k2
|
||||||
|
from prepare_lang import (
|
||||||
|
add_disambig_symbols,
|
||||||
|
generate_id_map,
|
||||||
|
get_phones,
|
||||||
|
get_words,
|
||||||
|
lexicon_to_fst,
|
||||||
|
read_lexicon,
|
||||||
|
write_lexicon,
|
||||||
|
write_mapping,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_lexicon_file() -> str:
|
||||||
|
fd, filename = tempfile.mkstemp()
|
||||||
|
os.close(fd)
|
||||||
|
s = """
|
||||||
|
!SIL SIL
|
||||||
|
<SPOKEN_NOISE> SPN
|
||||||
|
<UNK> SPN
|
||||||
|
f f
|
||||||
|
a a
|
||||||
|
foo f o o
|
||||||
|
bar b a r
|
||||||
|
bark b a r k
|
||||||
|
food f o o d
|
||||||
|
food2 f o o d
|
||||||
|
fo f o
|
||||||
|
""".strip()
|
||||||
|
with open(filename, "w") as f:
|
||||||
|
f.write(s)
|
||||||
|
return filename
|
||||||
|
|
||||||
|
|
||||||
|
def test_read_lexicon(filename: str):
|
||||||
|
lexicon = read_lexicon(filename)
|
||||||
|
phones = get_phones(lexicon)
|
||||||
|
words = get_words(lexicon)
|
||||||
|
print(lexicon)
|
||||||
|
print(phones)
|
||||||
|
print(words)
|
||||||
|
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||||
|
print(lexicon_disambig)
|
||||||
|
print("max disambig:", f"#{max_disambig}")
|
||||||
|
|
||||||
|
phones = ["<eps>", "SIL", "SPN"] + phones
|
||||||
|
for i in range(max_disambig + 1):
|
||||||
|
phones.append(f"#{i}")
|
||||||
|
words = ["<eps>"] + words
|
||||||
|
|
||||||
|
phone2id = generate_id_map(phones)
|
||||||
|
word2id = generate_id_map(words)
|
||||||
|
|
||||||
|
print(phone2id)
|
||||||
|
print(word2id)
|
||||||
|
|
||||||
|
write_mapping("phones.txt", phone2id)
|
||||||
|
write_mapping("words.txt", word2id)
|
||||||
|
|
||||||
|
write_lexicon("a.txt", lexicon)
|
||||||
|
write_lexicon("a_disambig.txt", lexicon_disambig)
|
||||||
|
|
||||||
|
fsa = lexicon_to_fst(lexicon, phone2id=phone2id, word2id=word2id)
|
||||||
|
fsa.labels_sym = k2.SymbolTable.from_file("phones.txt")
|
||||||
|
fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
||||||
|
fsa.draw("L.pdf", title="L")
|
||||||
|
|
||||||
|
fsa_disambig = lexicon_to_fst(
|
||||||
|
lexicon_disambig, phone2id=phone2id, word2id=word2id
|
||||||
|
)
|
||||||
|
fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt")
|
||||||
|
fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
||||||
|
fsa_disambig.draw("L_disambig.pdf", title="L_disambig")
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
filename = generate_lexicon_file()
|
||||||
|
test_read_lexicon(filename)
