mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
WIP: Refactor asr_datamodule.
This commit is contained in:
parent
9d0cc9d829
commit
dbc76dbd85
@ -1,17 +1,20 @@
|
||||
import argparse
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import List, Union
|
||||
|
||||
from lhotse import Fbank, FbankConfig, load_manifest
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
||||
from lhotse.dataset import (
|
||||
BucketingSampler,
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SingleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.dataloading import LhotseDataLoader
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
@ -19,7 +22,7 @@ from icefall.dataset.datamodule import DataModule
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class AsrDataModule(DataModule):
|
||||
class LibriSpeechAsrDataModule(DataModule):
|
||||
"""
|
||||
DataModule for K2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
@ -47,6 +50,13 @@ class AsrDataModule(DataModule):
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--full-libri",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use 960h LibriSpeech. "
|
||||
"Otherwise, use 100h subset.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--feature-dir",
|
||||
type=Path,
|
||||
@ -104,6 +114,38 @@ class AsrDataModule(DataModule):
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers-inner",
|
||||
type=int,
|
||||
default=8,
|
||||
help="The number of sub-workers (replicated for each of "
|
||||
"training dataloader workers) that parallelize "
|
||||
"the I/O to collect each batch.",
|
||||
)
|
||||
|
||||
def train_dataloaders(self) -> DataLoader:
|
||||
logging.info("About to get train cuts")
|
||||
@ -138,9 +180,9 @@ class AsrDataModule(DataModule):
|
||||
]
|
||||
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cuts_train,
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
@ -154,14 +196,14 @@ class AsrDataModule(DataModule):
|
||||
# to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||
# Drop feats to be on the safe side.
|
||||
cuts_train = cuts_train.drop_features()
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cuts=cuts_train,
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
Fbank(FbankConfig(num_mel_bins=80)),
|
||||
num_workers=self.args.num_workers_inner,
|
||||
),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
@ -169,9 +211,9 @@ class AsrDataModule(DataModule):
|
||||
train_sampler = BucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=True,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
bucket_method='equal_duration',
|
||||
bucket_method="equal_duration",
|
||||
drop_last=True,
|
||||
)
|
||||
else:
|
||||
@ -179,45 +221,73 @@ class AsrDataModule(DataModule):
|
||||
train_sampler = SingleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=True,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
train_dl = DataLoader(
|
||||
|
||||
# train_dl = DataLoader(
|
||||
# train,
|
||||
# sampler=train_sampler,
|
||||
# batch_size=None,
|
||||
# num_workers=2,
|
||||
# persistent_workers=False,
|
||||
# )
|
||||
|
||||
train_dl = LhotseDataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
num_workers=self.args.num_workers,
|
||||
prefetch_factor=5,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self) -> DataLoader:
|
||||
logging.info("About to get dev cuts")
|
||||
cuts_valid = self.valid_cuts()
|
||||
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
cuts_valid = cuts_valid.drop_features()
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cuts_valid.drop_features(),
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(cuts_valid)
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = SingleCutSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
# valid_dl = DataLoader(
|
||||
# validate,
|
||||
# sampler=valid_sampler,
|
||||
# batch_size=None,
|
||||
# num_workers=2,
|
||||
# persistent_workers=False,
|
||||
# )
|
||||
|
||||
valid_dl = LhotseDataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
|
||||
@ -230,21 +300,63 @@ class AsrDataModule(DataModule):
|
||||
for cuts_test in cuts:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
cuts_test,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
Fbank(FbankConfig(num_mel_bins=80), num_workers=4)
|
||||
if self.args.on_the_fly_feats
|
||||
else PrecomputedFeatures()
|
||||
),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = SingleCutSampler(
|
||||
cuts_test, max_duration=self.args.max_duration
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test, batch_size=None, sampler=sampler, num_workers=1
|
||||
)
|
||||
# test_dl = DataLoader(
|
||||
# test, batch_size=None, sampler=sampler, num_workers=1
|
||||
# )
|
||||
test_dl = LhotseDataLoader(test, sampler=sampler, num_workers=2)
|
||||
test_loaders.append(test_dl)
|
||||
|
||||
if is_list:
|
||||
return test_loaders
|
||||
else:
|
||||
return test_loaders[0]
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get train cuts")
|
||||
cuts_train = load_manifest(
|
||||
self.args.feature_dir / "cuts_train-clean-100.json.gz"
|
||||
)
|
||||
if self.args.full_libri:
|
||||
cuts_train = (
|
||||
cuts_train
|
||||
+ load_manifest(
|
||||
