mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-19 05:54:20 +00:00
Merge d55cec6b8741a6007eea53150f2ef4cdf82e19cb into dca21c2a17b6e62f687e49398517cb57f62203b0
This commit is contained in:
commit
dd3a2874fe
1
egs/wenetspeech/ASR/lstm_transducer_stateless/asr_datamodule.py
Symbolic link
1
egs/wenetspeech/ASR/lstm_transducer_stateless/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/asr_datamodule.py
|
1
egs/wenetspeech/ASR/lstm_transducer_stateless/beam_search.py
Symbolic link
1
egs/wenetspeech/ASR/lstm_transducer_stateless/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/beam_search.py
|
880
egs/wenetspeech/ASR/lstm_transducer_stateless/decode.py
Executable file
880
egs/wenetspeech/ASR/lstm_transducer_stateless/decode.py
Executable file
@ -0,0 +1,880 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao
|
||||
# Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./lstm_transducer_stateless/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./lstm_transducer_stateless/exp \
|
||||
--lang-dir data/lang_char \
|
||||
--max-duration 600 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
(2) beam search (not recommended)
|
||||
./lstm_transducer_stateless/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./lstm_transducer_stateless/exp \
|
||||
--lang-dir data/lang_char \
|
||||
--max-duration 600 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(3) modified beam search
|
||||
./lstm_transducer_stateless/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./lstm_transducer_stateless/exp \
|
||||
--lang-dir data/lang_char \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search (one best)
|
||||
./lstm_transducer_stateless/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./lstm_transducer_stateless/exp \
|
||||
--lang-dir data/lang_char \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
|
||||
(5) fast beam search (nbest)
|
||||
./lstm_transducer_stateless/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||
--lang-dir data/lang_char \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
|
||||
(6) fast beam search (nbest oracle WER)
|
||||
./lstm_transducer_stateless/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./lstm_transducer_stateless/exp \
|
||||
--lang-dir data/lang_char \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest_oracle \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
|
||||
(7) fast beam search (with LG)
|
||||
./lstm_transducer_stateless/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./lstm_transducer_stateless/exp \
|
||||
--lang-dir data/lang_char \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest_LG \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import WenetSpeechAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_LG,
|
||||
fast_beam_search_nbest_oracle,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="lstm_transducer_stateless/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
default="data/lang_char",
|
||||
help="The lang dir containing word table and LG graph",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
- fast_beam_search_nbest
|
||||
- fast_beam_search_nbest_oracle
|
||||
- fast_beam_search_nbest_LG
|
||||
If you use fast_beam_search_nbest_LG, you have to specify
|
||||
`--lang-dir`, which should contain `LG.pt`.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=20.0,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search,
|
||||
fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||
and fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--ngram-lm-scale",
|
||||
type=float,
|
||||
default=0.01,
|
||||
help="""
|
||||
Used only when --decoding_method is fast_beam_search_nbest_LG.
|
||||
It specifies the scale for n-gram LM scores.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||
and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=64,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||
and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=200,
|
||||
help="""Number of paths for nbest decoding.
|
||||
Used only when the decoding method is fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""Scale applied to lattice scores when computing nbest paths.
