Merge d55cec6b8741a6007eea53150f2ef4cdf82e19cb into dca21c2a17b6e62f687e49398517cb57f62203b0

This commit is contained in:
Fangjun Kuang 2023-06-09 19:09:02 +08:00 committed by GitHub
commit dd3a2874fe
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
19 changed files with 2838 additions and 6 deletions

View File

@ -0,0 +1 @@
../pruned_transducer_stateless2/asr_datamodule.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/beam_search.py

View File

@ -0,0 +1,880 @@
#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
# Zengwei Yao
# Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
(1) greedy search
./lstm_transducer_stateless/decode.py \
--epoch 35 \
--avg 15 \
--exp-dir ./lstm_transducer_stateless/exp \
--lang-dir data/lang_char \
--max-duration 600 \
--decoding-method greedy_search
(2) beam search (not recommended)
./lstm_transducer_stateless/decode.py \
--epoch 35 \
--avg 15 \
--exp-dir ./lstm_transducer_stateless/exp \
--lang-dir data/lang_char \
--max-duration 600 \
--decoding-method beam_search \
--beam-size 4
(3) modified beam search
./lstm_transducer_stateless/decode.py \
--epoch 35 \
--avg 15 \
--exp-dir ./lstm_transducer_stateless/exp \
--lang-dir data/lang_char \
--max-duration 600 \
--decoding-method modified_beam_search \
--beam-size 4
(4) fast beam search (one best)
./lstm_transducer_stateless/decode.py \
--epoch 35 \
--avg 15 \
--exp-dir ./lstm_transducer_stateless/exp \
--lang-dir data/lang_char \
--max-duration 600 \
--decoding-method fast_beam_search \
--beam 20.0 \
--max-contexts 8 \
--max-states 64
(5) fast beam search (nbest)
./lstm_transducer_stateless/decode.py \
--epoch 30 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless3/exp \
--lang-dir data/lang_char \
--max-duration 600 \
--decoding-method fast_beam_search_nbest \
--beam 20.0 \
--max-contexts 8 \
--max-states 64 \
--num-paths 200 \
--nbest-scale 0.5
(6) fast beam search (nbest oracle WER)
./lstm_transducer_stateless/decode.py \
--epoch 35 \
--avg 15 \
--exp-dir ./lstm_transducer_stateless/exp \
--lang-dir data/lang_char \
--max-duration 600 \
--decoding-method fast_beam_search_nbest_oracle \
--beam 20.0 \
--max-contexts 8 \
--max-states 64 \
--num-paths 200 \
--nbest-scale 0.5
(7) fast beam search (with LG)
./lstm_transducer_stateless/decode.py \
--epoch 35 \
--avg 15 \
--exp-dir ./lstm_transducer_stateless/exp \
--lang-dir data/lang_char \
--max-duration 600 \
--decoding-method fast_beam_search_nbest_LG \
--beam 20.0 \
--max-contexts 8 \
--max-states 64
"""
import argparse
import logging
import math
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import k2
import torch
import torch.nn as nn
from asr_datamodule import WenetSpeechAsrDataModule
from beam_search import (
beam_search,
fast_beam_search_nbest,
fast_beam_search_nbest_LG,
fast_beam_search_nbest_oracle,
fast_beam_search_one_best,
greedy_search,
greedy_search_batch,
modified_beam_search,
)
from train import add_model_arguments, get_params, get_transducer_model
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
setup_logger,
store_transcripts,
str2bool,
write_error_stats,
)
LOG_EPS = math.log(1e-10)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="lstm_transducer_stateless/exp",
help="The experiment dir",
)
parser.add_argument(
"--lang-dir",
type=Path,
default="data/lang_char",
help="The lang dir containing word table and LG graph",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
- fast_beam_search
- fast_beam_search_nbest
- fast_beam_search_nbest_oracle
- fast_beam_search_nbest_LG
If you use fast_beam_search_nbest_LG, you have to specify
`--lang-dir`, which should contain `LG.pt`.
""",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --decoding-method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=20.0,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is fast_beam_search,
fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle
""",
)
parser.add_argument(
"--ngram-lm-scale",
type=float,
default=0.01,
help="""
Used only when --decoding_method is fast_beam_search_nbest_LG.
It specifies the scale for n-gram LM scores.
""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=8,
help="""Used only when --decoding-method is
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--max-states",
type=int,
default=64,
help="""Used only when --decoding-method is
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame.
Used only when --decoding_method is greedy_search""",
)
parser.add_argument(
"--num-paths",
type=int,
default=200,
help="""Number of paths for nbest decoding.
Used only when the decoding method is fast_beam_search_nbest,
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--nbest-scale",
type=float,
default=0.5,