|
||||||
|
os.remove(filename)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
162
egs/aishell/ASR/prepare.sh
Executable file
162
egs/aishell/ASR/prepare.sh
Executable file
@ -0,0 +1,162 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -eou pipefail
|
||||||
|
|
||||||
|
nj=15
|
||||||
|
stage=6
|
||||||
|
stop_stage=10
|
||||||
|
|
||||||
|
# We assume dl_dir (download dir) contains the following
|
||||||
|
# directories and files. If not, they will be downloaded
|
||||||
|
# by this script automatically.
|
||||||
|
#
|
||||||
|
# - $dl_dir/aishell
|
||||||
|
# You can data_aishell, resource_aishell inside it.
|
||||||
|
# You can download them from https://www.openslr.org/33
|
||||||
|
#
|
||||||
|
# - $dl_dir/lm
|
||||||
|
# This directory contains the language model downloaded from
|
||||||
|
# https://huggingface.co/pkufool/aishell_lm
|
||||||
|
#
|
||||||
|
# - 3-gram.unpruned.apra
|
||||||
|
#
|
||||||
|
# - $dl_dir/musan
|
||||||
|
# This directory contains the following directories downloaded from
|
||||||
|
# http://www.openslr.org/17/
|
||||||
|
#
|
||||||
|
# - music
|
||||||
|
# - noise
|
||||||
|
# - speech
|
||||||
|
dl_dir=$PWD/download
|
||||||
|
|
||||||
|
. shared/parse_options.sh || exit 1
|
||||||
|
|
||||||
|
# All files generated by this script are saved in "data".
|
||||||
|
# You can safely remove "data" and rerun this script to regenerate it.
|
||||||
|
mkdir -p data
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
log "dl_dir: $dl_dir"
|
||||||
|
|
||||||
|
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
||||||
|
log "stage -1: Download LM"
|
||||||
|
# We assume that you have installed the git-lfs, if not, you could install it
|
||||||
|
# using: `sudo apt-get install git-lfs && git-lfs install`
|
||||||
|
[ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm
|
||||||
|
git clone https://huggingface.co/pkufool/aishell_lm $dl_dir/lm
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||||
|
log "stage 0: Download data"
|
||||||
|
|
||||||
|
# If you have pre-downloaded it to /path/to/aishell,
|
||||||
|
# you can create a symlink
|
||||||
|
#
|
||||||
|
# ln -sfv /path/to/aishell $dl_dir/aishell
|
||||||
|
#
|
||||||
|
# The directory structure is
|
||||||
|
# aishell/
|
||||||
|
# |-- data_aishell
|
||||||
|
# | |-- transcript
|
||||||
|
# | `-- wav
|
||||||
|
# `-- resource_aishell
|
||||||
|
# |-- lexicon.txt
|
||||||
|
# `-- speaker.info
|
||||||
|
|
||||||
|
if [ ! -d $dl_dir/aishell/wav ]; then
|
||||||
|
lhotse download aishell $dl_dir
|
||||||
|
fi
|
||||||
|
|
||||||
|
# If you have pre-downloaded it to /path/to/musan,
|
||||||
|
# you can create a symlink
|
||||||
|
#
|
||||||
|
# ln -sfv /path/to/musan $dl_dir/musan
|
||||||
|
#
|
||||||
|
if [ ! -d $dl_dir/musan ]; then
|
||||||
|
lhotse download musan $dl_dir
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||||
|
log "Stage 1: Prepare aishell manifest"
|
||||||
|
# We assume that you have downloaded the aishell corpus
|
||||||
|
# to $dl_dir/aishell
|
||||||
|
mkdir -p data/manifests
|
||||||
|
lhotse prepare aishell -j $nj $dl_dir/aishell data/manifests
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||||
|
log "Stage 2: Prepare musan manifest"
|
||||||
|
# We assume that you have downloaded the musan corpus
|
||||||
|
# to data/musan
|
||||||
|
mkdir -p data/manifests
|
||||||
|
lhotse prepare musan $dl_dir/musan data/manifests
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||||
|
log "Stage 3: Compute fbank for aishell"
|
||||||
|
mkdir -p data/fbank
|
||||||
|
./local/compute_fbank_aishell.py
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||||
|
log "Stage 4: Compute fbank for musan"
|
||||||
|
mkdir -p data/fbank
|
||||||
|
./local/compute_fbank_musan.py
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||||
|
log "Stage 5: Prepare phone based lang"
|
||||||
|
mkdir -p data/lang_phone
|
||||||
|
|
||||||
|
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
|
||||||
|
cat - $dl_dir/aishell/resource_aishell/lexicon.txt |
|
||||||
|
sort | uniq > data/lang_phone/lexicon.txt
|
||||||
|
|
||||||
|
if [ ! -f data/lang_phone/L_disambig.pt ]; then
|
||||||
|
./local/prepare_lang.py
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||||
|
log "Stage 6: Prepare char based lang"
|
||||||
|
mkdir -p data/lang_char
|
||||||
|
# We reuse words.txt from phone based lexicon
|
||||||
|
# so that the two can share G.pt later.
|
||||||
|
cp data/lang_phone/words.txt data/lang_char
|
||||||
|
|
||||||
|
cat $dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt |
|
||||||
|
cut -d " " -f 2- | sed -e 's/[ \t\r\n]*//g' > data/lang_char/text
|
||||||
|
|
||||||
|
if [ ! -f data/lang_char/L_disambig.pt ]; then
|
||||||
|
./local/prepare_char.py
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||||
|
log "Stage 7: Prepare G"
|
||||||
|
# We assume you have install kaldilm, if not, please install
|
||||||
|
# it using: pip install kaldilm
|
||||||
|
|
||||||
|
mkdir -p data/lm
|
||||||
|
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
|
||||||
|
# It is used in building HLG
|
||||||
|
python3 -m kaldilm \
|
||||||
|
--read-symbol-table="data/lang_phone/words.txt" \
|
||||||
|
--disambig-symbol='#0' \
|
||||||
|
--max-order=3 \
|
||||||
|
$dl_dir/lm/3-gram.unpruned.arpa > data/lm/G_3_gram.fst.txt
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||||
|
log "Stage 8: Compile HLG"
|
||||||
|
./local/compile_hlg.py --lang-dir data/lang_phone
|
||||||
|
./local/compile_hlg.py --lang-dir data/lang_char
|
||||||
|
fi
|
||||||
|
|
1
egs/aishell/ASR/shared
Symbolic link
1
egs/aishell/ASR/shared
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../icefall/shared/
|
4
egs/aishell/ASR/tdnn_lstm_ctc/README.md
Normal file
4
egs/aishell/ASR/tdnn_lstm_ctc/README.md
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
|
||||||
|
Please visit
|
||||||
|
<https://icefall.readthedocs.io/en/latest/recipes/aishell/tdnn_lstm_ctc.html>
|
||||||
|
for how to run this recipe.
|
0
egs/aishell/ASR/tdnn_lstm_ctc/__init__.py
Normal file
0
egs/aishell/ASR/tdnn_lstm_ctc/__init__.py
Normal file
335
egs/aishell/ASR/tdnn_lstm_ctc/asr_datamodule.py
Normal file
335
egs/aishell/ASR/tdnn_lstm_ctc/asr_datamodule.py
Normal file
@ -0,0 +1,335 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from functools import lru_cache
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import List, Union
|
||||||
|
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
||||||
|
from lhotse.dataset import (
|
||||||
|
BucketingSampler,
|
||||||
|
CutConcatenate,
|
||||||
|
CutMix,
|
||||||
|
K2SpeechRecognitionDataset,
|
||||||
|
PrecomputedFeatures,
|
||||||
|
SingleCutSampler,
|
||||||
|
SpecAugment,
|
||||||
|
)
|
||||||
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
from icefall.dataset.datamodule import DataModule
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
class AishellAsrDataModule(DataModule):
|
||||||
|
"""
|
||||||
|
DataModule for k2 ASR experiments.
|
||||||
|
It assumes there is always one train and valid dataloader,
|
||||||
|
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||||
|
and test-other).