|
||||
Used only when the decoding method is fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
lexicon: Lexicon,
|
||||
# graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
batch: dict,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if greedy_search is used, it would be "greedy_search"
|
||||
If beam search with a beam size of 7 is used, it would be
|
||||
"beam_7"
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
# tail padding here to alleviate the tail deletion problem
|
||||
num_tail_padded_frames = 35
|
||||
feature = torch.nn.functional.pad(
|
||||
feature,
|
||||
(0, 0, 0, num_tail_padded_frames),
|
||||
mode="constant",
|
||||
value=LOG_EPS,
|
||||
)
|
||||
feature_lens += num_tail_padded_frames
|
||||
|
||||
encoder_out, encoder_out_lens, _ = model.encoder(
|
||||
x=feature, x_lens=feature_lens
|
||||
)
|
||||
|
||||
hyps = []
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for i in range(encoder_out.size(0)):
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
elif params.decoding_method == "fast_beam_search_nbest_LG":
|
||||
hyp_tokens = fast_beam_search_nbest_LG(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in hyp_tokens:
|
||||
sentence = "".join([lexicon.word_table[i] for i in hyp])
|
||||
hyps.append(list(sentence))
|
||||
elif params.decoding_method == "fast_beam_search_nbest":
|
||||
hyp_tokens = fast_beam_search_nbest(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for i in range(encoder_out.size(0)):
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
ref_texts=graph_compiler.texts_to_ids(supervisions["text"]),
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for i in range(encoder_out.size(0)):
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
elif (
|
||||
params.decoding_method == "greedy_search"
|
||||
and params.max_sym_per_frame == 1
|
||||
):
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
)
|
||||
for i in range(encoder_out.size(0)):
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for i in range(encoder_out.size(0)):
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i + 1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp])
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
elif "fast_beam_search" in params.decoding_method:
|
||||
key = f"beam_{params.beam}_"
|
||||
key += f"max_contexts_{params.max_contexts}_"
|
||||
key += f"max_states_{params.max_states}"
|
||||
if "nbest" in params.decoding_method:
|
||||
key += f"_num_paths_{params.num_paths}_"
|
||||
key += f"nbest_scale_{params.nbest_scale}"
|
||||
if "LG" in params.decoding_method:
|
||||
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
||||
|
||||
return {key: hyps}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
lexicon: Lexicon,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 50
|
||||
else:
|
||||
log_interval = 20
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
texts = [list(str(text)) for text in texts]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
lexicon=lexicon,
|
||||
decoding_graph=decoding_graph,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
this_batch.append((cut_id, ref_text, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir
|
||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
WenetSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"fast_beam_search_nbest",
|
||||
"fast_beam_search_nbest_LG",
|
||||
"fast_beam_search_nbest_oracle",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
if "nbest" in params.decoding_method:
|
||||
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||
params.suffix += f"-num-paths-{params.num_paths}"
|
||||
if "LG" in params.decoding_method:
|
||||
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += (
|
||||
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||
)
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
params.blank_id = lexicon.token_table["<blk>"]
|
||||
params.vocab_size = max(lexicon.tokens) + 1
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg + 1]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
if params.decoding_method == "fast_beam_search_nbest_LG":
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
# word_table = lexicon.word_table
|
||||
lg_filename = params.lang_dir / "LG.pt"
|
||||
logging.info(f"Loading {lg_filename}")
|
||||
decoding_graph = k2.Fsa.from_dict(
|
||||
torch.load(lg_filename, map_location=device)
|
||||
)
|
||||
decoding_graph.scores *= params.ngram_lm_scale
|
||||
else:
|
||||
# word_table = None
|
||||
decoding_graph = k2.trivial_graph(
|
||||
params.vocab_size - 1, device=device
|
||||
)
|
||||
else:
|
||||
decoding_graph = None
|
||||
# word_table = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
# Note: Please use "pip install webdataset==0.1.103"
|