self.args.feature_dir / "cuts_train-clean-360.json.gz"
|
||||
)
|
||||
+ load_manifest(
|
||||
self.args.feature_dir / "cuts_train-other-500.json.gz"
|
||||
)
|
||||
)
|
||||
return cuts_train
|
||||
|
||||
@lru_cache()
|
||||
def valid_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev cuts")
|
||||
cuts_valid = load_manifest(
|
||||
self.args.feature_dir / "cuts_dev-clean.json.gz"
|
||||
) + load_manifest(self.args.feature_dir / "cuts_dev-other.json.gz")
|
||||
return cuts_valid
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> List[CutSet]:
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
cuts = []
|
||||
for test_set in test_sets:
|
||||
logging.debug("About to get test cuts")
|
||||
cuts.append(
|
||||
load_manifest(
|
||||
self.args.feature_dir / f"cuts_{test_set}.json.gz"
|
||||
)
|
||||
)
|
||||
return cuts
|
@ -13,11 +13,11 @@ from typing import Dict, List, Optional, Tuple
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from conformer import Conformer
|
||||
|
||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
|
||||
from icefall.decode import (
|
||||
get_lattice,
|
||||
nbest_decoding,
|
||||
@ -222,7 +222,7 @@ def decode_one_batch(
|
||||
use_double_scores=params.use_double_scores,
|
||||
scale=params.lattice_score_scale,
|
||||
)
|
||||
key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}"
|
||||
key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}" # noqa
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||
@ -317,7 +317,11 @@ def decode_dataset(
|
||||
results = []
|
||||
|
||||
num_cuts = 0
|
||||
tot_num_batches = len(dl)
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = None
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
@ -346,10 +350,13 @@ def decode_dataset(
|
||||
num_cuts += len(batch["supervisions"]["text"])
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
if num_batches is not None:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
else:
|
||||
batch_str = f"{batch_idx}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_idx}/{tot_num_batches}, cuts processed until now is "
|
||||
f"{num_cuts}"
|
||||
f"batch {batch_idx}, cuts processed until now is {num_cuts}"
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
return results
|
||||
|
||||
|
@ -13,10 +13,10 @@ import torch
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from conformer import Conformer
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_value_
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from transformer import Noam
|
||||
@ -24,7 +24,6 @@ from transformer import Noam
|
||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
@ -61,9 +60,6 @@ def get_parser():
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
# TODO: add extra arguments and support DDP training.
|
||||
# Currently, only single GPU training is implemented. Will add
|
||||
# DDP training once single GPU training is finished.
|
||||
return parser
|
||||
|
||||
|
||||
@ -463,7 +459,7 @@ def train_one_epoch(
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_value_(model.parameters(), 5.0)
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
loss_cpu = loss.detach().cpu().item()
|
||||
|
362
egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py
Normal file
362
egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py
Normal file
@ -0,0 +1,362 @@
|
||||
import argparse
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import List, Union
|
||||
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
||||
from lhotse.dataset import (
|
||||
BucketingSampler,
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SingleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.dataloading import LhotseDataLoader
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.dataset.datamodule import DataModule
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class LibriSpeechAsrDataModule(DataModule):
|
||||
"""
|
||||
DataModule for K2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
super().add_arguments(parser)
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--full-libri",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use 960h LibriSpeech. "
|
||||
"Otherwise, use 100h subset.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--feature-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=500.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the BucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers-inner",
|
||||
type=int,
|
||||
default=8,
|
||||
help="The number of sub-workers (replicated for each of "
|
||||
"training dataloader workers) that parallelize "
|
||||
"the I/O to collect each batch.",
|
||||
)
|
||||
|
||||
def train_dataloaders(self) -> DataLoader:
|
||||
logging.info("About to get train cuts")
|
||||
cuts_train = self.train_cuts()
|
||||
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(self.args.feature_dir / "cuts_musan.json.gz")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
transforms = [CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20))]
|
||||
if self.args.concatenate_cuts:
|
||||
logging.info(
|
||||
f"Using cut concatenation with duration factor "
|
||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||
)