|
||||||
|
|
||||||
|
It contains all the common data pipeline modules used in ASR
|
||||||
|
experiments, e.g.:
|
||||||
|
- dynamic batch size,
|
||||||
|
- bucketing samplers,
|
||||||
|
- cut concatenation,
|
||||||
|
- augmentation,
|
||||||
|
- on-the-fly feature extraction
|
||||||
|
"""
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
super().add_arguments(parser)
|
||||||
|
group = parser.add_argument_group(
|
||||||
|
title="ASR data related options",
|
||||||
|
description="These options are used for the preparation of "
|
||||||
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
|
"augmentations, etc.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--feature-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/fbank"),
|
||||||
|
help="Path to directory with train/valid/test cuts.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--max-duration",
|
||||||
|
type=int,
|
||||||
|
default=500.0,
|
||||||
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--bucketing-sampler",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--num-buckets",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="The number of buckets for the BucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--concatenate-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, utterances (cuts) will be concatenated "
|
||||||
|
"to minimize the amount of padding.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--duration-factor",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="Determines the maximum duration of a concatenated cut "
|
||||||
|
"relative to the duration of the longest cut in a batch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--gap",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="The amount of padding (in seconds) inserted between "
|
||||||
|
"concatenated cuts. This padding is filled with noise when "
|
||||||
|
"noise augmentation is used.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-feats",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, use on-the-fly cut mixing and feature "
|
||||||
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
|
"if available.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--return-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, each batch will have the "
|
||||||
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
|
"were used to construct it.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The number of training dataloader workers that "
|
||||||
|
"collect the batches.",
|
||||||
|
)
|
||||||
|
|
||||||
|
def train_dataloaders(self) -> DataLoader:
|
||||||
|
logging.info("About to get train cuts")
|
||||||
|
cuts_train = self.train_cuts()
|
||||||
|
|
||||||
|
logging.info("About to get Musan cuts")
|
||||||
|
cuts_musan = load_manifest(self.args.feature_dir / "cuts_musan.json.gz")
|
||||||
|
|
||||||
|
logging.info("About to create train dataset")
|
||||||
|
transforms = [CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20))]
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
logging.info(
|
||||||
|
f"Using cut concatenation with duration factor "
|
||||||
|
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||||
|
)
|
||||||
|
# Cut concatenation should be the first transform in the list,
|
||||||
|
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||||
|
# different utterances.
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
input_transforms = [
|
||||||
|
SpecAugment(
|
||||||
|
num_frame_masks=2,
|
||||||
|
features_mask_size=27,
|
||||||
|
num_feature_masks=2,
|
||||||
|
frames_mask_size=100,
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
# NOTE: the PerturbSpeed transform should be added only if we
|
||||||
|
# remove it from data prep stage.
|
||||||
|
# Add on-the-fly speed perturbation; since originally it would
|
||||||
|
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||||
|
# 3x more epochs.
|
||||||
|
# Speed perturbation probably should come first before
|
||||||
|
# concatenation, but in principle the transforms order doesn't have
|
||||||
|
# to be strict (e.g. could be randomized)
|
||||||
|
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||||
|
# Drop feats to be on the safe side.
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(
|
||||||
|
Fbank(FbankConfig(num_mel_bins=80))
|
||||||
|
),
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.bucketing_sampler:
|
||||||
|
logging.info("Using BucketingSampler.")
|
||||||
|
train_sampler = BucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
bucket_method="equal_duration",
|
||||||
|
drop_last=True,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Using SingleCutSampler.")
|
||||||
|
train_sampler = SingleCutSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
)
|
||||||
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
|
train_dl = DataLoader(
|
||||||
|
train,
|
||||||
|
sampler=train_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return train_dl
|
||||||
|
|
||||||
|
def valid_dataloaders(self) -> DataLoader:
|
||||||
|
logging.info("About to get dev cuts")
|
||||||
|
cuts_valid = self.valid_cuts()
|
||||||
|
|
||||||
|
transforms = []
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
logging.info("About to create dev dataset")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(
|
||||||
|
Fbank(FbankConfig(num_mel_bins=80))
|
||||||
|
),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
valid_sampler = SingleCutSampler(
|
||||||
|
cuts_valid,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.info("About to create dev dataloader")
|
||||||
|
valid_dl = DataLoader(
|
||||||
|
validate,
|
||||||
|
sampler=valid_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=2,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return valid_dl
|
||||||
|
|
||||||
|
def test_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
|
||||||
|
cuts = self.test_cuts()
|
||||||
|
is_list = isinstance(cuts, list)
|
||||||
|
test_loaders = []
|
||||||
|
if not is_list:
|
||||||
|
cuts = [cuts]
|
||||||
|
|
||||||
|
for cuts_test in cuts:
|
||||||
|
logging.debug("About to create test dataset")
|
||||||
|
test = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=OnTheFlyFeatures(
|
||||||
|
Fbank(FbankConfig(num_mel_bins=80))
|
||||||
|
)
|
||||||
|
if self.args.on_the_fly_feats
|
||||||
|
else PrecomputedFeatures(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
sampler = SingleCutSampler(
|
||||||
|
cuts_test, max_duration=self.args.max_duration
|
||||||
|
)
|
||||||
|
logging.debug("About to create test dataloader")
|
||||||
|
test_dl = DataLoader(
|
||||||
|
test, batch_size=None, sampler=sampler, num_workers=1
|
||||||
|
)
|
||||||
|
test_loaders.append(test_dl)
|
||||||
|
|
||||||
|
if is_list:
|
||||||
|
return test_loaders
|
||||||
|
else:
|
||||||
|
return test_loaders[0]
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train cuts")
|
||||||
|
cuts_train = load_manifest(
|
||||||
|
self.args.feature_dir / "cuts_train.json.gz"
|
||||||
|
)
|
||||||
|
return cuts_train
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def valid_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get dev cuts")
|
||||||
|
cuts_valid = load_manifest(
|
||||||
|
self.args.feature_dir / "cuts_dev.json.gz"
|
||||||
|
)
|
||||||
|
return cuts_valid
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_cuts(self) -> List[CutSet]:
|
||||||
|
test_sets = ["test"]
|
||||||
|
cuts = []
|
||||||
|
for test_set in test_sets:
|
||||||
|
logging.debug("About to get test cuts")
|
||||||
|
cuts.append(
|
||||||
|
load_manifest(
|
||||||
|
self.args.feature_dir / f"cuts_{test_set}.json.gz"
|
||||||
|
)
|
||||||
|
)
|
||||||
|
return cuts
|
379
egs/aishell/ASR/tdnn_lstm_ctc/decode.py
Executable file
379
egs/aishell/ASR/tdnn_lstm_ctc/decode.py
Executable file
@ -0,0 +1,379 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import AishellAsrDataModule
|
||||||
|
from model import TdnnLstm
|
||||||
|
|
||||||
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
|
from icefall.decode import (
|
||||||
|
get_lattice,
|
||||||
|
nbest_decoding,
|
||||||
|
one_best_decoding,
|
||||||
|
rescore_with_attention_decoder,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
get_texts,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=19,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=5,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--export",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""When enabled, the averaged model is saved to
|
||||||
|
tdnn/exp/pretrained.pt. Note: only model.state_dict() is saved.
