WIP: Refactor asr_datamodule.

This commit is contained in:
Fangjun Kuang 2021-08-20 23:44:22 +08:00
parent 9d0cc9d829
commit dbc76dbd85
7 changed files with 528 additions and 114 deletions

View File

@ -1,17 +1,20 @@
import argparse
import logging
from functools import lru_cache
from pathlib import Path
from typing import List, Union
from lhotse import Fbank, FbankConfig, load_manifest
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
from lhotse.dataset import (
BucketingSampler,
CutConcatenate,
CutMix,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
SpecAugment,
)
from lhotse.dataset.dataloading import LhotseDataLoader
from lhotse.dataset.input_strategies import OnTheFlyFeatures
from torch.utils.data import DataLoader
@ -19,7 +22,7 @@ from icefall.dataset.datamodule import DataModule
from icefall.utils import str2bool
class AsrDataModule(DataModule):
class LibriSpeechAsrDataModule(DataModule):
"""
DataModule for K2 ASR experiments.
It assumes there is always one train and valid dataloader,
@ -47,6 +50,13 @@ class AsrDataModule(DataModule):
"effective batch sizes, sampling strategies, applied data "
"augmentations, etc.",
)
group.add_argument(
"--full-libri",
type=str2bool,
default=True,
help="When enabled, use 960h LibriSpeech. "
"Otherwise, use 100h subset.",
)
group.add_argument(
"--feature-dir",
type=Path,
@ -104,6 +114,38 @@ class AsrDataModule(DataModule):
"extraction. Will drop existing precomputed feature manifests "
"if available.",
)
group.add_argument(
"--shuffle",
type=str2bool,
default=True,
help="When enabled (=default), the examples will be "
"shuffled for each epoch.",
)
group.add_argument(
"--return-cuts",
type=str2bool,
default=True,
help="When enabled, each batch will have the "
"field: batch['supervisions']['cut'] with the cuts that "
"were used to construct it.",
)
group.add_argument(
"--num-workers",
type=int,
default=2,
help="The number of training dataloader workers that "
"collect the batches.",
)
group.add_argument(
"--num-workers-inner",
type=int,
default=8,
help="The number of sub-workers (replicated for each of "
"training dataloader workers) that parallelize "
"the I/O to collect each batch.",
)
def train_dataloaders(self) -> DataLoader:
logging.info("About to get train cuts")
@ -138,9 +180,9 @@ class AsrDataModule(DataModule):
]
train = K2SpeechRecognitionDataset(
cuts_train,
cut_transforms=transforms,
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
if self.args.on_the_fly_feats:
@ -154,14 +196,14 @@ class AsrDataModule(DataModule):
# to be strict (e.g. could be randomized)
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
# Drop feats to be on the safe side.
cuts_train = cuts_train.drop_features()
train = K2SpeechRecognitionDataset(
cuts=cuts_train,
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(
Fbank(FbankConfig(num_mel_bins=80))
Fbank(FbankConfig(num_mel_bins=80)),
num_workers=self.args.num_workers_inner,
),
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
if self.args.bucketing_sampler:
@ -169,9 +211,9 @@ class AsrDataModule(DataModule):
train_sampler = BucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=True,
shuffle=self.args.shuffle,
num_buckets=self.args.num_buckets,
bucket_method='equal_duration',
bucket_method="equal_duration",
drop_last=True,
)
else:
@ -179,45 +221,73 @@ class AsrDataModule(DataModule):
train_sampler = SingleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=True,
shuffle=self.args.shuffle,
)
logging.info("About to create train dataloader")
train_dl = DataLoader(
# train_dl = DataLoader(
# train,
# sampler=train_sampler,
# batch_size=None,
# num_workers=2,
# persistent_workers=False,
# )
train_dl = LhotseDataLoader(
train,
sampler=train_sampler,
batch_size=None,
num_workers=2,
persistent_workers=False,
num_workers=self.args.num_workers,
prefetch_factor=5,
)
return train_dl
def valid_dataloaders(self) -> DataLoader:
logging.info("About to get dev cuts")
cuts_valid = self.valid_cuts()
transforms = []
if self.args.concatenate_cuts:
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
logging.info("About to create dev dataset")
if self.args.on_the_fly_feats:
cuts_valid = cuts_valid.drop_features()
validate = K2SpeechRecognitionDataset(
cuts_valid.drop_features(),
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(
Fbank(FbankConfig(num_mel_bins=80))
),
return_cuts=self.args.return_cuts,
)
else:
validate = K2SpeechRecognitionDataset(cuts_valid)
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
return_cuts=self.args.return_cuts,
)
valid_sampler = SingleCutSampler(
cuts_valid,
max_duration=self.args.max_duration,
shuffle=False,
)
logging.info("About to create dev dataloader")
valid_dl = DataLoader(
# valid_dl = DataLoader(
# validate,
# sampler=valid_sampler,
# batch_size=None,
# num_workers=2,
# persistent_workers=False,
# )
valid_dl = LhotseDataLoader(
validate,
sampler=valid_sampler,
batch_size=None,
num_workers=2,
persistent_workers=False,
)
return valid_dl
def test_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
@ -230,21 +300,63 @@ class AsrDataModule(DataModule):
for cuts_test in cuts:
logging.debug("About to create test dataset")
test = K2SpeechRecognitionDataset(
cuts_test,
input_strategy=OnTheFlyFeatures(
Fbank(FbankConfig(num_mel_bins=80))
Fbank(FbankConfig(num_mel_bins=80), num_workers=4)
if self.args.on_the_fly_feats
else PrecomputedFeatures()
),
return_cuts=self.args.return_cuts,
)
sampler = SingleCutSampler(
cuts_test, max_duration=self.args.max_duration
)
logging.debug("About to create test dataloader")
test_dl = DataLoader(
test, batch_size=None, sampler=sampler, num_workers=1
)
# test_dl = DataLoader(
# test, batch_size=None, sampler=sampler, num_workers=1
# )
test_dl = LhotseDataLoader(test, sampler=sampler, num_workers=2)
test_loaders.append(test_dl)
if is_list:
return test_loaders
else:
return test_loaders[0]
@lru_cache()
def train_cuts(self) -> CutSet:
logging.info("About to get train cuts")
cuts_train = load_manifest(
self.args.feature_dir / "cuts_train-clean-100.json.gz"
)
if self.args.full_libri:
cuts_train = (
cuts_train
+ load_manifest(
self.args.feature_dir / "cuts_train-clean-360.json.gz"
)
+ load_manifest(
self.args.feature_dir / "cuts_train-other-500.json.gz"
)
)
return cuts_train
@lru_cache()
def valid_cuts(self) -> CutSet:
logging.info("About to get dev cuts")
cuts_valid = load_manifest(
self.args.feature_dir / "cuts_dev-clean.json.gz"
) + load_manifest(self.args.feature_dir / "cuts_dev-other.json.gz")
return cuts_valid
@lru_cache()
def test_cuts(self) -> List[CutSet]:
test_sets = ["test-clean", "test-other"]
cuts = []
for test_set in test_sets:
logging.debug("About to get test cuts")
cuts.append(
load_manifest(
self.args.feature_dir / f"cuts_{test_set}.json.gz"
)
)
return cuts