||||
# for installing the webdataset.
|
||||
import glob
|
||||
import os
|
||||
|
||||
from lhotse import CutSet
|
||||
from lhotse.dataset.webdataset import export_to_webdataset
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
wenetspeech = WenetSpeechAsrDataModule(args)
|
||||
|
||||
dev = "dev"
|
||||
test_net = "test_net"
|
||||
test_meeting = "test_meeting"
|
||||
|
||||
if not os.path.exists(f"{dev}/shared-0.tar"):
|
||||
os.makedirs(dev, exist_ok=True)
|
||||
dev_cuts = wenetspeech.valid_cuts()
|
||||
export_to_webdataset(
|
||||
dev_cuts,
|
||||
output_path=f"{dev}/shared-%d.tar",
|
||||
shard_size=300,
|
||||
)
|
||||
|
||||
if not os.path.exists(f"{test_net}/shared-0.tar"):
|
||||
os.makedirs(test_net, exist_ok=True)
|
||||
test_net_cuts = wenetspeech.test_net_cuts()
|
||||
export_to_webdataset(
|
||||
test_net_cuts,
|
||||
output_path=f"{test_net}/shared-%d.tar",
|
||||
shard_size=300,
|
||||
)
|
||||
|
||||
if not os.path.exists(f"{test_meeting}/shared-0.tar"):
|
||||
os.makedirs(test_meeting, exist_ok=True)
|
||||
test_meeting_cuts = wenetspeech.test_meeting_cuts()
|
||||
export_to_webdataset(
|
||||
test_meeting_cuts,
|
||||
output_path=f"{test_meeting}/shared-%d.tar",
|
||||
shard_size=300,
|
||||
)
|
||||
|
||||
print("done")
|
||||
|
||||
dev_shards = [
|
||||
str(path)
|
||||
for path in sorted(glob.glob(os.path.join(dev, "shared-*.tar")))
|
||||
]
|
||||
cuts_dev_webdataset = CutSet.from_webdataset(
|
||||
dev_shards,
|
||||
split_by_worker=True,
|
||||
split_by_node=True,
|
||||
shuffle_shards=True,
|
||||
)
|
||||
|
||||
test_net_shards = [
|
||||
str(path)
|
||||
for path in sorted(glob.glob(os.path.join(test_net, "shared-*.tar")))
|
||||
]
|
||||
cuts_test_net_webdataset = CutSet.from_webdataset(
|
||||
test_net_shards,
|
||||
split_by_worker=True,
|
||||
split_by_node=True,
|
||||
shuffle_shards=True,
|
||||
)
|
||||
|
||||
test_meeting_shards = [
|
||||
str(path)
|
||||
for path in sorted(
|
||||
glob.glob(os.path.join(test_meeting, "shared-*.tar"))
|
||||
)
|
||||
]
|
||||
cuts_test_meeting_webdataset = CutSet.from_webdataset(
|
||||
test_meeting_shards,
|
||||
split_by_worker=True,
|
||||
split_by_node=True,
|
||||
shuffle_shards=True,
|
||||
)
|
||||
|
||||
dev_dl = wenetspeech.valid_dataloaders(cuts_dev_webdataset)
|
||||
test_net_dl = wenetspeech.test_dataloaders(cuts_test_net_webdataset)
|
||||
test_meeting_dl = wenetspeech.test_dataloaders(cuts_test_meeting_webdataset)
|
||||
|
||||
test_sets = ["DEV", "TEST_NET", "TEST_MEETING"]
|
||||
test_dl = [dev_dl, test_net_dl, test_meeting_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
lexicon=lexicon,
|
||||
# word_table=word_table,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/wenetspeech/ASR/lstm_transducer_stateless/decoder.py
Symbolic link
1
egs/wenetspeech/ASR/lstm_transducer_stateless/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/decoder.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/transducer_stateless/encoder_interface.py
|
403
egs/wenetspeech/ASR/lstm_transducer_stateless/export.py
Executable file
403
egs/wenetspeech/ASR/lstm_transducer_stateless/export.py
Executable file
@ -0,0 +1,403 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
"""
|
||||
|
||||
Usage:
|
||||
|
||||
(1) Export to torchscript model using torch.jit.trace()
|
||||
|
||||
./lstm_transducer_stateless/export.py \
|
||||
--exp-dir ./lstm_transducer_stateless/exp \
|
||||
--lang-dir data/lang_char \
|
||||
--epoch 35 \
|
||||
--avg 10 \
|
||||
--jit-trace 1
|
||||
|
||||
It will generate 3 files: `encoder_jit_trace.pt`,
|
||||
`decoder_jit_trace.pt`, and `joiner_jit_trace.pt`.
|
||||
|
||||
(2) Export `model.state_dict()`
|
||||
|
||||
./lstm_transducer_stateless/export.py \
|
||||
--exp-dir ./lstm_transducer_stateless/exp \
|
||||
--lang-dir data/lang_char \
|
||||
--epoch 35 \
|
||||
--avg 10
|
||||
|
||||
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
|
||||
load it by `icefall.checkpoint.load_checkpoint()`.
|
||||
|
||||
To use the generated file with `lstm_transducer_stateless/decode.py`,
|
||||
you can do:
|
||||
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/librispeech/ASR
|
||||
./lstm_transducer_stateless/decode.py \
|
||||
--exp-dir ./lstm_transducer_stateless/exp \
|
||||
--epoch 9999 \
|
||||
--avg 1 \
|
||||
--max-duration 600 \
|
||||
--decoding-method greedy_search \
|
||||
--lang-dir data/lang_char \
|
||||
|
||||
Check ./pretrained.py for its usage.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from scaling_converter import convert_scaled_to_non_scaled
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
from icefall.lexicon import Lexicon
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for averaging.