|
||||||
|
pretrained.pt contains a dict {"model": model.state_dict()},
|
||||||
|
which can be loaded by `icefall.checkpoint.load_checkpoint()`.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"exp_dir": Path("tdnn_lstm_ctc/exp_lr1e-4/"),
|
||||||
|
"lang_dir": Path("data/lang_phone"),
|
||||||
|
"lm_dir": Path("data/lm"),
|
||||||
|
"feature_dim": 80,
|
||||||
|
"subsampling_factor": 3,
|
||||||
|
"search_beam": 20,
|
||||||
|
"output_beam": 5,
|
||||||
|
"min_active_states": 30,
|
||||||
|
"max_active_states": 10000,
|
||||||
|
"use_double_scores": True,
|
||||||
|
# Possible values for method:
|
||||||
|
# - 1best
|
||||||
|
# - nbest
|
||||||
|
"method": "nbest",
|
||||||
|
# num_paths is used when method is "nbest"
|
||||||
|
"num_paths": 30,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
HLG: k2.Fsa,
|
||||||
|
batch: dict,
|
||||||
|
lexicon: Lexicon,
|
||||||
|
) -> Dict[str, List[List[int]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if the decoding method is 1best, the key is the string
|
||||||
|
`no_rescore`. If the decoding method is nbest, the key is the
|
||||||
|
string `no_rescore-xxx`, xxx is the num_paths.
|
||||||
|
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
|
||||||
|
- params.method is "1best", it uses 1best decoding without LM rescoring.
|
||||||
|
- params.method is "nbest", it uses nbest decoding without LM rescoring.
|
||||||
|
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
HLG:
|
||||||
|
The decoding graph.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
lexicon:
|
||||||
|
It contains word symbol table.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = HLG.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is [N, T, C]
|
||||||
|
|
||||||
|
feature = feature.permute(0, 2, 1) # now feature is [N, C, T]
|
||||||
|
|
||||||
|
nnet_output = model(feature)
|
||||||
|
# nnet_output is [N, T, C]
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
|
||||||
|
supervision_segments = torch.stack(
|
||||||
|
(
|
||||||
|
supervisions["sequence_idx"],
|
||||||
|
supervisions["start_frame"] // params.subsampling_factor,
|
||||||
|
supervisions["num_frames"] // params.subsampling_factor,
|
||||||
|
),
|
||||||
|
1,
|
||||||
|
).to(torch.int32)
|
||||||
|
|
||||||
|
lattice = get_lattice(
|
||||||
|
nnet_output=nnet_output,
|
||||||
|
HLG=HLG,
|
||||||
|
supervision_segments=supervision_segments,
|
||||||
|
search_beam=params.search_beam,
|
||||||
|
output_beam=params.output_beam,
|
||||||
|
min_active_states=params.min_active_states,
|
||||||
|
max_active_states=params.max_active_states,
|
||||||
|
)
|
||||||
|
|
||||||
|
assert params.method in ["1best", "nbest"]
|
||||||
|
if params.method == "1best":
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
key = "no_rescore"
|
||||||
|
else:
|
||||||
|
best_path = nbest_decoding(
|
||||||
|
lattice=lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
use_double_scores=params.use_double_scores,
|
||||||
|
)
|
||||||
|
key = f"no_rescore-{params.num_paths}"
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||||
|
return {key: hyps}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
HLG: k2.Fsa,
|
||||||
|
lexicon: Lexicon,
|
||||||
|
) -> Dict[str, List[Tuple[List[int], List[int]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
HLG:
|
||||||
|
The decoding graph.
|
||||||
|
lexicon:
|
||||||
|
It contains word symbol table.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "no-rescore" if decoding method is 1best,
|
||||||
|
or it may be "no-rescoer-100" if decoding method is nbest.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
results = []
|
||||||
|
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
HLG=HLG,
|
||||||
|
batch=batch,
|
||||||
|
lexicon=lexicon,
|
||||||
|
)
|
||||||
|
|
||||||
|
for lm_scale, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for hyp_words, ref_text in zip(hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((ref_words, hyp_words))
|
||||||
|
|
||||||
|
results[lm_scale].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
if batch_idx % 100 == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||||
|
)
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(f, f"{test_set_name}-{key}", results)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt"
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AishellAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-decode")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
max_phone_id = max(lexicon.tokens)
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
HLG = k2.Fsa.from_dict(
|
||||||
|
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
|
||||||
|
)
|
||||||
|
HLG = HLG.to(device)
|
||||||
|
assert HLG.requires_grad is False
|
||||||
|
|
||||||
|
if not hasattr(HLG, "lm_scores"):
|
||||||
|
HLG.lm_scores = HLG.scores.clone()
|
||||||
|
|
||||||
|
model = TdnnLstm(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
num_classes=max_phone_id + 1, # +1 for the blank symbol
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
)
|
||||||
|
if params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.load_state_dict(average_checkpoints(filenames))
|
||||||
|
|
||||||
|
if params.export:
|
||||||
|
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
||||||
|
torch.save(
|
||||||
|
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
aishell = AishellAsrDataModule(args)
