mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-11 11:02:29 +00:00
adjusted prepare.sh to only calculate fbank and manifest together; adjust datamodule to load from manifest files
This commit is contained in:
parent
cf425173af
commit
dbe270ba94
@ -60,7 +60,8 @@ def make_cutset_blueprints(
|
|||||||
|
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
|
|
||||||
dataset = load_dataset(mls_eng_hf_dataset_path)
|
print(f"{mls_eng_hf_dataset_path=}")
|
||||||
|
dataset = load_dataset(str(mls_eng_hf_dataset_path))
|
||||||
|
|
||||||
# Create test dataset
|
# Create test dataset
|
||||||
logging.info("Creating test cuts.")
|
logging.info("Creating test cuts.")
|
||||||
|
@ -21,13 +21,15 @@ import inspect
|
|||||||
import logging
|
import logging
|
||||||
from functools import lru_cache
|
from functools import lru_cache
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any, Dict, List, Optional, Union
|
from typing import Any, Dict, List, Optional
|
||||||
|
|
||||||
from lhotse import CutSet, Fbank, FbankConfig
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||||
from lhotse.dataset import (
|
from lhotse.dataset import (
|
||||||
CutConcatenate,
|
CutConcatenate,
|
||||||
|
CutMix,
|
||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
|
PrecomputedFeatures,
|
||||||
SimpleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
@ -39,215 +41,315 @@ from icefall.utils import str2bool
|
|||||||
|
|
||||||
class MLSEnglishHFAsrDataModule:
|
class MLSEnglishHFAsrDataModule:
|
||||||
"""
|
"""
|
||||||
DataModule for MLS English ASR experiments using HuggingFace dataset.
|
DataModule for k2 ASR experiments.
|
||||||
Handles dataset loading and provides train/valid/test dataloaders with
|
It assumes there is always one train and valid dataloader,
|
||||||
on-the-fly feature extraction.
|
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||||
|
and test-other).
|
||||||
|
It contains all the common data pipeline modules used in ASR
|
||||||
|
experiments, e.g.:
|
||||||
|
- dynamic batch size,
|
||||||
|
- bucketing samplers,
|
||||||
|
- cut concatenation,
|
||||||
|
- augmentation,
|
||||||
|
- on-the-fly feature extraction
|
||||||
|
This class should be derived for specific corpora used in ASR tasks.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, args: argparse.Namespace):
|
def __init__(self, args: argparse.Namespace):
|
||||||
self.args = args
|
self.args = args
|
||||||
self.dataset = None
|
|
||||||
|
|
||||||
# self._validate_args()
|
|
||||||
|
|
||||||
# def _validate_args(self) -> None:
|
|
||||||
# """Validate configuration arguments."""
|
|
||||||
# if self.args.on_the_fly_feats is False:
|
|
||||||
# raise ValueError("This recipe requires on-the-fly feature extraction")
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def add_arguments(cls, parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
group = parser.add_argument_group(
|
group = parser.add_argument_group(
|
||||||
title="ASR data related options",
|
title="ASR data related options",
|
||||||
description="Options for data loading and processing",
|
description="These options are used for the preparation of "
|
||||||
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
|
"augmentations, etc.",
|
||||||
)
|
)
|
||||||
|
|
||||||
# Dataset configuration
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--dataset-path",
|
"--manifest-dir",
|
||||||
type=str,
|
type=Path,
|
||||||
default="parler-tts/mls_eng",
|
default=Path("data/manifests"),
|
||||||
help="Path to HuggingFace MLS English dataset (name or local path)",
|
help="Path to directory with train/dev/test cuts.",
|
||||||
)
|
)
|
||||||
|
|
||||||
# Sampling and batching
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--max-duration",
|
"--max-duration",
|
||||||
type=float,
|
type=int,
|
||||||
default=200.0,
|
default=200.0,
|
||||||
help="Maximum batch duration in seconds",
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--bucketing-sampler",
|
"--bucketing-sampler",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="Whether to use bucketing sampler",
|
help="When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames).",
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--num-buckets",
|
"--num-buckets",
|
||||||
type=int,
|
type=int,
|
||||||
default=30,
|
default=30,
|
||||||
help="Number of buckets for DynamicBucketingSampler",
|
help="The number of buckets for the DynamicBucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets).",
|
||||||
)
|
)
|
||||||
|
|
||||||
# Data augmentation
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--enable-spec-aug",
|
"--concatenate-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, utterances (cuts) will be concatenated "
