mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
from local
This commit is contained in:
parent
64bd3a7758
commit
d9abb09fc5
@ -0,0 +1,225 @@
|
||||
# Copyright 2021-2022 Xiaomi Corporation (authors: Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
#
|
||||
# See ../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import glob
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from lhotse.dataset.sampling.base import CutSampler
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
from torch.cuda.amp import GradScaler
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.optim import Optimizer
|
||||
|
||||
# use duck typing for LRScheduler since we have different possibilities, see
|
||||
# our class LRScheduler.
|
||||
LRSchedulerType = object
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
filename: Path,
|
||||
model: Union[nn.Module, DDP],
|
||||
model_avg: Optional[nn.Module] = None,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
optimizer = None,
|
||||
scheduler = None,
|
||||
scaler: Optional[GradScaler] = None,
|
||||
sampler: Optional[CutSampler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save training information to a file.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
The checkpoint filename.
|
||||
model:
|
||||
The model to be saved. We only save its `state_dict()`.
|
||||
model_avg:
|
||||
The stored model averaged from the start of training.
|
||||
params:
|
||||
User defined parameters, e.g., epoch, loss.
|
||||
optimizer:
|
||||
The optimizer to be saved. We only save its `state_dict()`.
|
||||
scheduler:
|
||||
The scheduler to be saved. We only save its `state_dict()`.
|
||||
scalar:
|
||||
The GradScaler to be saved. We only save its `state_dict()`.
|
||||
rank:
|
||||
Used in DDP. We save checkpoint only for the node whose rank is 0.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
|
||||
logging.info(f"Saving checkpoint to {filename}")
|
||||
|
||||
if isinstance(model, DDP):
|
||||
model = model.module
|
||||
|
||||
if type(optimizer) == list:
|
||||
checkpoint = {
|
||||
"model": model.state_dict(),
|
||||
"optimizer_enc": optimizer[0].state_dict() if optimizer is not None else None,
|
||||
"optimizer_dec": optimizer[1].state_dict() if optimizer is not None else None,
|
||||
"scheduler_enc": scheduler[0].state_dict() if scheduler is not None else None,
|
||||
"scheduler_dec": scheduler[1].state_dict() if scheduler is not None else None,
|
||||
"grad_scaler": scaler.state_dict() if scaler is not None else None,
|
||||
"sampler": sampler.state_dict() if sampler is not None else None,
|
||||
}
|
||||
else:
|
||||
checkpoint = {
|
||||
"model": model.state_dict(),
|
||||
"optimizer": optimizer.state_dict() if optimizer is not None else None,
|
||||
"scheduler": scheduler.state_dict() if scheduler is not None else None,
|
||||
"grad_scaler": scaler.state_dict() if scaler is not None else None,
|
||||
"sampler": sampler.state_dict() if sampler is not None else None,
|
||||
}
|
||||
|
||||
|
||||
if model_avg is not None:
|
||||
checkpoint["model_avg"] = model_avg.to(torch.float32).state_dict()
|
||||
|
||||
if params:
|
||||
for k, v in params.items():
|
||||
assert k not in checkpoint
|
||||
checkpoint[k] = v
|
||||
|
||||
torch.save(checkpoint, filename)
|
||||
|
||||
|
||||
def load_checkpoint(
|
||||
filename: Path,
|
||||
model: nn.Module,
|
||||
model_avg: Optional[nn.Module] = None,
|
||||
optimizer = None,
|
||||
scheduler = None,
|
||||
scaler: Optional[GradScaler] = None,
|
||||
sampler: Optional[CutSampler] = None,
|