View File

@ -13,11 +13,11 @@ from typing import Dict, List, Optional, Tuple
import k2
import torch
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from conformer import Conformer
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
from icefall.decode import (
get_lattice,
nbest_decoding,
@ -222,7 +222,7 @@ def decode_one_batch(
use_double_scores=params.use_double_scores,
scale=params.lattice_score_scale,
)
key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}"
key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}" # noqa
hyps = get_texts(best_path)
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
@ -317,7 +317,11 @@ def decode_dataset(
results = []
num_cuts = 0
tot_num_batches = len(dl)
try:
num_batches = len(dl)
except TypeError:
num_batches = None
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
@ -346,10 +350,13 @@ def decode_dataset(
num_cuts += len(batch["supervisions"]["text"])
if batch_idx % 100 == 0:
if num_batches is not None:
batch_str = f"{batch_idx}/{num_batches}"
else:
batch_str = f"{batch_idx}"
logging.info(
f"batch {batch_idx}/{tot_num_batches}, cuts processed until now is "
f"{num_cuts}"
f"batch {batch_idx}, cuts processed until now is {num_cuts}"
f"batch {batch_str}, cuts processed until now is {num_cuts}"
)
return results

View File

@ -13,10 +13,10 @@ import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from conformer import Conformer
from lhotse.utils import fix_random_seed
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.utils import clip_grad_value_
from torch.nn.utils import clip_grad_norm_
from torch.utils.tensorboard import SummaryWriter
from transformer import Noam
@ -24,7 +24,6 @@ from transformer import Noam
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
from icefall.checkpoint import load_checkpoint
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
from icefall.dist import cleanup_dist, setup_dist
from icefall.lexicon import Lexicon
from icefall.utils import (
@ -61,9 +60,6 @@ def get_parser():
help="Should various information be logged in tensorboard.",
)
# TODO: add extra arguments and support DDP training.
# Currently, only single GPU training is implemented. Will add
# DDP training once single GPU training is finished.
return parser
@ -463,7 +459,7 @@ def train_one_epoch(
optimizer.zero_grad()
loss.backward()
clip_grad_value_(model.parameters(), 5.0)
clip_grad_norm_(model.parameters(), 5.0, 2.0)
optimizer.step()
loss_cpu = loss.detach().cpu().item()