|
||||||
|
"to minimize the amount of padding.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--duration-factor",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="Determines the maximum duration of a concatenated cut "
|
||||||
|
"relative to the duration of the longest cut in a batch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--gap",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="The amount of padding (in seconds) inserted between "
|
||||||
|
"concatenated cuts. This padding is filled with noise when "
|
||||||
|
"noise augmentation is used.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-feats",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, use on-the-fly cut mixing and feature "
|
||||||
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
|
"if available.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="Whether to enable SpecAugment",
|
help="When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch.",
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--spec-aug-time-warp-factor",
|
"--drop-last",
|
||||||
type=int,
|
type=str2bool,
|
||||||
default=80,
|
default=True,
|
||||||
help="Time warp factor for SpecAugment",
|
help="Whether to drop last batch. Used by sampler.",
|
||||||
)
|
|
||||||
|
|
||||||
# Dataloader configuration
|
|
||||||
group.add_argument(
|
|
||||||
"--num-workers",
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help="Number of workers for data loading",
|
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--return-cuts",
|
"--return-cuts",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=False,
|
||||||
help="Whether to return cuts in batch",
|
help="When enabled, each batch will have the "
|
||||||
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
|
"were used to construct it.",
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--drop-last",
|
"--num-workers",
|
||||||
type=str2bool,
|
type=int,
|
||||||
default=True,
|
default=2,
|
||||||
help="Whether to drop last incomplete batch",
|
help="The number of training dataloader workers that "
|
||||||
|
"collect the batches.",
|
||||||
)
|
)
|
||||||
|
|
||||||
return parser
|
group.add_argument(
|
||||||
|
"--enable-spec-aug",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, use SpecAugment for training dataset.",
|
||||||
|
)
|
||||||
|
|
||||||
def load_dataset(self, dataset_path: Optional[str] = None) -> None:
|
group.add_argument(
|
||||||
"""Load the HuggingFace dataset."""
|
"--spec-aug-time-warp-factor",
|
||||||
dataset_path = dataset_path or self.args.dataset_path
|
type=int,
|
||||||
logging.info(f"Loading MLS English dataset from: {dataset_path}")
|
default=80,
|
||||||
|
help="Used only when --enable-spec-aug is True. "
|
||||||
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
|
"Larger values mean more warping. "
|
||||||
|
"A value less than 1 means to disable time warp.",
|
||||||
|
)
|
||||||
|
|
||||||
try:
|
group.add_argument(
|
||||||
from datasets import load_dataset
|
"--enable-musan",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, select noise from MUSAN and mix it"
|
||||||
|
"with training dataset. ",
|
||||||
|
)
|
||||||
|
|
||||||
self.dataset = load_dataset(dataset_path)
|
def train_dataloaders(
|
||||||
logging.info("Dataset loaded successfully")
|
self, cuts_train: CutSet, sampler_state_dict: Optional[Dict[str, Any]] = None
|
||||||
except ImportError:
|
) -> DataLoader:
|
||||||
raise ImportError("Please install datasets package: pip install datasets")
|
"""
|
||||||
except Exception as e:
|
Args:
|
||||||
raise RuntimeError(f"Failed to load dataset: {e}")
|
cuts_train:
|
||||||
|
CutSet for training.
|
||||||
|
sampler_state_dict:
|
||||||
|
The state dict for the training sampler.
|
||||||
|
"""
|
||||||
|
|
||||||
def _create_dataset(
|
|
||||||
self, cuts: CutSet, is_train: bool = False
|
|
||||||
) -> K2SpeechRecognitionDataset:
|
|
||||||
"""Create appropriate dataset with transforms."""
|
|
||||||
transforms = []
|
transforms = []
|
||||||
input_transforms = []
|
input_transforms = []
|
||||||
|
|
||||||
if is_train and self.args.enable_spec_aug:
|
if self.args.enable_spec_aug:
|
||||||
input_transforms.append(self._create_spec_augment())
|
logging.info("Enable SpecAugment")
|
||||||
|
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||||
return K2SpeechRecognitionDataset(
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
cut_transforms=transforms,
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
# different.
|
||||||
input_transforms=input_transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
|
|
||||||
def _create_spec_augment(self) -> SpecAugment:
|
|
||||||
"""Create SpecAugment transform based on config."""