help="""Scale applied to lattice scores when computing nbest paths.
Used only when the decoding method is fast_beam_search_nbest,
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
add_model_arguments(parser)
return parser
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
lexicon: Lexicon,
# graph_compiler: CharCtcTrainingGraphCompiler,
batch: dict,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
- key: It indicates the setting used for decoding. For example,
if greedy_search is used, it would be "greedy_search"
If beam search with a beam size of 7 is used, it would be
"beam_7"
- value: It contains the decoding result. `len(value)` equals to
batch size. `value[i]` is the decoding result for the i-th
utterance in the given batch.
Args:
params:
It's the return value of :func:`get_params`.
model:
The neural model.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
Returns:
Return the decoding result. See above description for the format of
the returned dict.
"""
device = next(model.parameters()).device
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device)
# at entry, feature is (N, T, C)
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
# tail padding here to alleviate the tail deletion problem
num_tail_padded_frames = 35
feature = torch.nn.functional.pad(
feature,
(0, 0, 0, num_tail_padded_frames),
mode="constant",
value=LOG_EPS,
)
feature_lens += num_tail_padded_frames
encoder_out, encoder_out_lens, _ = model.encoder(
x=feature, x_lens=feature_lens
)
hyps = []
if params.decoding_method == "fast_beam_search":
hyp_tokens = fast_beam_search_one_best(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
)
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
elif params.decoding_method == "fast_beam_search_nbest_LG":
hyp_tokens = fast_beam_search_nbest_LG(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
nbest_scale=params.nbest_scale,
)
for hyp in hyp_tokens:
sentence = "".join([lexicon.word_table[i] for i in hyp])
hyps.append(list(sentence))
elif params.decoding_method == "fast_beam_search_nbest":
hyp_tokens = fast_beam_search_nbest(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
nbest_scale=params.nbest_scale,
)
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
elif params.decoding_method == "fast_beam_search_nbest_oracle":
hyp_tokens = fast_beam_search_nbest_oracle(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
ref_texts=graph_compiler.texts_to_ids(supervisions["text"]),
nbest_scale=params.nbest_scale,
)
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
elif (
params.decoding_method == "greedy_search"
and params.max_sym_per_frame == 1
):
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
elif params.decoding_method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
)
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
else:
batch_size = encoder_out.size(0)
for i in range(batch_size):
# fmt: off
encoder_out_i = encoder_out[i:i + 1, :encoder_out_lens[i]]
# fmt: on
if params.decoding_method == "greedy_search":
hyp = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.decoding_method == "beam_search":
hyp = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
)
hyps.append([lexicon.token_table[idx] for idx in hyp])
if params.decoding_method == "greedy_search":
return {"greedy_search": hyps}
elif "fast_beam_search" in params.decoding_method:
key = f"beam_{params.beam}_"
key += f"max_contexts_{params.max_contexts}_"
key += f"max_states_{params.max_states}"
if "nbest" in params.decoding_method:
key += f"_num_paths_{params.num_paths}_"
key += f"nbest_scale_{params.nbest_scale}"
if "LG" in params.decoding_method:
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
return {key: hyps}
else:
return {f"beam_size_{params.beam_size}": hyps}
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
lexicon: Lexicon,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
Returns:
Return a dict, whose key may be "greedy_search" if greedy search
is used, or it may be "beam_7" if beam size of 7 is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
if params.decoding_method == "greedy_search":
log_interval = 50
else:
log_interval = 20
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
texts = [list(str(text)) for text in texts]
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
hyps_dict = decode_one_batch(
params=params,
model=model,
lexicon=lexicon,
decoding_graph=decoding_graph,
batch=batch,
)
for name, hyps in hyps_dict.items():
this_batch = []
assert len(hyps) == len(texts)
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
this_batch.append((cut_id, ref_text, hyp_words))
results[name].extend(this_batch)
num_cuts += len(texts)
if batch_idx % log_interval == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(