|
||||
Note: Epoch counts from 0.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless3/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_char",
|
||||
help="The lang dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit-trace",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to save a model after applying torch.jit.trace.
|
||||
It will generate 3 files:
|
||||
- encoder_jit_trace.pt
|
||||
- decoder_jit_trace.pt
|
||||
- joiner_jit_trace.pt
|
||||
|
||||
Check ./jit_pretrained.py for how to use them.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--pnnx",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to save a model after applying torch.jit.trace for later
|
||||
converting to PNNX. It will generate 3 files:
|
||||
- encoder_jit_trace-pnnx.pt
|
||||
- decoder_jit_trace-pnnx.pt
|
||||
- joiner_jit_trace-pnnx.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def export_encoder_model_jit_trace(
|
||||
encoder_model: nn.Module,
|
||||
encoder_filename: str,
|
||||
) -> None:
|
||||
"""Export the given encoder model with torch.jit.trace()
|
||||
|
||||
Note: The warmup argument is fixed to 1.
|
||||
|
||||
Args:
|
||||
encoder_model:
|
||||
The input encoder model
|
||||
encoder_filename:
|
||||
The filename to save the exported model.
|
||||
"""
|
||||
x = torch.zeros(1, 100, 80, dtype=torch.float32)
|
||||
x_lens = torch.tensor([100], dtype=torch.int64)
|
||||
states = encoder_model.get_init_states()
|
||||
|
||||
traced_model = torch.jit.trace(encoder_model, (x, x_lens, states))
|
||||
traced_model.save(encoder_filename)
|
||||
logging.info(f"Saved to {encoder_filename}")
|
||||
|
||||
|
||||
def export_decoder_model_jit_trace(
|
||||
decoder_model: nn.Module,
|
||||
decoder_filename: str,
|
||||
) -> None:
|
||||
"""Export the given decoder model with torch.jit.trace()
|
||||
|
||||
Note: The argument need_pad is fixed to False.
|
||||
|
||||
Args:
|
||||
decoder_model:
|
||||
The input decoder model
|
||||
decoder_filename:
|
||||
The filename to save the exported model.
|
||||
"""
|
||||
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
|
||||
need_pad = torch.tensor([False])
|
||||
|
||||
traced_model = torch.jit.trace(decoder_model, (y, need_pad))
|
||||
traced_model.save(decoder_filename)
|
||||
logging.info(f"Saved to {decoder_filename}")
|
||||
|
||||
|
||||
def export_joiner_model_jit_trace(
|
||||
joiner_model: nn.Module,
|
||||
joiner_filename: str,
|
||||
) -> None:
|
||||
"""Export the given joiner model with torch.jit.trace()
|
||||
|
||||
Note: The argument project_input is fixed to True. A user should not
|
||||
project the encoder_out/decoder_out by himself/herself. The exported joiner
|
||||
will do that for the user.
|
||||
|
||||
Args:
|
||||
joiner_model:
|
||||
The input joiner model
|
||||
joiner_filename:
|
||||
The filename to save the exported model.