|
||||
# Cut concatenation should be the first transform in the list,
|
||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||
# different utterances.
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
input_transforms = [
|
||||
SpecAugment(
|
||||
num_frame_masks=2,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
]
|
||||
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
# NOTE: the PerturbSpeed transform should be added only if we
|
||||
# remove it from data prep stage.
|
||||
# Add on-the-fly speed perturbation; since originally it would
|
||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||
# 3x more epochs.
|
||||
# Speed perturbation probably should come first before
|
||||
# concatenation, but in principle the transforms order doesn't have
|
||||
# to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||
# Drop feats to be on the safe side.
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80)),
|
||||
num_workers=self.args.num_workers_inner,
|
||||
),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using BucketingSampler.")
|
||||
train_sampler = BucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
bucket_method="equal_duration",
|
||||
drop_last=True,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SingleCutSampler.")
|
||||
train_sampler = SingleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
# train_dl = DataLoader(
|
||||
# train,
|
||||
# sampler=train_sampler,
|
||||
# batch_size=None,
|
||||
# num_workers=2,
|
||||
# persistent_workers=False,
|
||||
# )
|
||||
|
||||
train_dl = LhotseDataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
prefetch_factor=5,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self) -> DataLoader:
|
||||
logging.info("About to get dev cuts")
|
||||
cuts_valid = self.valid_cuts()
|
||||
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = SingleCutSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
# valid_dl = DataLoader(
|
||||
# validate,
|
||||
# sampler=valid_sampler,
|
||||
# batch_size=None,
|
||||
# num_workers=2,
|
||||
# persistent_workers=False,
|
||||
# )
|
||||
|
||||
valid_dl = LhotseDataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
num_workers=2,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
|
||||
cuts = self.test_cuts()
|
||||
is_list = isinstance(cuts, list)
|
||||
test_loaders = []
|
||||
if not is_list:
|
||||
cuts = [cuts]
|
||||
|
||||
for cuts_test in cuts:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80), num_workers=4)
|
||||
if self.args.on_the_fly_feats
|
||||
else PrecomputedFeatures()
|
||||
),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = SingleCutSampler(
|
||||
cuts_test, max_duration=self.args.max_duration
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
# test_dl = DataLoader(
|
||||
# test, batch_size=None, sampler=sampler, num_workers=1
|
||||
# )
|
||||
test_dl = LhotseDataLoader(test, sampler=sampler, num_workers=2)
|
||||
test_loaders.append(test_dl)
|
||||
|
||||
if is_list:
|
||||
return test_loaders
|
||||
else:
|
||||
return test_loaders[0]
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get train cuts")
|
||||
cuts_train = load_manifest(
|
||||
self.args.feature_dir / "cuts_train-clean-100.json.gz"
|
||||
)
|
||||
if self.args.full_libri:
|
||||
cuts_train = (
|
||||
cuts_train
|
||||
+ load_manifest(
|
||||
self.args.feature_dir / "cuts_train-clean-360.json.gz"
|
||||
)
|
||||
+ load_manifest(
|
||||
self.args.feature_dir / "cuts_train-other-500.json.gz"
|
||||
)
|
||||
)
|
||||
return cuts_train
|
||||
|
||||
@lru_cache()
|
||||
def valid_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev cuts")
|
||||
cuts_valid = load_manifest(
|
||||
self.args.feature_dir / "cuts_dev-clean.json.gz"
|
||||
) + load_manifest(self.args.feature_dir / "cuts_dev-other.json.gz")
|
||||
return cuts_valid
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> List[CutSet]:
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
cuts = []
|
||||
for test_set in test_sets:
|
||||
logging.debug("About to get test cuts")
|
||||
cuts.append(
|
||||
load_manifest(
|
||||
self.args.feature_dir / f"cuts_{test_set}.json.gz"
|
||||
)
|
||||
)
|
||||
return cuts
|
@ -10,10 +10,10 @@ from typing import Dict, List, Optional, Tuple
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from model import TdnnLstm
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
|
||||
from icefall.decode import (
|
||||
get_lattice,
|
||||
nbest_decoding,
|
||||
@ -237,6 +237,11 @@ def decode_dataset(
|
||||
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = None
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
@ -262,8 +267,13 @@ def decode_dataset(
|
||||
num_cuts += len(batch["supervisions"]["text"])
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
if num_batches is not None:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
else:
|
||||
batch_str = f"{batch_idx}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_idx}, cuts processed until now is {num_cuts}"
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
return results
|
||||
|
||||
|
@ -1,7 +1,5 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# This is just at the very beginning ...