f"batch {batch_str}, cuts processed until now is {num_cuts}"
)
return results
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
):
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = (
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = (
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True
)
test_set_wers[key] = wer
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = (
params.res_dir
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
WenetSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
assert params.decoding_method in (
"greedy_search",
"beam_search",
"fast_beam_search",
"fast_beam_search_nbest",
"fast_beam_search_nbest_LG",
"fast_beam_search_nbest_oracle",
"modified_beam_search",
)
params.res_dir = params.exp_dir / params.decoding_method
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
if "fast_beam_search" in params.decoding_method:
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
params.suffix += f"-max-states-{params.max_states}"
if "nbest" in params.decoding_method:
params.suffix += f"-nbest-scale-{params.nbest_scale}"
params.suffix += f"-num-paths-{params.num_paths}"
if "LG" in params.decoding_method:
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
elif "beam_search" in params.decoding_method:
params.suffix += (
f"-{params.decoding_method}-beam-size-{params.beam_size}"
)
else:
params.suffix += f"-context-{params.context_size}"
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
lexicon = Lexicon(params.lang_dir)
params.blank_id = lexicon.token_table["<blk>"]
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg + 1]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device)
model.eval()
if "fast_beam_search" in params.decoding_method:
if params.decoding_method == "fast_beam_search_nbest_LG":
lexicon = Lexicon(params.lang_dir)
# word_table = lexicon.word_table
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
)
decoding_graph.scores *= params.ngram_lm_scale
else:
# word_table = None
decoding_graph = k2.trivial_graph(
params.vocab_size - 1, device=device
)
else:
decoding_graph = None
# word_table = None
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
# Note: Please use "pip install webdataset==0.1.103"
# for installing the webdataset.
import glob
import os
from lhotse import CutSet
from lhotse.dataset.webdataset import export_to_webdataset
# we need cut ids to display recognition results.
args.return_cuts = True
wenetspeech = WenetSpeechAsrDataModule(args)
dev = "dev"
test_net = "test_net"
test_meeting = "test_meeting"
if not os.path.exists(f"{dev}/shared-0.tar"):
os.makedirs(dev, exist_ok=True)
dev_cuts = wenetspeech.valid_cuts()
export_to_webdataset(
dev_cuts,
output_path=f"{dev}/shared-%d.tar",
shard_size=300,
)
if not os.path.exists(f"{test_net}/shared-0.tar"):
os.makedirs(test_net, exist_ok=True)
test_net_cuts = wenetspeech.test_net_cuts()
export_to_webdataset(
test_net_cuts,
output_path=f"{test_net}/shared-%d.tar",
shard_size=300,
)
if not os.path.exists(f"{test_meeting}/shared-0.tar"):
os.makedirs(test_meeting, exist_ok=True)
test_meeting_cuts = wenetspeech.test_meeting_cuts()
export_to_webdataset(
test_meeting_cuts,
output_path=f"{test_meeting}/shared-%d.tar",
shard_size=300,
)
print("done")
dev_shards = [
str(path)
for path in sorted(glob.glob(os.path.join(dev, "shared-*.tar")))
]
cuts_dev_webdataset = CutSet.from_webdataset(
dev_shards,
split_by_worker=True,
split_by_node=True,
shuffle_shards=True,
)
test_net_shards = [
str(path)
for path in sorted(glob.glob(os.path.join(test_net, "shared-*.tar")))
]
cuts_test_net_webdataset = CutSet.from_webdataset(
test_net_shards,
split_by_worker=True,
split_by_node=True,
shuffle_shards=True,
)
test_meeting_shards = [
str(path)
for path in sorted(
glob.glob(os.path.join(test_meeting, "shared-*.tar"))
)
]
cuts_test_meeting_webdataset = CutSet.from_webdataset(
test_meeting_shards,
split_by_worker=True,
split_by_node=True,
shuffle_shards=True,
)
dev_dl = wenetspeech.valid_dataloaders(cuts_dev_webdataset)
test_net_dl = wenetspeech.test_dataloaders(cuts_test_net_webdataset)
test_meeting_dl = wenetspeech.test_dataloaders(cuts_test_meeting_webdataset)
test_sets = ["DEV", "TEST_NET", "TEST_MEETING"]
test_dl = [dev_dl, test_net_dl, test_meeting_dl]
for test_set, test_dl in zip(test_sets, test_dl):
results_dict = decode_dataset(
dl=test_dl,
params=params,
model=model,
lexicon=lexicon,
# word_table=word_table,
decoding_graph=decoding_graph,
)
save_results(
params=params,
test_set_name=test_set,
results_dict=results_dict,
)
logging.info("Done!")
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/decoder.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/transducer_stateless/encoder_interface.py