||||
strict: bool = True,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
TODO: document it
|
||||
"""
|
||||
logging.info(f"Loading checkpoint from {filename}")
|
||||
checkpoint = torch.load(filename, map_location="cpu")
|
||||
|
||||
if next(iter(checkpoint["model"])).startswith("module."):
|
||||
logging.info("Loading checkpoint saved by DDP")
|
||||
|
||||
dst_state_dict = model.state_dict()
|
||||
src_state_dict = checkpoint["model"]
|
||||
for key in dst_state_dict.keys():
|
||||
src_key = "{}.{}".format("module", key)
|
||||
dst_state_dict[key] = src_state_dict.pop(src_key)
|
||||
assert len(src_state_dict) == 0
|
||||
model.load_state_dict(dst_state_dict, strict=strict)
|
||||
else:
|
||||
model.load_state_dict(checkpoint["model"], strict=strict)
|
||||
|
||||
checkpoint.pop("model")
|
||||
|
||||
if model_avg is not None and "model_avg" in checkpoint:
|
||||
logging.info("Loading averaged model")
|
||||
model_avg.load_state_dict(checkpoint["model_avg"], strict=strict)
|
||||
checkpoint.pop("model_avg")
|
||||
|
||||
def load(name, obj):
|
||||
s = checkpoint.get(name, None)
|
||||
if obj and s:
|
||||
obj.load_state_dict(s)
|
||||
checkpoint.pop(name)
|
||||
|
||||
if type(optimizer) == list:
|
||||
load("optimizer_enc", optimizer[0])
|
||||
load("optimizer_dec", optimizer[1])
|
||||
load("scheduler_enc", scheduler[0])
|
||||
load("scheduler_dec", scheduler[1])
|
||||
else:
|
||||
load("optimizer", optimizer)
|
||||
load("scheduler", scheduler)
|
||||
|
||||
load("grad_scaler", scaler)
|
||||
load("sampler", sampler)
|
||||
|
||||
return checkpoint
|
||||
|
||||
|
||||
def save_checkpoint_with_global_batch_idx(
|
||||
out_dir: Path,
|
||||
global_batch_idx: int,
|
||||
model: Union[nn.Module, DDP],
|
||||
model_avg: Optional[nn.Module] = None,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
optimizer = None,
|
||||
scheduler = None,
|
||||
scaler: Optional[GradScaler] = None,
|
||||
sampler: Optional[CutSampler] = None,
|
||||
rank: int = 0,
|
||||
):
|
||||
"""Save training info after processing given number of batches.
|
||||
|
||||
Args:
|
||||
out_dir:
|
||||
The directory to save the checkpoint.
|
||||
global_batch_idx:
|
||||
The number of batches processed so far from the very start of the
|
||||
training. The saved checkpoint will have the following filename:
|
||||
|
||||
f'out_dir / checkpoint-{global_batch_idx}.pt'
|
||||
model:
|
||||
The neural network model whose `state_dict` will be saved in the
|
||||
checkpoint.
|
||||
model_avg:
|
||||
The stored model averaged from the start of training.
|
||||
params:
|
||||
A dict of training configurations to be saved.
|
||||
optimizer:
|
||||
The optimizer used in the training. Its `state_dict` will be saved.
|
||||
scheduler:
|
||||
The learning rate scheduler used in the training. Its `state_dict` will
|
||||
be saved.
|
||||
scaler:
|
||||
The scaler used for mix precision training. Its `state_dict` will
|
||||
be saved.
|
||||
sampler:
|
||||
The sampler used in the training dataset.
|
||||
rank:
|
||||
The rank ID used in DDP training of the current node. Set it to 0
|
||||
if DDP is not used.
|
||||
"""
|
||||
out_dir = Path(out_dir)
|
||||
out_dir.mkdir(parents=True, exist_ok=True)
|
||||
filename = out_dir / f"checkpoint-{global_batch_idx}.pt"
|
||||
save_checkpoint(
|
||||
filename=filename,
|
||||
model=model,
|
||||
model_avg=model_avg,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
scaler=scaler,
|
||||
sampler=sampler,
|
||||
rank=rank,
|
||||
)
|
||||
Loading…
x
Reference in New Issue
Block a user