View File

@ -0,0 +1,362 @@
import argparse
import logging
from functools import lru_cache
from pathlib import Path
from typing import List, Union
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
from lhotse.dataset import (
BucketingSampler,
CutConcatenate,
CutMix,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
SpecAugment,
)
from lhotse.dataset.dataloading import LhotseDataLoader
from lhotse.dataset.input_strategies import OnTheFlyFeatures
from torch.utils.data import DataLoader
from icefall.dataset.datamodule import DataModule
from icefall.utils import str2bool
class LibriSpeechAsrDataModule(DataModule):
"""
DataModule for K2 ASR experiments.
It assumes there is always one train and valid dataloader,
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
and test-other).
It contains all the common data pipeline modules used in ASR
experiments, e.g.:
- dynamic batch size,
- bucketing samplers,
- cut concatenation,
- augmentation,
- on-the-fly feature extraction
This class should be derived for specific corpora used in ASR tasks.
"""
@classmethod
def add_arguments(cls, parser: argparse.ArgumentParser):
super().add_arguments(parser)
group = parser.add_argument_group(
title="ASR data related options",
description="These options are used for the preparation of "
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
"effective batch sizes, sampling strategies, applied data "
"augmentations, etc.",
)
group.add_argument(
"--full-libri",
type=str2bool,
default=True,
help="When enabled, use 960h LibriSpeech. "
"Otherwise, use 100h subset.",
)
group.add_argument(
"--feature-dir",
type=Path,
default=Path("data/fbank"),
help="Path to directory with train/valid/test cuts.",
)
group.add_argument(
"--max-duration",
type=int,
default=500.0,
help="Maximum pooled recordings duration (seconds) in a "
"single batch. You can reduce it if it causes CUDA OOM.",
)
group.add_argument(
"--bucketing-sampler",
type=str2bool,
default=False,
help="When enabled, the batches will come from buckets of "
"similar duration (saves padding frames).",
)
group.add_argument(
"--num-buckets",
type=int,
default=30,
help="The number of buckets for the BucketingSampler"
"(you might want to increase it for larger datasets).",
)
group.add_argument(
"--concatenate-cuts",
type=str2bool,
default=True,
help="When enabled, utterances (cuts) will be concatenated "
"to minimize the amount of padding.",
)
group.add_argument(
"--duration-factor",
type=float,
default=1.0,
help="Determines the maximum duration of a concatenated cut "
"relative to the duration of the longest cut in a batch.",
)
group.add_argument(
"--gap",
type=float,
default=1.0,
help="The amount of padding (in seconds) inserted between "
"concatenated cuts. This padding is filled with noise when "
"noise augmentation is used.",
)
group.add_argument(
"--on-the-fly-feats",
type=str2bool,
default=False,
help="When enabled, use on-the-fly cut mixing and feature "
"extraction. Will drop existing precomputed feature manifests "
"if available.",
)
group.add_argument(
"--shuffle",
type=str2bool,
default=True,
help="When enabled (=default), the examples will be "
"shuffled for each epoch.",
)
group.add_argument(
"--return-cuts",
type=str2bool,
default=True,
help="When enabled, each batch will have the "
"field: batch['supervisions']['cut'] with the cuts that "
"were used to construct it.",
)
group.add_argument(
"--num-workers",
type=int,
default=2,
help="The number of training dataloader workers that "
"collect the batches.",
)
group.add_argument(
"--num-workers-inner",
type=int,
default=8,
help="The number of sub-workers (replicated for each of "
"training dataloader workers) that parallelize "
"the I/O to collect each batch.",
)
def train_dataloaders(self) -> DataLoader:
logging.info("About to get train cuts")
cuts_train = self.train_cuts()
logging.info("About to get Musan cuts")
cuts_musan = load_manifest(self.args.feature_dir / "cuts_musan.json.gz")
logging.info("About to create train dataset")
transforms = [CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20))]
if self.args.concatenate_cuts:
logging.info(
f"Using cut concatenation with duration factor "
f"{self.args.duration_factor} and gap {self.args.gap}."
)