View File

@ -0,0 +1,403 @@
#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script converts several saved checkpoints
# to a single one using model averaging.
"""
Usage:
(1) Export to torchscript model using torch.jit.trace()
./lstm_transducer_stateless/export.py \
--exp-dir ./lstm_transducer_stateless/exp \
--lang-dir data/lang_char \
--epoch 35 \
--avg 10 \
--jit-trace 1
It will generate 3 files: `encoder_jit_trace.pt`,
`decoder_jit_trace.pt`, and `joiner_jit_trace.pt`.
(2) Export `model.state_dict()`
./lstm_transducer_stateless/export.py \
--exp-dir ./lstm_transducer_stateless/exp \
--lang-dir data/lang_char \
--epoch 35 \
--avg 10
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
load it by `icefall.checkpoint.load_checkpoint()`.
To use the generated file with `lstm_transducer_stateless/decode.py`,
you can do:
cd /path/to/exp_dir
ln -s pretrained.pt epoch-9999.pt
cd /path/to/egs/librispeech/ASR
./lstm_transducer_stateless/decode.py \
--exp-dir ./lstm_transducer_stateless/exp \
--epoch 9999 \
--avg 1 \
--max-duration 600 \
--decoding-method greedy_search \
--lang-dir data/lang_char \
Check ./pretrained.py for its usage.
"""
import argparse
import logging
from pathlib import Path
import torch
import torch.nn as nn
from scaling_converter import convert_scaled_to_non_scaled
from train import add_model_arguments, get_params, get_transducer_model
from icefall.lexicon import Lexicon
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="""It specifies the checkpoint to use for averaging.
Note: Epoch counts from 0.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless3/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_char",
help="The lang dir",
)
parser.add_argument(
"--jit-trace",
type=str2bool,
default=False,
help="""True to save a model after applying torch.jit.trace.
It will generate 3 files:
- encoder_jit_trace.pt
- decoder_jit_trace.pt
- joiner_jit_trace.pt
Check ./jit_pretrained.py for how to use them.
""",
)
parser.add_argument(
"--pnnx",
type=str2bool,
default=False,
help="""True to save a model after applying torch.jit.trace for later
converting to PNNX. It will generate 3 files:
- encoder_jit_trace-pnnx.pt
- decoder_jit_trace-pnnx.pt
- joiner_jit_trace-pnnx.pt
""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
add_model_arguments(parser)
return parser
def export_encoder_model_jit_trace(
encoder_model: nn.Module,
encoder_filename: str,
) -> None:
"""Export the given encoder model with torch.jit.trace()
Note: The warmup argument is fixed to 1.
Args:
encoder_model:
The input encoder model
encoder_filename:
The filename to save the exported model.
"""
x = torch.zeros(1, 100, 80, dtype=torch.float32)
x_lens = torch.tensor([100], dtype=torch.int64)
states = encoder_model.get_init_states()
traced_model = torch.jit.trace(encoder_model, (x, x_lens, states))
traced_model.save(encoder_filename)
logging.info(f"Saved to {encoder_filename}")
def export_decoder_model_jit_trace(
decoder_model: nn.Module,
decoder_filename: str,
) -> None:
"""Export the given decoder model with torch.jit.trace()
Note: The argument need_pad is fixed to False.
Args:
decoder_model:
The input decoder model
decoder_filename:
The filename to save the exported model.
"""
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
need_pad = torch.tensor([False])
traced_model = torch.jit.trace(decoder_model, (y, need_pad))
traced_model.save(decoder_filename)
logging.info(f"Saved to {decoder_filename}")
def export_joiner_model_jit_trace(
joiner_model: nn.Module,
joiner_filename: str,
) -> None:
"""Export the given joiner model with torch.jit.trace()
Note: The argument project_input is fixed to True. A user should not
project the encoder_out/decoder_out by himself/herself. The exported joiner
will do that for the user.
Args:
joiner_model:
The input joiner model
joiner_filename:
The filename to save the exported model.
"""
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
traced_model = torch.jit.trace(joiner_model, (encoder_out, decoder_out))
traced_model.save(joiner_filename)
logging.info(f"Saved to {joiner_filename}")
@torch.no_grad()
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
lexicon = Lexicon(params.lang_dir)
params.blank_id = 0
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)
if params.pnnx:
params.is_pnnx = params.pnnx
logging.info("For PNNX")
logging.info("About to create model")
model = get_transducer_model(params)
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg + 1]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to("cpu")
model.eval()
if params.pnnx:
convert_scaled_to_non_scaled(model, inplace=True)
logging.info("Using torch.jit.trace()")
encoder_filename = params.exp_dir / "encoder_jit_trace-pnnx.pt"
export_encoder_model_jit_trace(model.encoder, encoder_filename)
decoder_filename = params.exp_dir / "decoder_jit_trace-pnnx.pt"
export_decoder_model_jit_trace(model.decoder, decoder_filename)
joiner_filename = params.exp_dir / "joiner_jit_trace-pnnx.pt"
export_joiner_model_jit_trace(model.joiner, joiner_filename)
elif params.jit_trace is True:
convert_scaled_to_non_scaled(model, inplace=True)
logging.info("Using torch.jit.trace()")
encoder_filename = params.exp_dir / "encoder_jit_trace.pt"
export_encoder_model_jit_trace(model.encoder, encoder_filename)
decoder_filename = params.exp_dir / "decoder_jit_trace.pt"
export_decoder_model_jit_trace(model.decoder, decoder_filename)
joiner_filename = params.exp_dir / "joiner_jit_trace.pt"
export_joiner_model_jit_trace(model.joiner, joiner_filename)
else:
logging.info("Not using torchscript")
# Save it using a format so that it can be loaded
# by :func:`load_checkpoint`
filename = params.exp_dir / "pretrained.pt"
torch.save({"model": model.state_dict()}, str(filename))
logging.info(f"Saved to {filename}")
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/joiner.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/lstm_transducer_stateless/lstm.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/lstm_transducer_stateless/model.py

