mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-18 21:44:18 +00:00
onnx streaming decode
This commit is contained in:
parent
0b63b87092
commit
d932ed0928
@ -406,17 +406,23 @@ def export_encoder_model_onnx(
|
||||
left_context_len = encoder_model.left_context_len
|
||||
left_context_len = [left_context_len // k for k in ds]
|
||||
left_context_len = ",".join(map(str, left_context_len))
|
||||
query_head_dims = ",".join(map(str, encoder_model.encoder.query_head_dim))
|
||||
value_head_dims = ",".join(map(str, encoder_model.encoder.value_head_dim))
|
||||
num_heads = ",".join(map(str, encoder_model.encoder.num_heads))
|
||||
|
||||
meta_data = {
|
||||
"model_type": "zipformer",
|
||||
"version": "1",
|
||||
"model_author": "k2-fsa",
|
||||
"decode_chunk_len": str(decode_chunk_len), # 32
|
||||
"f": str(decode_chunk_len), # 32
|
||||
"T": str(T), # 32+7+2*3=45
|
||||
"num_encoder_layers": num_encoder_layers,
|
||||
"encoder_dims": encoder_dims,
|
||||
"cnn_module_kernels": cnn_module_kernels,
|
||||
"left_context_len": left_context_len,
|
||||
"query_head_dims": query_head_dims,
|
||||
"value_head_dims": value_head_dims,
|
||||
"num_heads": num_heads,
|
||||
}
|
||||
logging.info(f"meta_data: {meta_data}")
|
||||
|
||||
|
508
egs/librispeech/ASR/zipformer/onnx_pretrained-streaming.py
Executable file
508
egs/librispeech/ASR/zipformer/onnx_pretrained-streaming.py
Executable file
@ -0,0 +1,508 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
|
||||
"""
|
||||
This script loads ONNX models exported by ./export-onnx-streaming.py
|
||||
and uses them to decode waves.
|
||||
|
||||
We use the pre-trained model from
|
||||
https://huggingface.co/Zengwei/icefall-asr-librispeech-streaming-zipformer-2023-05-17
|
||||
as an example to show how to use this file.
|
||||
|
||||
1. Download the pre-trained model
|
||||
|
||||
cd egs/librispeech/ASR
|
||||
|
||||
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-streaming-zipformer-2023-05-17
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
|
||||
pushd $repo
|
||||
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||
git lfs pull --include "exp/pretrained.pt"
|
||||
|
||||
cd exp
|
||||
ln -s pretrained.pt epoch-99.pt
|
||||
popd
|
||||
|
||||
2. Export the model to ONNX
|
||||
|
||||
./zipformer/export-onnx-streaming.py \
|
||||
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||
--use-averaged-model 0 \
|
||||
--epoch 99 \
|
||||
--avg 1 \
|
||||
--exp-dir $repo/exp \
|
||||
--num-encoder-layers "2,2,3,4,3,2" \
|
||||
--downsampling-factor "1,2,4,8,4,2" \
|
||||
--feedforward-dim "512,768,1024,1536,1024,768" \
|
||||
--num-heads "4,4,4,8,4,4" \
|
||||
--encoder-dim "192,256,384,512,384,256" \
|
||||
--query-head-dim 32 \
|
||||
--value-head-dim 12 \
|
||||
--pos-head-dim 4 \
|
||||
--pos-dim 48 \
|
||||
--encoder-unmasked-dim "192,192,256,256,256,192" \
|
||||
--cnn-module-kernel "31,31,15,15,15,31" \
|
||||
--decoder-dim 512 \
|
||||
--joiner-dim 512 \
|
||||
--causal True \
|
||||
--chunk-size "16,32,64,-1" \
|
||||
--left-context-frames "64,128,256,-1"
|
||||
|
||||
It will generate the following 3 files inside $repo/exp:
|
||||
|
||||
- encoder-epoch-99-avg-1.onnx
|
||||
- decoder-epoch-99-avg-1.onnx
|
||||
- joiner-epoch-99-avg-1.onnx
|
||||
|
||||
3. Run this file with the exported ONNX models
|
||||
|
||||
./zipformer/onnx_pretrained-streaming.py \
|
||||
--encoder-model-filename $repo/exp/encoder-epoch-99-avg-1.onnx \
|
||||
--decoder-model-filename $repo/exp/decoder-epoch-99-avg-1.onnx \
|
||||
--joiner-model-filename $repo/exp/joiner-epoch-99-avg-1.onnx \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
$repo/test_wavs/1089-134686-0001.wav
|
||||
|
||||
Note: Even though this script only supports decoding a single file,
|
||||
the exported ONNX models do support batch processing.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
import torch
|
||||
import torchaudio
|
||||