|
|
||||||
num_frame_masks = 10
|
num_frame_masks = 10
|
||||||
num_frame_masks_parameter = inspect.signature(SpecAugment.__init__).parameters[
|
num_frame_masks_parameter = inspect.signature(
|
||||||
"num_frame_masks"
|
SpecAugment.__init__
|
||||||
]
|
).parameters["num_frame_masks"]
|
||||||
if num_frame_masks_parameter.default == 1:
|
if num_frame_masks_parameter.default == 1:
|
||||||
num_frame_masks = 2
|
num_frame_masks = 2
|
||||||
|
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||||
return SpecAugment(
|
input_transforms.append(
|
||||||
|
SpecAugment(
|
||||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
num_frame_masks=num_frame_masks,
|
num_frame_masks=num_frame_masks,
|
||||||
features_mask_size=27,
|
features_mask_size=27,
|
||||||
num_feature_masks=2,
|
num_feature_masks=2,
|
||||||
frames_mask_size=100,
|
frames_mask_size=100,
|
||||||
)
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable SpecAugment")
|
||||||
|
|
||||||
|
logging.info("About to create train dataset")
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
# NOTE: the PerturbSpeed transform should be added only if we
|
||||||
|
# remove it from data prep stage.
|
||||||
|
# Add on-the-fly speed perturbation; since originally it would
|
||||||
|
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||||
|
# 3x more epochs.
|
||||||
|
# Speed perturbation probably should come first before
|
||||||
|
# concatenation, but in principle the transforms order doesn't have
|
||||||
|
# to be strict (e.g. could be randomized)
|
||||||
|
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||||
|
# Drop feats to be on the safe side.
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
def _create_sampler(
|
|
||||||
self, cuts: CutSet, shuffle: bool
|
|
||||||
) -> Union[DynamicBucketingSampler, SimpleCutSampler]:
|
|
||||||
"""Create appropriate sampler based on config."""
|
|
||||||
if self.args.bucketing_sampler:
|
if self.args.bucketing_sampler:
|
||||||
return DynamicBucketingSampler(
|
logging.info("Using DynamicBucketingSampler.")
|
||||||
cuts,
|
train_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=shuffle,
|
shuffle=self.args.shuffle,
|
||||||
num_buckets=self.args.num_buckets,
|
num_buckets=self.args.num_buckets,
|
||||||
drop_last=self.args.drop_last,
|
drop_last=self.args.drop_last,
|
||||||
)
|
)
|
||||||
return SimpleCutSampler(
|
else:
|
||||||
cuts,
|
logging.info("Using SimpleCutSampler.")
|
||||||
|
train_sampler = SimpleCutSampler(
|
||||||
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=shuffle,
|
shuffle=self.args.shuffle,
|
||||||
)
|
)
|
||||||
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
def train_dataloader(
|
if sampler_state_dict is not None:
|
||||||
self, sampler_state_dict: Optional[Dict[str, Any]] = None
|
logging.info("Loading sampler state dict")
|
||||||
) -> DataLoader:
|
train_sampler.load_state_dict(sampler_state_dict)
|
||||||
"""Create train dataloader."""
|
|
||||||
cuts = self.train_cuts()
|
|
||||||
dataset = self._create_dataset(cuts, is_train=True)
|
|
||||||
sampler = self._create_sampler(cuts, shuffle=True)
|
|
||||||
|
|
||||||
if sampler_state_dict:
|
train_dl = DataLoader(
|
||||||
sampler.load_state_dict(sampler_state_dict)
|
train,
|
||||||
|
sampler=train_sampler,
|
||||||
return DataLoader(
|
|
||||||
dataset,
|
|
||||||
sampler=sampler,
|
|
||||||
batch_size=None,
|
batch_size=None,
|
||||||
num_workers=self.args.num_workers,
|
num_workers=self.args.num_workers,
|
||||||
persistent_workers=False,
|
persistent_workers=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
def valid_dataloader(self) -> DataLoader:
|
return train_dl
|
||||||
"""Create validation dataloader."""