View File

@ -0,0 +1,296 @@
#!/usr/bin/env python3
# flake8: noqa
#
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
./lstm_transducer_stateless/ncnn-decode.py \
--token-filename ./data/lang_char/tokens.txt \
--encoder-param-filename ./lstm_transducer_stateless/exp-new/encoder_jit_trace-epoch-11-avg-2-pnnx.ncnn.param \
--encoder-bin-filename ./lstm_transducer_stateless/exp-new/encoder_jit_trace-epoch-11-avg-2-pnnx.ncnn.bin \
--decoder-param-filename ./lstm_transducer_stateless/exp-new/decoder_jit_trace-epoch-11-avg-2-pnnx.ncnn.param \
--decoder-bin-filename ./lstm_transducer_stateless/exp-new/decoder_jit_trace-epoch-11-avg-2-pnnx.ncnn.bin \
--joiner-param-filename ./lstm_transducer_stateless/exp-new/joiner_jit_trace-epoch-11-avg-2-pnnx.ncnn.param \
--joiner-bin-filename ./lstm_transducer_stateless/exp-new/joiner_jit_trace-epoch-11-avg-2-pnnx.ncnn.bin \
./test_wavs/DEV_T0000000001.wav
"""
import argparse
import logging
from typing import List
import k2
import kaldifeat
import ncnn
import torch
import torchaudio
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--token-filename",
type=str,
help="Path to tokens.txt",
)
parser.add_argument(
"--encoder-param-filename",
type=str,
help="Path to encoder.ncnn.param",
)
parser.add_argument(
"--encoder-bin-filename",
type=str,
help="Path to encoder.ncnn.bin",
)
parser.add_argument(
"--decoder-param-filename",
type=str,
help="Path to decoder.ncnn.param",
)
parser.add_argument(
"--decoder-bin-filename",
type=str,
help="Path to decoder.ncnn.bin",
)
parser.add_argument(
"--joiner-param-filename",
type=str,
help="Path to joiner.ncnn.param",
)
parser.add_argument(
"--joiner-bin-filename",
type=str,
help="Path to joiner.ncnn.bin",
)
parser.add_argument(
"sound_filename",
type=str,
help="Path to foo.wav",
)
return parser.parse_args()
class Model:
def __init__(self, args):
self.init_encoder(args)
self.init_decoder(args)
self.init_joiner(args)
def init_encoder(self, args):
encoder_net = ncnn.Net()
encoder_net.opt.use_packing_layout = False
encoder_net.opt.use_fp16_storage = False
encoder_param = args.encoder_param_filename
encoder_model = args.encoder_bin_filename
encoder_net.load_param(encoder_param)
encoder_net.load_model(encoder_model)
self.encoder_net = encoder_net
def init_decoder(self, args):
decoder_param = args.decoder_param_filename
decoder_model = args.decoder_bin_filename
decoder_net = ncnn.Net()
decoder_net.opt.use_packing_layout = False
decoder_net.load_param(decoder_param)
decoder_net.load_model(decoder_model)
self.decoder_net = decoder_net
def init_joiner(self, args):
joiner_param = args.joiner_param_filename
joiner_model = args.joiner_bin_filename
joiner_net = ncnn.Net()
joiner_net.opt.use_packing_layout = False
joiner_net.load_param(joiner_param)
joiner_net.load_model(joiner_model)
self.joiner_net = joiner_net
def run_encoder(self, x, states):
with self.encoder_net.create_extractor() as ex:
ex.set_num_threads(10)
ex.input("in0", ncnn.Mat(x.numpy()).clone())
x_lens = torch.tensor([x.size(0)], dtype=torch.float32)
ex.input("in1", ncnn.Mat(x_lens.numpy()).clone())
ex.input("in2", ncnn.Mat(states[0].numpy()).clone())
ex.input("in3", ncnn.Mat(states[1].numpy()).clone())
ret, ncnn_out0 = ex.extract("out0")
assert ret == 0, ret
ret, ncnn_out1 = ex.extract("out1")