# Cut concatenation should be the first transform in the list,
# so that if we e.g. mix noise in, it will fill the gaps between
# different utterances.
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
input_transforms = [
SpecAugment(
num_frame_masks=2,
features_mask_size=27,
num_feature_masks=2,
frames_mask_size=100,
)
]
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
if self.args.on_the_fly_feats:
# NOTE: the PerturbSpeed transform should be added only if we
# remove it from data prep stage.
# Add on-the-fly speed perturbation; since originally it would
# have increased epoch size by 3, we will apply prob 2/3 and use
# 3x more epochs.
# Speed perturbation probably should come first before
# concatenation, but in principle the transforms order doesn't have
# to be strict (e.g. could be randomized)
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
# Drop feats to be on the safe side.
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(
Fbank(FbankConfig(num_mel_bins=80)),
num_workers=self.args.num_workers_inner,
),
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
if self.args.bucketing_sampler:
logging.info("Using BucketingSampler.")
train_sampler = BucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
num_buckets=self.args.num_buckets,
bucket_method="equal_duration",
drop_last=True,
)
else:
logging.info("Using SingleCutSampler.")
train_sampler = SingleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
)
logging.info("About to create train dataloader")
# train_dl = DataLoader(
# train,
# sampler=train_sampler,
# batch_size=None,
# num_workers=2,
# persistent_workers=False,
# )
train_dl = LhotseDataLoader(
train,
sampler=train_sampler,
num_workers=self.args.num_workers,
prefetch_factor=5,
)
return train_dl
def valid_dataloaders(self) -> DataLoader:
logging.info("About to get dev cuts")
cuts_valid = self.valid_cuts()
transforms = []
if self.args.concatenate_cuts:
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
logging.info("About to create dev dataset")
if self.args.on_the_fly_feats:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(
Fbank(FbankConfig(num_mel_bins=80))
),
return_cuts=self.args.return_cuts,
)
else:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
return_cuts=self.args.return_cuts,
)
valid_sampler = SingleCutSampler(
cuts_valid,
max_duration=self.args.max_duration,
shuffle=False,
)
logging.info("About to create dev dataloader")
# valid_dl = DataLoader(
# validate,
# sampler=valid_sampler,
# batch_size=None,
# num_workers=2,
# persistent_workers=False,
# )
valid_dl = LhotseDataLoader(
validate,
sampler=valid_sampler,
num_workers=2,
)
return valid_dl
def test_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
cuts = self.test_cuts()
is_list = isinstance(cuts, list)
test_loaders = []
if not is_list:
cuts = [cuts]
for cuts_test in cuts:
logging.debug("About to create test dataset")
test = K2SpeechRecognitionDataset(
input_strategy=OnTheFlyFeatures(
Fbank(FbankConfig(num_mel_bins=80), num_workers=4)
if self.args.on_the_fly_feats
else PrecomputedFeatures()
),
return_cuts=self.args.return_cuts,
)
sampler = SingleCutSampler(
cuts_test, max_duration=self.args.max_duration
)
logging.debug("About to create test dataloader")
# test_dl = DataLoader(
# test, batch_size=None, sampler=sampler, num_workers=1
# )
test_dl = LhotseDataLoader(test, sampler=sampler, num_workers=2)
test_loaders.append(test_dl)
if is_list:
return test_loaders
else:
return test_loaders[0]
@lru_cache()
def train_cuts(self) -> CutSet:
logging.info("About to get train cuts")
cuts_train = load_manifest(
self.args.feature_dir / "cuts_train-clean-100.json.gz"
)
if self.args.full_libri:
cuts_train = (
cuts_train
+ load_manifest(
self.args.feature_dir / "cuts_train-clean-360.json.gz"
)
+ load_manifest(
self.args.feature_dir / "cuts_train-other-500.json.gz"
)
)
return cuts_train
@lru_cache()
def valid_cuts(self) -> CutSet:
logging.info("About to get dev cuts")
cuts_valid = load_manifest(
self.args.feature_dir / "cuts_dev-clean.json.gz"
) + load_manifest(self.args.feature_dir / "cuts_dev-other.json.gz")
return cuts_valid
@lru_cache()
def test_cuts(self) -> List[CutSet]:
test_sets = ["test-clean", "test-other"]
cuts = []
for test_set in test_sets:
logging.debug("About to get test cuts")
cuts.append(
load_manifest(
self.args.feature_dir / f"cuts_{test_set}.json.gz"
)
)
return cuts