|
||||
|
||||
"""
|
||||
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
|
||||
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
|
||||
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
|
||||
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
|
||||
|
||||
traced_model = torch.jit.trace(joiner_model, (encoder_out, decoder_out))
|
||||
traced_model.save(joiner_filename)
|
||||
logging.info(f"Saved to {joiner_filename}")
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
|
||||
params.blank_id = 0
|
||||
params.vocab_size = max(lexicon.tokens) + 1
|
||||
|
||||
logging.info(params)
|
||||
|
||||
if params.pnnx:
|
||||
params.is_pnnx = params.pnnx
|
||||
logging.info("For PNNX")
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg + 1]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
|
||||
if params.pnnx:
|
||||
convert_scaled_to_non_scaled(model, inplace=True)
|
||||
logging.info("Using torch.jit.trace()")
|
||||
encoder_filename = params.exp_dir / "encoder_jit_trace-pnnx.pt"
|
||||
export_encoder_model_jit_trace(model.encoder, encoder_filename)
|
||||
|
||||
decoder_filename = params.exp_dir / "decoder_jit_trace-pnnx.pt"
|
||||
export_decoder_model_jit_trace(model.decoder, decoder_filename)
|
||||
|
||||
joiner_filename = params.exp_dir / "joiner_jit_trace-pnnx.pt"
|
||||
export_joiner_model_jit_trace(model.joiner, joiner_filename)
|
||||
elif params.jit_trace is True:
|
||||
convert_scaled_to_non_scaled(model, inplace=True)
|
||||
logging.info("Using torch.jit.trace()")
|
||||
encoder_filename = params.exp_dir / "encoder_jit_trace.pt"
|
||||
export_encoder_model_jit_trace(model.encoder, encoder_filename)
|
||||
|
||||
decoder_filename = params.exp_dir / "decoder_jit_trace.pt"
|
||||
export_decoder_model_jit_trace(model.decoder, decoder_filename)
|
||||
|
||||
joiner_filename = params.exp_dir / "joiner_jit_trace.pt"
|
||||
export_joiner_model_jit_trace(model.joiner, joiner_filename)
|
||||
else:
|
||||
logging.info("Not using torchscript")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
1
egs/wenetspeech/ASR/lstm_transducer_stateless/joiner.py
Symbolic link
1
egs/wenetspeech/ASR/lstm_transducer_stateless/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/joiner.py
|
1
egs/wenetspeech/ASR/lstm_transducer_stateless/lstm.py
Symbolic link
1
egs/wenetspeech/ASR/lstm_transducer_stateless/lstm.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/lstm_transducer_stateless/lstm.py
|
1
egs/wenetspeech/ASR/lstm_transducer_stateless/model.py
Symbolic link
1
egs/wenetspeech/ASR/lstm_transducer_stateless/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/lstm_transducer_stateless/model.py
|
296
egs/wenetspeech/ASR/lstm_transducer_stateless/ncnn-decode.py
Executable file
296
egs/wenetspeech/ASR/lstm_transducer_stateless/ncnn-decode.py
Executable file
@ -0,0 +1,296 @@
|
||||
#!/usr/bin/env python3
|
||||
# flake8: noqa
|
||||
#
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
./lstm_transducer_stateless/ncnn-decode.py \
|
||||
--token-filename ./data/lang_char/tokens.txt \
|
||||
--encoder-param-filename ./lstm_transducer_stateless/exp-new/encoder_jit_trace-epoch-11-avg-2-pnnx.ncnn.param \
|
||||
--encoder-bin-filename ./lstm_transducer_stateless/exp-new/encoder_jit_trace-epoch-11-avg-2-pnnx.ncnn.bin \
|
||||
--decoder-param-filename ./lstm_transducer_stateless/exp-new/decoder_jit_trace-epoch-11-avg-2-pnnx.ncnn.param \
|
||||
--decoder-bin-filename ./lstm_transducer_stateless/exp-new/decoder_jit_trace-epoch-11-avg-2-pnnx.ncnn.bin \
|
||||
--joiner-param-filename ./lstm_transducer_stateless/exp-new/joiner_jit_trace-epoch-11-avg-2-pnnx.ncnn.param \
|
||||
--joiner-bin-filename ./lstm_transducer_stateless/exp-new/joiner_jit_trace-epoch-11-avg-2-pnnx.ncnn.bin \
|
||||
./test_wavs/DEV_T0000000001.wav
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from typing import List