assert ret == 0, ret
ret, ncnn_out2 = ex.extract("out2")
assert ret == 0, ret
ret, ncnn_out3 = ex.extract("out3")
assert ret == 0, ret
encoder_out = torch.from_numpy(ncnn_out0.numpy()).clone()
encoder_out_lens = torch.from_numpy(ncnn_out1.numpy()).to(
torch.int32
)
hx = torch.from_numpy(ncnn_out2.numpy()).clone()
cx = torch.from_numpy(ncnn_out3.numpy()).clone()
return encoder_out, encoder_out_lens, hx, cx
def run_decoder(self, decoder_input):
assert decoder_input.dtype == torch.int32
with self.decoder_net.create_extractor() as ex:
ex.set_num_threads(10)
ex.input("in0", ncnn.Mat(decoder_input.numpy()).clone())
ret, ncnn_out0 = ex.extract("out0")
assert ret == 0, ret
decoder_out = torch.from_numpy(ncnn_out0.numpy()).clone()
return decoder_out
def run_joiner(self, encoder_out, decoder_out):
with self.joiner_net.create_extractor() as ex:
ex.set_num_threads(10)
ex.input("in0", ncnn.Mat(encoder_out.numpy()).clone())
ex.input("in1", ncnn.Mat(decoder_out.numpy()).clone())
ret, ncnn_out0 = ex.extract("out0")
assert ret == 0, ret
joiner_out = torch.from_numpy(ncnn_out0.numpy()).clone()
return joiner_out
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert sample_rate == expected_sample_rate, (
f"expected sample rate: {expected_sample_rate}. "
f"Given: {sample_rate}"
)
# We use only the first channel
ans.append(wave[0])
return ans
def greedy_search(model: Model, encoder_out: torch.Tensor):
assert encoder_out.ndim == 2
T = encoder_out.size(0)
context_size = 2
blank_id = 0 # hard-code to 0
hyp = [blank_id] * context_size
decoder_input = torch.tensor(hyp, dtype=torch.int32) # (1, context_size)
decoder_out = model.run_decoder(decoder_input).squeeze(0)
# print(decoder_out.shape) # (512,)
for t in range(T):
encoder_out_t = encoder_out[t]
joiner_out = model.run_joiner(encoder_out_t, decoder_out)
# print(joiner_out.shape) # [500]
y = joiner_out.argmax(dim=0).tolist()
if y != blank_id:
hyp.append(y)
decoder_input = hyp[-context_size:]
decoder_input = torch.tensor(decoder_input, dtype=torch.int32)
decoder_out = model.run_decoder(decoder_input).squeeze(0)
return hyp[context_size:]
def main():
args = get_args()
logging.info(vars(args))
model = Model(args)
sound_file = args.sound_filename
sample_rate = 16000
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = "cpu"
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = sample_rate
opts.mel_opts.num_bins = 80
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {sound_file}")
wave_samples = read_sound_files(
filenames=[sound_file],
expected_sample_rate=sample_rate,
)[0]
logging.info("Decoding started")
features = fbank(wave_samples)
num_encoder_layers = 12
d_model = 512
rnn_hidden_size = 1024
states = (
torch.zeros(num_encoder_layers, d_model),
torch.zeros(
num_encoder_layers,
rnn_hidden_size,
),
)
encoder_out, encoder_out_lens, hx, cx = model.run_encoder(features, states)
hyp = greedy_search(model, encoder_out)
logging.info(sound_file)
token_table = k2.SymbolTable.from_file(args.token_filename)
words = [token_table[i] for i in hyp]
logging.info("".join(words))
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/optim.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/scaling.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless3/scaling_converter.py