|
||||||
|
# CAUTION: `test_sets` is for displaying only.
|
||||||
|
# If you want to skip test-clean, you have to skip
|
||||||
|
# it inside the for loop. That is, use
|
||||||
|
#
|
||||||
|
# if test_set == 'test-clean': continue
|
||||||
|
#
|
||||||
|
test_sets = ["test"]
|
||||||
|
for test_set, test_dl in zip(test_sets, aishell.test_dataloaders()):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
HLG=HLG,
|
||||||
|
lexicon=lexicon,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params, test_set_name=test_set, results_dict=results_dict
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
103
egs/aishell/ASR/tdnn_lstm_ctc/model.py
Normal file
103
egs/aishell/ASR/tdnn_lstm_ctc/model.py
Normal file
@ -0,0 +1,103 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
class TdnnLstm(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self, num_features: int, num_classes: int, subsampling_factor: int = 3
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
num_features:
|
||||||
|
The input dimension of the model.
|
||||||
|
num_classes:
|
||||||
|
The output dimension of the model.
|
||||||
|
subsampling_factor:
|
||||||
|
It reduces the number of output frames by this factor.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.num_features = num_features
|
||||||
|
self.num_classes = num_classes
|
||||||
|
self.subsampling_factor = subsampling_factor
|
||||||
|
self.tdnn = nn.Sequential(
|
||||||
|
nn.Conv1d(
|
||||||
|
in_channels=num_features,
|
||||||
|
out_channels=500,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1,
|
||||||
|
),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.BatchNorm1d(num_features=500, affine=False),
|
||||||
|
nn.Conv1d(
|
||||||
|
in_channels=500,
|
||||||
|
out_channels=500,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1,
|
||||||
|
),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.BatchNorm1d(num_features=500, affine=False),
|
||||||
|
nn.Conv1d(
|
||||||
|
in_channels=500,
|
||||||
|
out_channels=500,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=self.subsampling_factor, # stride: subsampling_factor!
|
||||||
|
padding=1,
|
||||||
|
),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.BatchNorm1d(num_features=500, affine=False),
|
||||||
|
)
|
||||||
|
self.lstms = nn.ModuleList(
|
||||||
|
[
|
||||||
|
nn.LSTM(input_size=500, hidden_size=500, num_layers=1)
|
||||||
|
for _ in range(5)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
self.lstm_bnorms = nn.ModuleList(
|
||||||
|
[nn.BatchNorm1d(num_features=500, affine=False) for _ in range(5)]
|
||||||
|
)
|
||||||
|
self.dropout = nn.Dropout(0.2)
|
||||||
|
self.linear = nn.Linear(in_features=500, out_features=self.num_classes)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
Its shape is [N, C, T]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The output tensor has shape [N, T, C]
|
||||||
|
"""
|
||||||
|
x = self.tdnn(x)
|
||||||
|
x = x.permute(2, 0, 1) # (N, C, T) -> (T, N, C) -> how LSTM expects it
|
||||||
|
for lstm, bnorm in zip(self.lstms, self.lstm_bnorms):
|
||||||
|
x_new, _ = lstm(x)
|
||||||
|
x_new = bnorm(x_new.permute(1, 2, 0)).permute(
|
||||||
|
2, 0, 1
|
||||||
|
) # (T, N, C) -> (N, C, T) -> (T, N, C)
|
||||||
|
x_new = self.dropout(x_new)
|
||||||
|
x = x_new + x # skip connections
|
||||||
|
x = x.transpose(
|
||||||
|
1, 0
|
||||||
|
) # (T, N, C) -> (N, T, C) -> linear expects "features" in the last dim
|
||||||
|
x = self.linear(x)
|
||||||
|
x = nn.functional.log_softmax(x, dim=-1)
|
||||||
|
return x
|
616
egs/aishell/ASR/tdnn_lstm_ctc/train.py
Executable file
616
egs/aishell/ASR/tdnn_lstm_ctc/train.py
Executable file
@ -0,0 +1,616 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from shutil import copyfile
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
from asr_datamodule import AishellAsrDataModule
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from model import TdnnLstm
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from torch.nn.utils import clip_grad_norm_
|
||||||
|
from torch.optim.lr_scheduler import StepLR
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
|
||||||
|
from icefall.checkpoint import load_checkpoint
|
||||||
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||||
|
from icefall.dist import cleanup_dist, setup_dist
|
||||||
|
from icefall.graph_compiler import CtcTrainingGraphCompiler
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
encode_supervisions,
|
||||||
|
setup_logger,
|
||||||
|
str2bool,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--world-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of GPUs for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--master-port",
|
||||||
|
type=int,
|
||||||
|
default=12354,
|
||||||
|
help="Master port to use for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tensorboard",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Should various information be logged in tensorboard.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-epochs",
|
||||||
|
type=int,
|
||||||
|
default=20,
|
||||||
|
help="Number of epochs to train.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start-epoch",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""Resume training from from this epoch.
|
||||||
|
If it is positive, it will load checkpoint from
|
||||||
|
tdnn_lstm_ctc/exp/epoch-{start_epoch-1}.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
"""Return a dict containing training parameters.
|
||||||
|
|
||||||
|
All training related parameters that are not passed from the commandline
|
||||||
|
is saved in the variable `params`.
|
||||||
|
|
||||||
|
Commandline options are merged into `params` after they are parsed, so
|
||||||
|
you can also access them via `params`.