|
||||
|
||||
import k2
|
||||
import kaldifeat
|
||||
import ncnn
|
||||
import torch
|
||||
import torchaudio
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--token-filename",
|
||||
type=str,
|
||||
help="Path to tokens.txt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--encoder-param-filename",
|
||||
type=str,
|
||||
help="Path to encoder.ncnn.param",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--encoder-bin-filename",
|
||||
type=str,
|
||||
help="Path to encoder.ncnn.bin",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoder-param-filename",
|
||||
type=str,
|
||||
help="Path to decoder.ncnn.param",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoder-bin-filename",
|
||||
type=str,
|
||||
help="Path to decoder.ncnn.bin",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--joiner-param-filename",
|
||||
type=str,
|
||||
help="Path to joiner.ncnn.param",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--joiner-bin-filename",
|
||||
type=str,
|
||||
help="Path to joiner.ncnn.bin",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_filename",
|
||||
type=str,
|
||||
help="Path to foo.wav",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
class Model:
|
||||
def __init__(self, args):
|
||||
self.init_encoder(args)
|
||||
self.init_decoder(args)
|
||||
self.init_joiner(args)
|
||||
|
||||
def init_encoder(self, args):
|
||||
encoder_net = ncnn.Net()
|
||||
encoder_net.opt.use_packing_layout = False
|
||||
encoder_net.opt.use_fp16_storage = False
|
||||
encoder_param = args.encoder_param_filename
|
||||
encoder_model = args.encoder_bin_filename
|
||||
|
||||
encoder_net.load_param(encoder_param)
|
||||
encoder_net.load_model(encoder_model)
|
||||
|
||||
self.encoder_net = encoder_net
|
||||
|
||||
def init_decoder(self, args):
|
||||
decoder_param = args.decoder_param_filename
|
||||
decoder_model = args.decoder_bin_filename
|
||||
|
||||
decoder_net = ncnn.Net()
|
||||
decoder_net.opt.use_packing_layout = False
|
||||
|
||||
decoder_net.load_param(decoder_param)
|
||||
decoder_net.load_model(decoder_model)
|
||||
|
||||
self.decoder_net = decoder_net
|
||||
|
||||
def init_joiner(self, args):
|
||||
joiner_param = args.joiner_param_filename
|
||||
joiner_model = args.joiner_bin_filename
|
||||
joiner_net = ncnn.Net()
|
||||
joiner_net.opt.use_packing_layout = False
|
||||
joiner_net.load_param(joiner_param)
|
||||
joiner_net.load_model(joiner_model)
|
||||
|
||||
self.joiner_net = joiner_net
|
||||
|
||||
def run_encoder(self, x, states):
|
||||
with self.encoder_net.create_extractor() as ex:
|
||||
ex.set_num_threads(10)
|
||||
ex.input("in0", ncnn.Mat(x.numpy()).clone())
|
||||
x_lens = torch.tensor([x.size(0)], dtype=torch.float32)
|
||||
ex.input("in1", ncnn.Mat(x_lens.numpy()).clone())
|
||||
ex.input("in2", ncnn.Mat(states[0].numpy()).clone())
|
||||
ex.input("in3", ncnn.Mat(states[1].numpy()).clone())
|
||||
|
||||
ret, ncnn_out0 = ex.extract("out0")
|
||||
assert ret == 0, ret
|
||||
|
||||
ret, ncnn_out1 = ex.extract("out1")
|
||||
assert ret == 0, ret
|
||||
|
||||
ret, ncnn_out2 = ex.extract("out2")
|
||||
assert ret == 0, ret
|
||||
|
||||
ret, ncnn_out3 = ex.extract("out3")
|
||||
assert ret == 0, ret
|
||||
|
||||
encoder_out = torch.from_numpy(ncnn_out0.numpy()).clone()
|
||||
encoder_out_lens = torch.from_numpy(ncnn_out1.numpy()).to(
|
||||
torch.int32
|
||||
)
|
||||
hx = torch.from_numpy(ncnn_out2.numpy()).clone()
|
||||
cx = torch.from_numpy(ncnn_out3.numpy()).clone()
|
||||
return encoder_out, encoder_out_lens, hx, cx
|
||||
|
||||
def run_decoder(self, decoder_input):
|
||||
assert decoder_input.dtype == torch.int32
|
||||
|
||||
with self.decoder_net.create_extractor() as ex:
|
||||
ex.set_num_threads(10)
|
||||
ex.input("in0", ncnn.Mat(decoder_input.numpy()).clone())
|
||||