View File

@ -0,0 +1,95 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
To run this file, do:
cd icefall/egs/librispeech/ASR
python ./lstm_transducer_stateless/test_model.py
"""
import os
from pathlib import Path
import torch
# from export import (
# export_decoder_model_jit_trace,
# export_encoder_model_jit_trace,
# export_joiner_model_jit_trace,
# )
from lstm import stack_states, unstack_states
from scaling_converter import convert_scaled_to_non_scaled
from train import get_params, get_transducer_model
def test_model():
params = get_params()
params.vocab_size = 5536
params.blank_id = 0
params.context_size = 2
params.unk_id = 2
params.encoder_dim = 256
params.rnn_hidden_size = 384
params.dim_feedforward = 512
params.num_encoder_layers = 6
params.aux_layer_period = 0
params.exp_dir = Path("exp_test_model")
model = get_transducer_model(params)
model.eval()
num_param = sum([p.numel() for p in model.parameters()])
print(f"Number of model parameters: {num_param}")
return
convert_scaled_to_non_scaled(model, inplace=True)
if not os.path.exists(params.exp_dir):
os.path.mkdir(params.exp_dir)
encoder_filename = params.exp_dir / "encoder_jit_trace.pt"
export_encoder_model_jit_trace(model.encoder, encoder_filename)
decoder_filename = params.exp_dir / "decoder_jit_trace.pt"
export_decoder_model_jit_trace(model.decoder, decoder_filename)
joiner_filename = params.exp_dir / "joiner_jit_trace.pt"
export_joiner_model_jit_trace(model.joiner, joiner_filename)
print("The model has been successfully exported using jit.trace.")
def test_states_stack_and_unstack():
layer, batch, hidden, cell = 12, 100, 512, 1024
states = (
torch.randn(layer, batch, hidden),
torch.randn(layer, batch, cell),
)
states2 = stack_states(unstack_states(states))
assert torch.allclose(states[0], states2[0])
assert torch.allclose(states[1], states2[1])
def main():
test_model()
# test_states_stack_and_unstack()
if __name__ == "__main__":
main()

File diff suppressed because it is too large Load Diff

View File

@ -292,7 +292,7 @@ class WenetSpeechAsrDataModule:
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
num_buckets=self.args.num_buckets,
buffer_size=30000,
buffer_size=300000,
drop_last=True,
)
else:

View File

@ -203,7 +203,7 @@ def get_parser():
"--beam-size",
type=int,
default=4,
help="""An interger indicating how many candidates we will keep for each
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --decoding-method is beam_search or
modified_beam_search.""",
)

View File

@ -1395,7 +1395,7 @@ def tokenize_by_CJK_char(line: str) -> str:
def display_and_save_batch(
batch: dict,
params: AttributeDict,
sp: spm.SentencePieceProcessor,
sp: Optional[spm.SentencePieceProcessor] = None,
) -> None:
"""Display the batch statistics and save the batch into disk.
@ -1406,7 +1406,7 @@ def display_and_save_batch(
params:
Parameters for training. See :func:`get_params`.
sp:
The BPE model.
Optional. The BPE model.
"""
from lhotse.utils import uuid4
@ -1418,9 +1418,14 @@ def display_and_save_batch(
features = batch["inputs"]
logging.info(f"features shape: {features.shape}")
text = supervisions["text"]
if sp is not None:
y = sp.encode(text, out_type=int)
num_tokens = sum(len(i) for i in y)
else:
num_tokens = sum(len(i) for i in text)
y = sp.encode(supervisions["text"], out_type=int)
num_tokens = sum(len(i) for i in y)
logging.info(f"num tokens: {num_tokens}")