View File

@ -10,10 +10,10 @@ from typing import Dict, List, Optional, Tuple
import k2
import torch
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from model import TdnnLstm
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
from icefall.decode import (
get_lattice,
nbest_decoding,
@ -237,6 +237,11 @@ def decode_dataset(
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = None
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
@ -262,8 +267,13 @@ def decode_dataset(
num_cuts += len(batch["supervisions"]["text"])
if batch_idx % 100 == 0:
if num_batches is not None:
batch_str = f"{batch_idx}/{num_batches}"
else:
batch_str = f"{batch_idx}"
logging.info(
f"batch {batch_idx}, cuts processed until now is {num_cuts}"
f"batch {batch_str}, cuts processed until now is {num_cuts}"
)
return results

View File

@ -1,7 +1,5 @@
#!/usr/bin/env python3
# This is just at the very beginning ...
import argparse
import logging
from pathlib import Path
@ -14,16 +12,16 @@ import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.optim as optim
from asr_datamodule import LibriSpeechAsrDataModule
from lhotse.utils import fix_random_seed
from model import TdnnLstm
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.utils import clip_grad_value_
from torch.nn.utils import clip_grad_norm_
from torch.optim.lr_scheduler import StepLR
from torch.utils.tensorboard import SummaryWriter
from icefall.checkpoint import load_checkpoint
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
from icefall.dist import cleanup_dist, setup_dist
from icefall.graph_compiler import CtcTrainingGraphCompiler
from icefall.lexicon import Lexicon
@ -61,9 +59,6 @@ def get_parser():
help="Should various information be logged in tensorboard.",
)
# TODO: add extra arguments and support DDP training.
# Currently, only single GPU training is implemented. Will add
# DDP training once single GPU training is finished.
return parser
@ -406,7 +401,7 @@ def train_one_epoch(
optimizer.zero_grad()
loss.backward()
clip_grad_value_(model.parameters(), 5.0)
clip_grad_norm_(model.parameters(), 5.0, 2.0)
optimizer.step()
loss_cpu = loss.detach().cpu().item()

View File

@ -1,68 +0,0 @@
import argparse
import logging
from functools import lru_cache
from typing import List
from lhotse import CutSet, load_manifest
from icefall.dataset.asr_datamodule import AsrDataModule
from icefall.utils import str2bool
class LibriSpeechAsrDataModule(AsrDataModule):
"""
LibriSpeech ASR data module. Can be used for 100h subset
(``--full-libri false``) or full 960h set.
The train and valid cuts for standard Libri splits are
concatenated into a single CutSet/DataLoader.
"""
@classmethod
def add_arguments(cls, parser: argparse.ArgumentParser):
super().add_arguments(parser)
group = parser.add_argument_group(title="LibriSpeech specific options")
group.add_argument(
"--full-libri",
type=str2bool,
default=True,
help="When enabled, use 960h LibriSpeech.",
)
@lru_cache()
def train_cuts(self) -> CutSet:
logging.info("About to get train cuts")
cuts_train = load_manifest(
self.args.feature_dir / "cuts_train-clean-100.json.gz"
)
if self.args.full_libri:
cuts_train = (
cuts_train
+ load_manifest(
self.args.feature_dir / "cuts_train-clean-360.json.gz"
)
+ load_manifest(
self.args.feature_dir / "cuts_train-other-500.json.gz"
)
)
return cuts_train
@lru_cache()
def valid_cuts(self) -> CutSet:
logging.info("About to get dev cuts")
cuts_valid = load_manifest(
self.args.feature_dir / "cuts_dev-clean.json.gz"
) + load_manifest(self.args.feature_dir / "cuts_dev-other.json.gz")
return cuts_valid
@lru_cache()
def test_cuts(self) -> List[CutSet]:
test_sets = ["test-clean", "test-other"]
cuts = []
for test_set in test_sets:
logging.debug("About to get test cuts")
cuts.append(
load_manifest(
self.args.feature_dir / f"cuts_{test_set}.json.gz"
)
)
return cuts