ret, ncnn_out0 = ex.extract("out0")
|
||||
assert ret == 0, ret
|
||||
decoder_out = torch.from_numpy(ncnn_out0.numpy()).clone()
|
||||
return decoder_out
|
||||
|
||||
def run_joiner(self, encoder_out, decoder_out):
|
||||
with self.joiner_net.create_extractor() as ex:
|
||||
ex.set_num_threads(10)
|
||||
ex.input("in0", ncnn.Mat(encoder_out.numpy()).clone())
|
||||
ex.input("in1", ncnn.Mat(decoder_out.numpy()).clone())
|
||||
ret, ncnn_out0 = ex.extract("out0")
|
||||
assert ret == 0, ret
|
||||
joiner_out = torch.from_numpy(ncnn_out0.numpy()).clone()
|
||||
return joiner_out
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert sample_rate == expected_sample_rate, (
|
||||
f"expected sample rate: {expected_sample_rate}. "
|
||||
f"Given: {sample_rate}"
|
||||
)
|
||||
# We use only the first channel
|
||||
ans.append(wave[0])
|
||||
return ans
|
||||
|
||||
|
||||
def greedy_search(model: Model, encoder_out: torch.Tensor):
|
||||
assert encoder_out.ndim == 2
|
||||
T = encoder_out.size(0)
|
||||
|
||||
context_size = 2
|
||||
blank_id = 0 # hard-code to 0
|
||||
hyp = [blank_id] * context_size
|
||||
|
||||
decoder_input = torch.tensor(hyp, dtype=torch.int32) # (1, context_size)
|
||||
|
||||
decoder_out = model.run_decoder(decoder_input).squeeze(0)
|
||||
# print(decoder_out.shape) # (512,)
|
||||
|
||||
for t in range(T):
|
||||
encoder_out_t = encoder_out[t]
|
||||
joiner_out = model.run_joiner(encoder_out_t, decoder_out)
|
||||
# print(joiner_out.shape) # [500]
|
||||
y = joiner_out.argmax(dim=0).tolist()
|
||||
if y != blank_id:
|
||||
hyp.append(y)
|
||||
decoder_input = hyp[-context_size:]
|
||||
decoder_input = torch.tensor(decoder_input, dtype=torch.int32)
|
||||
decoder_out = model.run_decoder(decoder_input).squeeze(0)
|
||||
return hyp[context_size:]
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
logging.info(vars(args))
|
||||
|
||||
model = Model(args)
|
||||
|
||||
sound_file = args.sound_filename
|
||||
|
||||
sample_rate = 16000
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = "cpu"
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = sample_rate
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {sound_file}")
|
||||
wave_samples = read_sound_files(
|
||||
filenames=[sound_file],
|
||||
expected_sample_rate=sample_rate,
|
||||
)[0]
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(wave_samples)
|
||||
|
||||
num_encoder_layers = 12
|
||||
d_model = 512
|
||||
rnn_hidden_size = 1024
|
||||
|
||||
states = (
|
||||
torch.zeros(num_encoder_layers, d_model),
|
||||
torch.zeros(
|
||||
num_encoder_layers,
|
||||
rnn_hidden_size,
|
||||
),
|
||||
)
|
||||
|
||||
encoder_out, encoder_out_lens, hx, cx = model.run_encoder(features, states)
|
||||
hyp = greedy_search(model, encoder_out)
|
||||
|
||||
logging.info(sound_file)
|
||||
|
||||
token_table = k2.SymbolTable.from_file(args.token_filename)
|
||||
words = [token_table[i] for i in hyp]
|
||||
logging.info("".join(words))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
main()
|
1
egs/wenetspeech/ASR/lstm_transducer_stateless/optim.py
Symbolic link
1
egs/wenetspeech/ASR/lstm_transducer_stateless/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/optim.py
|
1
egs/wenetspeech/ASR/lstm_transducer_stateless/scaling.py
Symbolic link
1
egs/wenetspeech/ASR/lstm_transducer_stateless/scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/scaling.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless3/scaling_converter.py
|
95
egs/wenetspeech/ASR/lstm_transducer_stateless/test_model.py
Executable file
95
egs/wenetspeech/ASR/lstm_transducer_stateless/test_model.py
Executable file
@ -0,0 +1,95 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./lstm_transducer_stateless/test_model.py
|
||||
"""
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
|
||||
# from export import (
|