|
||||||
|
|
||||||
|
Explanation of options saved in `params`:
|
||||||
|
|
||||||
|
- exp_dir: It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
|
||||||
|
- lang_dir: It contains language related input files such as
|
||||||
|
"lexicon.txt"
|
||||||
|
|
||||||
|
- lr: It specifies the initial learning rate
|
||||||
|
|
||||||
|
- feature_dim: The model input dim. It has to match the one used
|
||||||
|
in computing features.
|
||||||
|
|
||||||
|
- weight_decay: The weight_decay for the optimizer.
|
||||||
|
|
||||||
|
- subsampling_factor: The subsampling factor for the model.
|
||||||
|
|
||||||
|
- best_train_loss: Best training loss so far. It is used to select
|
||||||
|
the model that has the lowest training loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_valid_loss: Best validation loss so far. It is used to select
|
||||||
|
the model that has the lowest validation loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_train_epoch: It is the epoch that has the best training loss.
|
||||||
|
|
||||||
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||||
|
|
||||||
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||||
|
contains number of batches trained so far across
|
||||||
|
epochs.
|
||||||
|
|
||||||
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||||
|
|
||||||
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||||
|
|
||||||
|
- valid_interval: Run validation if batch_idx % valid_interval` is 0
|
||||||
|
|
||||||
|
- beam_size: It is used in k2.ctc_loss
|
||||||
|
|
||||||
|
- reduction: It is used in k2.ctc_loss
|
||||||
|
|
||||||
|
- use_double_scores: It is used in k2.ctc_loss
|
||||||
|
"""
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"exp_dir": Path("tdnn_lstm_ctc/exp_lr1e-4"),
|
||||||
|
"lang_dir": Path("data/lang_phone"),
|
||||||
|
"lr": 1e-4,
|
||||||
|
"feature_dim": 80,
|
||||||
|
"weight_decay": 5e-4,
|
||||||
|
"subsampling_factor": 3,
|
||||||
|
"best_train_loss": float("inf"),
|
||||||
|
"best_valid_loss": float("inf"),
|
||||||
|
"best_train_epoch": -1,
|
||||||
|
"best_valid_epoch": -1,
|
||||||
|
"batch_idx_train": 0,
|
||||||
|
"log_interval": 10,
|
||||||
|
"reset_interval": 200,
|
||||||
|
"valid_interval": 1000,
|
||||||
|
"beam_size": 10,
|
||||||
|
"reduction": "sum",
|
||||||
|
"use_double_scores": True,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def load_checkpoint_if_available(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||||
|
) -> None:
|
||||||
|
"""Load checkpoint from file.
|
||||||
|
|
||||||
|
If params.start_epoch is positive, it will load the checkpoint from
|
||||||
|
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||||
|
|
||||||
|
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||||
|
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||||
|
and `best_valid_loss` in `params`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
The return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
optimizer:
|
||||||
|
The optimizer that we are using.
|
||||||
|
scheduler:
|
||||||
|
The learning rate scheduler we are using.
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
if params.start_epoch <= 0:
|
||||||
|
return
|
||||||
|
|
||||||
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||||
|
saved_params = load_checkpoint(
|
||||||
|
filename,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
)
|
||||||
|
|
||||||
|
keys = [
|
||||||
|
"best_train_epoch",
|
||||||
|
"best_valid_epoch",
|
||||||
|
"batch_idx_train",
|
||||||
|
"best_train_loss",
|
||||||
|
"best_valid_loss",
|
||||||
|
]
|
||||||
|
for k in keys:
|
||||||
|
params[k] = saved_params[k]
|
||||||
|
|
||||||
|
return saved_params
|
||||||
|
|
||||||
|
|
||||||
|
def save_checkpoint(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
scheduler: torch.optim.lr_scheduler._LRScheduler,
|
||||||
|
rank: int = 0,
|
||||||
|
) -> None:
|
||||||
|
"""Save model, optimizer, scheduler and training stats to file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
"""
|
||||||
|
if rank != 0:
|
||||||
|
return
|
||||||
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||||
|
save_checkpoint_impl(
|
||||||
|
filename=filename,
|
||||||
|
model=model,
|
||||||
|
params=params,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.best_train_epoch == params.cur_epoch:
|
||||||
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_train_filename)
|
||||||
|
|
||||||
|
if params.best_valid_epoch == params.cur_epoch:
|
||||||
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_valid_filename)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
batch: dict,
|
||||||
|
graph_compiler: CtcTrainingGraphCompiler,
|
||||||
|
is_training: bool,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Compute CTC loss given the model and its inputs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
Parameters for training. See :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training. It is an instance of TdnnLstm in our case.
|
||||||
|
batch:
|
||||||
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||||
|
for the content in it.
|
||||||
|
graph_compiler:
|
||||||
|
It is used to build a decoding graph from a ctc topo and training
|
||||||
|
transcript. The training transcript is contained in the given `batch`,
|
||||||
|
while the ctc topo is built when this compiler is instantiated.
|
||||||
|
is_training:
|
||||||
|
True for training. False for validation. When it is True, this
|
||||||
|
function enables autograd during computation; when it is False, it
|
||||||
|
disables autograd.
|
||||||
|
"""
|
||||||
|
device = graph_compiler.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
# at entry, feature is [N, T, C]
|
||||||
|
feature = feature.permute(0, 2, 1) # now feature is [N, C, T]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
|
||||||
|
with torch.set_grad_enabled(is_training):
|
||||||
|
nnet_output = model(feature)
|
||||||
|
# nnet_output is [N, T, C]
|
||||||
|
|
||||||
|
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||||
|
# different duration in decreasing order, required by
|
||||||
|
# `k2.intersect_dense` called in `k2.ctc_loss`
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
supervision_segments, texts = encode_supervisions(
|
||||||
|
supervisions, subsampling_factor=params.subsampling_factor
|
||||||
|
)
|
||||||
|
decoding_graph = graph_compiler.compile(texts)
|
||||||
|
|
||||||
|
dense_fsa_vec = k2.DenseFsaVec(
|
||||||
|
nnet_output,
|
||||||
|
supervision_segments,
|
||||||
|
allow_truncate=params.subsampling_factor - 1,
|
||||||
|
)
|
||||||
|
|
||||||
|
loss = k2.ctc_loss(
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
dense_fsa_vec=dense_fsa_vec,
|
||||||
|
output_beam=params.beam_size,
|
||||||
|
reduction=params.reduction,
|
||||||
|
use_double_scores=params.use_double_scores,
|
||||||
|
)