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
@ -14,16 +12,16 @@ import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from lhotse.utils import fix_random_seed
|
||||
from model import TdnnLstm
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_value_
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.optim.lr_scheduler import StepLR
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.graph_compiler import CtcTrainingGraphCompiler
|
||||
from icefall.lexicon import Lexicon
|
||||
@ -61,9 +59,6 @@ def get_parser():
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
# TODO: add extra arguments and support DDP training.
|
||||
# Currently, only single GPU training is implemented. Will add
|
||||
# DDP training once single GPU training is finished.
|
||||
return parser
|
||||
|
||||
|
||||
@ -406,7 +401,7 @@ def train_one_epoch(
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_value_(model.parameters(), 5.0)
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
loss_cpu = loss.detach().cpu().item()
|
||||
|
@ -1,68 +0,0 @@
|
||||
import argparse
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from typing import List
|
||||
|
||||
from lhotse import CutSet, load_manifest
|
||||
|
||||
from icefall.dataset.asr_datamodule import AsrDataModule
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class LibriSpeechAsrDataModule(AsrDataModule):
|
||||
"""
|
||||
LibriSpeech ASR data module. Can be used for 100h subset
|
||||
(``--full-libri false``) or full 960h set.
|
||||
The train and valid cuts for standard Libri splits are
|
||||
concatenated into a single CutSet/DataLoader.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
super().add_arguments(parser)
|
||||
group = parser.add_argument_group(title="LibriSpeech specific options")
|
||||
group.add_argument(
|
||||
"--full-libri",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use 960h LibriSpeech.",
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get train cuts")
|
||||
cuts_train = load_manifest(
|
||||
self.args.feature_dir / "cuts_train-clean-100.json.gz"
|
||||
)
|
||||
if self.args.full_libri:
|
||||
cuts_train = (
|
||||
cuts_train
|
||||
+ load_manifest(
|
||||
self.args.feature_dir / "cuts_train-clean-360.json.gz"
|
||||
)
|
||||
+ load_manifest(
|
||||
self.args.feature_dir / "cuts_train-other-500.json.gz"
|
||||
)
|
||||
)
|
||||
return cuts_train
|
||||
|
||||
@lru_cache()
|
||||
def valid_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev cuts")
|
||||
cuts_valid = load_manifest(
|
||||
self.args.feature_dir / "cuts_dev-clean.json.gz"
|
||||
) + load_manifest(self.args.feature_dir / "cuts_dev-other.json.gz")
|
||||
return cuts_valid
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> List[CutSet]:
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
cuts = []
|
||||
for test_set in test_sets:
|
||||
logging.debug("About to get test cuts")
|
||||
cuts.append(
|
||||
load_manifest(
|
||||
self.args.feature_dir / f"cuts_{test_set}.json.gz"
|
||||
)
|
||||
)
|
||||
return cuts
|
Loading…
x
Reference in New Issue
Block a user