||||
# export_decoder_model_jit_trace,
|
||||
# export_encoder_model_jit_trace,
|
||||
# export_joiner_model_jit_trace,
|
||||
# )
|
||||
from lstm import stack_states, unstack_states
|
||||
from scaling_converter import convert_scaled_to_non_scaled
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
|
||||
def test_model():
|
||||
params = get_params()
|
||||
params.vocab_size = 5536
|
||||
params.blank_id = 0
|
||||
params.context_size = 2
|
||||
params.unk_id = 2
|
||||
params.encoder_dim = 256
|
||||
params.rnn_hidden_size = 384
|
||||
params.dim_feedforward = 512
|
||||
params.num_encoder_layers = 6
|
||||
params.aux_layer_period = 0
|
||||
params.exp_dir = Path("exp_test_model")
|
||||
|
||||
model = get_transducer_model(params)
|
||||
model.eval()
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
print(f"Number of model parameters: {num_param}")
|
||||
return
|
||||
|
||||
convert_scaled_to_non_scaled(model, inplace=True)
|
||||
|
||||
if not os.path.exists(params.exp_dir):
|
||||
os.path.mkdir(params.exp_dir)
|
||||
|
||||
encoder_filename = params.exp_dir / "encoder_jit_trace.pt"
|
||||
export_encoder_model_jit_trace(model.encoder, encoder_filename)
|
||||
|
||||
decoder_filename = params.exp_dir / "decoder_jit_trace.pt"
|
||||
export_decoder_model_jit_trace(model.decoder, decoder_filename)
|
||||
|
||||
joiner_filename = params.exp_dir / "joiner_jit_trace.pt"
|
||||
export_joiner_model_jit_trace(model.joiner, joiner_filename)
|
||||
|
||||
print("The model has been successfully exported using jit.trace.")
|
||||
|
||||
|
||||
def test_states_stack_and_unstack():
|
||||
layer, batch, hidden, cell = 12, 100, 512, 1024
|
||||
states = (
|
||||
torch.randn(layer, batch, hidden),
|
||||
torch.randn(layer, batch, cell),
|
||||
)
|
||||
states2 = stack_states(unstack_states(states))
|
||||
assert torch.allclose(states[0], states2[0])
|
||||
assert torch.allclose(states[1], states2[1])
|
||||
|
||||
|
||||
def main():
|
||||
test_model()
|
||||
# test_states_stack_and_unstack()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1143
egs/wenetspeech/ASR/lstm_transducer_stateless/train.py
Executable file
1143
egs/wenetspeech/ASR/lstm_transducer_stateless/train.py
Executable file
File diff suppressed because it is too large
Load Diff
@ -292,7 +292,7 @@ class WenetSpeechAsrDataModule:
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
buffer_size=30000,
|
||||
buffer_size=300000,
|
||||
drop_last=True,
|
||||
)
|
||||
else:
|
||||
|
@ -203,7 +203,7 @@ def get_parser():
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An interger indicating how many candidates we will keep for each
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
@ -1395,7 +1395,7 @@ def tokenize_by_CJK_char(line: str) -> str:
|
||||
def display_and_save_batch(
|
||||
batch: dict,
|
||||
params: AttributeDict,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
sp: Optional[spm.SentencePieceProcessor] = None,
|
||||
) -> None:
|
||||
"""Display the batch statistics and save the batch into disk.
|
||||
|
||||
@ -1406,7 +1406,7 @@ def display_and_save_batch(
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
sp:
|
||||
The BPE model.
|
||||
Optional. The BPE model.
|
||||
"""
|
||||
from lhotse.utils import uuid4
|
||||
|
||||
@ -1418,9 +1418,14 @@ def display_and_save_batch(
|
||||
features = batch["inputs"]
|
||||
|
||||
logging.info(f"features shape: {features.shape}")
|
||||
text = supervisions["text"]
|
||||
|
||||
if sp is not None:
|
||||
y = sp.encode(text, out_type=int)
|
||||
num_tokens = sum(len(i) for i in y)
|
||||
else:
|
||||
num_tokens = sum(len(i) for i in text)
|
||||
|
||||
y = sp.encode(supervisions["text"], out_type=int)
|
||||
num_tokens = sum(len(i) for i in y)
|
||||
logging.info(f"num tokens: {num_tokens}")
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user