|
|
||||||
cuts = self.valid_cuts()
|
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||||
return DataLoader(
|
transforms = []
|
||||||
self._create_dataset(cuts),
|
if self.args.concatenate_cuts:
|
||||||
sampler=self._create_sampler(cuts, shuffle=False),
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
logging.info("About to create dev dataset")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
valid_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_valid,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.info("About to create dev dataloader")
|
||||||
|
valid_dl = DataLoader(
|
||||||
|
validate,
|
||||||
|
sampler=valid_sampler,
|
||||||
batch_size=None,
|
batch_size=None,
|
||||||
num_workers=2,
|
num_workers=2,
|
||||||
persistent_workers=False,
|
persistent_workers=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
def test_dataloader(self) -> DataLoader:
|
return valid_dl
|
||||||
"""Create test dataloader."""
|
|
||||||
cuts = self.test_cuts()
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
return DataLoader(
|
logging.info("About to create test dataset")
|
||||||
self._create_dataset(cuts),
|
test = K2SpeechRecognitionDataset(
|
||||||
sampler=self._create_sampler(cuts, shuffle=False),
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||||
|
if self.args.on_the_fly_feats
|
||||||
|
else PrecomputedFeatures(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
sampler = DynamicBucketingSampler(
|
||||||
|
cuts,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
test_dl = DataLoader(
|
||||||
|
test,
|
||||||
batch_size=None,
|
batch_size=None,
|
||||||
|
sampler=sampler,
|
||||||
num_workers=self.args.num_workers,
|
num_workers=self.args.num_workers,
|
||||||
)
|
)
|
||||||
|
return test_dl
|
||||||
|
|
||||||
@lru_cache()
|
@lru_cache()
|
||||||
def train_cuts(self) -> CutSet:
|
def train_cuts(self) -> CutSet:
|
||||||
return CutSet.from_huggingface_dataset(
|
logging.info("About to get train cuts")
|
||||||
self.dataset["train"], text_key="transcript"
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "mls_english_cuts_train.jsonl.gz"
|
||||||
)
|
)
|
||||||
|
|
||||||
@lru_cache()
|
@lru_cache()
|
||||||
def valid_cuts(self) -> CutSet:
|
def valid_cuts(self) -> CutSet:
|
||||||
return CutSet.from_huggingface_dataset(
|
logging.info("About to get dev cuts")
|
||||||
self.dataset["dev"], text_key="transcript"
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "mls_english_cuts_dev.jsonl.gz"
|
||||||
)
|
)
|
||||||
|
|
||||||
@lru_cache()
|
@lru_cache()
|
||||||
def test_cuts(self) -> CutSet:
|
def test_cuts(self) -> List[CutSet]:
|
||||||
return CutSet.from_huggingface_dataset(
|
logging.info("About to get test cuts")
|
||||||
self.dataset["test"], text_key="transcript"
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "mls_english_cuts_test.jsonl.gz"
|
||||||
)
|
)