|
||||||
|
|
||||||
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
|
# train_frames and valid_frames are used for printing.
|
||||||
|
if is_training:
|
||||||
|
params.train_frames = supervision_segments[:, 2].sum().item()
|
||||||
|
else:
|
||||||
|
params.valid_frames = supervision_segments[:, 2].sum().item()
|
||||||
|
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
def compute_validation_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
graph_compiler: CtcTrainingGraphCompiler,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> None:
|
||||||
|
"""Run the validation process. The validation loss
|
||||||
|
is saved in `params.valid_loss`.
|
||||||
|
"""
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
tot_loss = 0.0
|
||||||
|
tot_frames = 0.0
|
||||||
|
for batch_idx, batch in enumerate(valid_dl):
|
||||||
|
loss = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
is_training=False,
|
||||||
|
)
|
||||||
|
assert loss.requires_grad is False
|
||||||
|
|
||||||
|
loss_cpu = loss.detach().cpu().item()
|
||||||
|
tot_loss += loss_cpu
|
||||||
|
tot_frames += params.valid_frames
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
s = torch.tensor([tot_loss, tot_frames], device=loss.device)
|
||||||
|
dist.all_reduce(s, op=dist.ReduceOp.SUM)
|
||||||
|
s = s.cpu().tolist()
|
||||||
|
tot_loss = s[0]
|
||||||
|
tot_frames = s[1]
|
||||||
|
|
||||||
|
params.valid_loss = tot_loss / tot_frames
|
||||||
|
|
||||||
|
if params.valid_loss < params.best_valid_loss:
|
||||||
|
params.best_valid_epoch = params.cur_epoch
|
||||||
|
params.best_valid_loss = params.valid_loss
|
||||||
|
|
||||||
|
|
||||||
|
def train_one_epoch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
graph_compiler: CtcTrainingGraphCompiler,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
tb_writer: Optional[SummaryWriter] = None,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> None:
|
||||||
|
"""Train the model for one epoch.
|
||||||
|
|
||||||
|
The training loss from the mean of all frames is saved in
|
||||||
|
`params.train_loss`. It runs the validation process every
|
||||||
|
`params.valid_interval` batches.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
optimizer:
|
||||||
|
The optimizer we are using.
|
||||||
|
graph_compiler:
|
||||||
|
It is used to convert transcripts to FSAs.
|
||||||
|
train_dl:
|
||||||
|
Dataloader for the training dataset.
|
||||||
|
valid_dl:
|
||||||
|
Dataloader for the validation dataset.
|
||||||
|
tb_writer:
|
||||||
|
Writer to write log messages to tensorboard.
|
||||||
|
world_size:
|
||||||
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||||
|
"""
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
tot_loss = 0.0 # reset after params.reset_interval of batches
|
||||||
|
tot_frames = 0.0 # reset after params.reset_interval of batches
|
||||||
|
|
||||||
|
params.tot_loss = 0.0
|
||||||
|
params.tot_frames = 0.0
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
|
params.batch_idx_train += 1
|
||||||
|
batch_size = len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
loss = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
is_training=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||||
|
# in the batch and there is no normalization to it so far.
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
loss_cpu = loss.detach().cpu().item()
|
||||||
|
|
||||||
|
tot_frames += params.train_frames
|
||||||
|
tot_loss += loss_cpu
|
||||||
|
tot_avg_loss = tot_loss / tot_frames
|
||||||
|
|
||||||
|
params.tot_frames += params.train_frames
|
||||||
|
params.tot_loss += loss_cpu
|
||||||
|
|
||||||
|
if batch_idx % params.log_interval == 0:
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
||||||
|
f"batch avg loss {loss_cpu/params.train_frames:.4f}, "
|
||||||
|
f"total avg loss: {tot_avg_loss:.4f}, "
|
||||||
|
f"batch size: {batch_size}"
|
||||||
|
)
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/current_loss",
|
||||||
|
loss_cpu / params.train_frames,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/tot_avg_loss",
|
||||||
|
tot_avg_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
|
||||||
|
if batch_idx > 0 and batch_idx % params.reset_interval == 0:
|
||||||
|
tot_loss = 0
|
||||||
|
tot_frames = 0
|
||||||
|
|
||||||
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
|
compute_validation_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
model.train()
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, valid loss {params.valid_loss:.4f},"
|
||||||
|
f" best valid loss: {params.best_valid_loss:.4f} "
|
||||||
|
f"best valid epoch: {params.best_valid_epoch}"
|
||||||
|
)
|
||||||
|
|
||||||
|
params.train_loss = params.tot_loss / params.tot_frames
|
||||||
|
|
||||||
|
if params.train_loss < params.best_train_loss:
|
||||||
|
params.best_train_epoch = params.cur_epoch
|
||||||
|
params.best_train_loss = params.train_loss
|
||||||
|
|
||||||
|
|
||||||
|
def run(rank, world_size, args):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
rank:
|
||||||
|
It is a value between 0 and `world_size-1`, which is
|
||||||
|
passed automatically by `mp.spawn()` in :func:`main`.
|
||||||
|
The node with rank 0 is responsible for saving checkpoint.
|
||||||
|
world_size:
|
||||||
|
Number of GPUs for DDP training.