|
||||||
|
59
egs/mls_english/ASR/prepare.sh
Normal file → Executable file
59
egs/mls_english/ASR/prepare.sh
Normal file → Executable file
@ -1,15 +1,12 @@
|
|||||||
#!/usr/bin/env bash
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
# Prepare script for MLS English ASR recipe in icefall
|
# Prepare script for MLS English ASR recipe in icefall
|
||||||
# This recipe uses on-the-fly feature extraction, so it skips manifest
|
|
||||||
# and feature generation steps used in other recipes.
|
|
||||||
|
|
||||||
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
set -eou pipefail
|
set -eou pipefail
|
||||||
|
|
||||||
nj=15
|
|
||||||
stage=-1
|
stage=-1
|
||||||
stop_stage=100
|
stop_stage=100
|
||||||
|
|
||||||
@ -23,6 +20,9 @@ dl_dir=$PWD/download
|
|||||||
|
|
||||||
# All files generated by this script are saved in "data".
|
# All files generated by this script are saved in "data".
|
||||||
mkdir -p data
|
mkdir -p data
|
||||||
|
mkdir -p data/audio # Add this line
|
||||||
|
mkdir -p data/manifests
|
||||||
|
mkdir -p data/lang
|
||||||
|
|
||||||
log() {
|
log() {
|
||||||
local fname=${BASH_SOURCE[1]##*/}
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
@ -41,21 +41,25 @@ if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|||||||
fi
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
# if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||||
log "Stage 1: Prepare MLS English manifests and compute fbank"
|
# log "Stage 1: Prepare MLS English manifest"
|
||||||
# We assume that you have downloaded the MLS English corpus
|
# # We assume that you have downloaded the MLS English corpus
|
||||||
# to $dl_dir/mls_english
|
# # to $dl_dir/mls_english
|
||||||
mkdir -p data/manifests
|
# if [ ! -e data/manifests/.mls_english.done ]; then
|
||||||
if [ ! -e data/mls_english.done ]; then
|
# # lhotse prepare mls_english -j $nj $dl_dir/mls_english data/manifests
|
||||||
# lhotse prepare mls_english -j $nj $dl_dir/mls_english data/manifests
|
# python local/utils/save_audios.py --num-jobs 8 --dataset-dir $dl_dir/mls_english --audio-dir ./data/audio --manifest-dir ./data/manifests
|
||||||
python local/compute_fbank_mls_english.py --manifest-dir data/manifests --audio-dir data/audio --dl-dir $dl_dir/mls_english
|
# touch data/manifests/.mls_english.done
|
||||||
touch data/manifests/.mls_english.done
|
# fi
|
||||||
fi
|
# fi
|
||||||
fi
|
|
||||||
|
|
||||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||||
log "Stage 2: Validate MLS English manifests"
|
log "Stage 1: Compute MLS English fbank"
|
||||||
if [ ! -e data/manifests/.mls_english-validated.done ]; then
|
if [ ! -e data/manifests/.mls_english-validated.done ]; then
|
||||||
|
python local/compute_fbank_mls_english.py \
|
||||||
|
--manifest-dir data/manifests \
|
||||||
|
--audio-dir data/audio \
|
||||||
|
--dl-dir $dl_dir/mls_english
|
||||||
|
# --dl-dir /root/datasets/parler-tts--mls_eng
|
||||||
python local/validate_manifest.py --manifest data/manifests/mls_english_cuts_train.jsonl.gz
|
python local/validate_manifest.py --manifest data/manifests/mls_english_cuts_train.jsonl.gz
|
||||||
python local/validate_manifest.py --manifest data/manifests/mls_english_cuts_dev.jsonl.gz
|
python local/validate_manifest.py --manifest data/manifests/mls_english_cuts_dev.jsonl.gz
|
||||||
python local/validate_manifest.py --manifest data/manifests/mls_english_cuts_test.jsonl.gz
|
python local/validate_manifest.py --manifest data/manifests/mls_english_cuts_test.jsonl.gz
|
||||||
@ -63,21 +67,16 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|||||||
fi
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||||
mkdir -p data/lang
|
log "Stage 2: Prepare transcript for BPE training"
|
||||||
lang_dir=data/lang
|
if [ ! -f data/lang/transcript.txt ]; then
|
||||||
|
log "Generating transcripts for BPE training"
|
||||||
|
./local/utils/generate_transcript.py --lang-dir data/lang
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||||
log "Stage 3: Prepare transcript for BPE training"
|
log "Stage 3: Prepare BPE tokenizer"
|
||||||
if [ ! -f $lang_dir/transcript.txt ]; then
|
|
||||||
log "Generating transcripts for BPE training"
|
|
||||||
./local/utils/generate_transcript.py --lang-dir $lang_dir
|
|
||||||
fi
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
||||||
log "Stage 4: Prepare BPE tokenizer"
|
|
||||||
|
|
||||||
for vocab_size in ${vocab_sizes[@]}; do
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
log "Training BPE model with vocab_size=${vocab_size}"
|
log "Training BPE model with vocab_size=${vocab_size}"
|
||||||
bpe_dir=data/lang/bpe_${vocab_size}
|
bpe_dir=data/lang/bpe_${vocab_size}
|
||||||
@ -87,7 +86,7 @@ if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|||||||
./local/train_bpe_model.py \
|
./local/train_bpe_model.py \
|
||||||
--lang-dir $bpe_dir \
|
--lang-dir $bpe_dir \
|
||||||
--vocab-size $vocab_size \
|
--vocab-size $vocab_size \
|
||||||
--transcript $lang_dir/transcript.txt
|
--transcript data/lang/transcript.txt
|
||||||
fi
|
fi
|
||||||
done
|
done
|
||||||
fi
|
fi
|
||||||
|
Loading…
x
Reference in New Issue
Block a user