|
||||||
|
args:
|
||||||
|
The return value of get_parser().parse_args()
|
||||||
|
"""
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
fix_random_seed(42)
|
||||||
|
if world_size > 1:
|
||||||
|
setup_dist(rank, world_size, params.master_port)
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||||
|
logging.info("Training started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
if args.tensorboard and rank == 0:
|
||||||
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||||
|
else:
|
||||||
|
tb_writer = None
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
max_phone_id = max(lexicon.tokens)
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", rank)
|
||||||
|
|
||||||
|
graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device)
|
||||||
|
|
||||||
|
model = TdnnLstm(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
num_classes=max_phone_id + 1, # +1 for the blank symbol
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
if world_size > 1:
|
||||||
|
model = DDP(model, device_ids=[rank])
|
||||||
|
|
||||||
|
optimizer = optim.AdamW(
|
||||||
|
model.parameters(),
|
||||||
|
lr=params.lr,
|
||||||
|
weight_decay=params.weight_decay,
|
||||||
|
)
|
||||||
|
scheduler = StepLR(optimizer, step_size=8, gamma=0.1)
|
||||||
|
|
||||||
|
if checkpoints:
|
||||||
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||||
|
scheduler.load_state_dict(checkpoints["scheduler"])
|
||||||
|
|
||||||
|
aishell = AishellAsrDataModule(args)
|
||||||
|
train_dl = aishell.train_dataloaders()
|
||||||
|
valid_dl = aishell.valid_dataloaders()
|
||||||
|
|
||||||
|
for epoch in range(params.start_epoch, params.num_epochs):
|
||||||
|
train_dl.sampler.set_epoch(epoch)
|
||||||
|
|
||||||
|
if epoch > params.start_epoch:
|
||||||
|
logging.info(f"epoch {epoch}, lr: {scheduler.get_last_lr()[0]}")
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/lr",
|
||||||
|
scheduler.get_last_lr()[0],
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
|
params.cur_epoch = epoch
|
||||||
|
|
||||||
|
train_one_epoch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
train_dl=train_dl,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
tb_writer=tb_writer,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
scheduler.step()
|
||||||
|
|
||||||
|
save_checkpoint(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
if world_size > 1:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
cleanup_dist()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AishellAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
world_size = args.world_size
|
||||||
|
assert world_size >= 1
|
||||||
|
if world_size > 1:
|
||||||
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||||
|
else:
|
||||||
|
run(rank=0, world_size=1, args=args)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
98
icefall/char_graph_compiler.py
Normal file
98
icefall/char_graph_compiler.py
Normal file
@ -0,0 +1,98 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||||
|
# Wei Kang)
|
||||||
|
#
|
||||||
|
# See ../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import re
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
|
||||||
|
|
||||||
|
class CharCtcTrainingGraphCompiler(object):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
lexicon: Lexicon,
|
||||||
|
device: torch.device,
|
||||||
|
sos_token: str = "<sos/eos>",
|
||||||
|
eos_token: str = "<sos/eos>",
|
||||||
|
oov: str = "<unk>",
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
lexicon:
|
||||||
|
It is built from `data/lang/lexicon.txt`.
|
||||||
|
device:
|
||||||
|
The device to use for operations compiling transcripts to FSAs.
|
||||||
|
oov:
|
||||||
|
Out of vocabulary token. When a word(token) in the transcript
|
||||||
|
does not exist in the token list, it is replaced with `oov`.
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert oov in lexicon.token_table
|
||||||
|
|
||||||
|
self.oov_id = lexicon.token_table[oov]
|
||||||
|
self.token_table = lexicon.token_table
|
||||||
|
|
||||||
|
self.device = device
|
||||||
|
|
||||||
|
self.sos_id = self.token_table[sos_token]
|
||||||
|
self.eos_id = self.token_table[eos_token]
|
||||||
|
|
||||||
|
|
||||||
|
def texts_to_ids(self, texts: List[str]) -> List[List[int]]:
|
||||||
|
"""Convert a list of texts to a list-of-list of token IDs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts:
|
||||||
|
It is a list of strings.
|
||||||
|
An example containing two strings is given below:
|
||||||
|
|
||||||
|
['你好中国', '北京欢迎您']
|
||||||
|
Returns:
|
||||||
|
Return a list-of-list of token IDs.
|
||||||
|
"""
|
||||||
|
ids: List[List[int]] = []
|
||||||
|
whitespace = re.compile(r"([ \t])")
|
||||||
|
for text in texts:
|
||||||
|
text = re.sub(whitespace, "", text)
|
||||||
|
sub_ids = [self.token_table[txt] if txt in self.token_table \
|
||||||
|
else self.oov_id for txt in text]
|
||||||
|
ids.append(sub_ids)
|
||||||
|
return ids
|
||||||
|
|
||||||
|
|
||||||
|
def compile(
|
||||||
|
self,
|
||||||
|
token_ids: List[List[int]],
|
||||||
|
modified: bool = False,
|
||||||
|
) -> k2.Fsa:
|
||||||
|
"""Build a ctc graph from a list-of-list token IDs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
piece_ids:
|
||||||
|
It is a list-of-list integer IDs.
|
||||||
|
modified:
|
||||||
|
See :func:`k2.ctc_graph` for its meaning.
|
||||||
|
Return:
|
||||||
|
Return an FsaVec, which is the result of composing a
|
||||||
|
CTC topology with linear FSAs constructed from the given
|
||||||
|
piece IDs.
|
||||||
|
"""
|
||||||
|
return k2.ctc_graph(token_ids, modified=modified, device=self.device)
|
||||||
|
|
@ -95,7 +95,7 @@ class Lexicon(object):
|
|||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
lang_dir:
|
lang_dir:
|
||||||
Path to the lang director. It is expected to contain the following
|
Path to the lang directory. It is expected to contain the following
|
||||||
files:
|
files:
|
||||||
- tokens.txt
|
- tokens.txt
|
||||||
- words.txt
|
- words.txt
|
||||||
|
Loading…
x
Reference in New Issue
Block a user