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--encoder-model-filename",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the encoder onnx model. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoder-model-filename",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the decoder onnx model. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--joiner-model-filename",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the joiner onnx model. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens",
|
||||
type=str,
|
||||
help="""Path to tokens.txt.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_file",
|
||||
type=str,
|
||||
help="The input sound file to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. "
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
class OnnxModel:
|
||||
def __init__(
|
||||
self,
|
||||
encoder_model_filename: str,
|
||||
decoder_model_filename: str,
|
||||
joiner_model_filename: str,
|
||||
):
|
||||
session_opts = ort.SessionOptions()
|
||||
session_opts.inter_op_num_threads = 1
|
||||
session_opts.intra_op_num_threads = 1
|
||||
|
||||
self.session_opts = session_opts
|
||||
|
||||
self.init_encoder(encoder_model_filename)
|
||||
self.init_decoder(decoder_model_filename)
|
||||
self.init_joiner(joiner_model_filename)
|
||||
|
||||
def init_encoder(self, encoder_model_filename: str):
|
||||
self.encoder = ort.InferenceSession(
|
||||
encoder_model_filename,
|
||||
sess_options=self.session_opts,
|
||||
)
|
||||
self.init_encoder_states()
|
||||
|
||||
def init_encoder_states(self, batch_size: int = 1):
|
||||
encoder_meta = self.encoder.get_modelmeta().custom_metadata_map
|
||||
|
||||
model_type = encoder_meta["model_type"]
|
||||
assert model_type == "zipformer", model_type
|
||||
|
||||
decode_chunk_len = int(encoder_meta["decode_chunk_len"])
|
||||
T = int(encoder_meta["T"])
|
||||
|
||||
num_encoder_layers = encoder_meta["num_encoder_layers"]
|
||||
encoder_dims = encoder_meta["encoder_dims"]
|
||||
cnn_module_kernels = encoder_meta["cnn_module_kernels"]
|
||||
left_context_len = encoder_meta["left_context_len"]
|
||||
query_head_dims = encoder_meta["query_head_dims"]
|
||||
value_head_dims = encoder_meta["value_head_dims"]
|
||||
num_heads = encoder_meta["num_heads"]
|
||||
|
||||
def to_int_list(s):
|
||||
return list(map(int, s.split(",")))
|
||||
|
||||
num_encoder_layers = to_int_list(num_encoder_layers)
|
||||
encoder_dims = to_int_list(encoder_dims)
|
||||
cnn_module_kernels = to_int_list(cnn_module_kernels)
|
||||
left_context_len = to_int_list(left_context_len)
|
||||
query_head_dims = to_int_list(query_head_dims)
|
||||
value_head_dims = to_int_list(value_head_dims)
|
||||
num_heads = to_int_list(num_heads)
|
||||
|
||||
logging.info(f"decode_chunk_len: {decode_chunk_len}")
|
||||
logging.info(f"T: {T}")
|
||||
logging.info(f"num_encoder_layers: {num_encoder_layers}")
|
||||
logging.info(f"encoder_dims: {encoder_dims}")
|
||||
logging.info(f"cnn_module_kernels: {cnn_module_kernels}")
|
||||
logging.info(f"left_context_len: {left_context_len}")
|
||||
logging.info(f"query_head_dims: {query_head_dims}")
|
||||
logging.info(f"value_head_dims: {value_head_dims}")
|
||||
logging.info(f"num_heads: {num_heads}")
|
||||
|
||||
num_encoders = len(num_encoder_layers)
|
||||
|
||||
self.states = []
|
||||
for i in range(num_encoders):
|
||||
key_dim = query_head_dims[i] * num_heads[i]
|
||||
embed_dim = encoder_dims[i]
|
||||
nonlin_attn_head_dim = 3 * embed_dim // 4
|
||||
value_dim = value_head_dims[i] * num_heads[i]
|
||||
conv_left_pad = cnn_module_kernels[i] // 2
|
||||
|
||||
cached_key = torch.zeros(left_context_len, batch_size, key_dim)
|
||||
cached_nonlin_attn = torch.zeros(1, batch_size, left_context_len, nonlin_attn_head_dim)
|
||||
cached_val1 = torch.zeros(left_context_len, batch_size, value_dim)
|
||||
cached_val2 = torch.zeros(left_context_len, batch_size, value_dim)
|
||||
cached_conv1 = torch.zeros(batch_size, embed_dim, conv_left_pad)
|
||||
cached_conv2 = torch.zeros(batch_size, embed_dim, conv_left_pad)
|
||||
self.states += [cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2]
|
||||
|
||||
self.num_encoders = num_encoders
|
||||
|
||||
self.segment = T
|
||||
self.offset = decode_chunk_len
|
||||
|
||||
def init_decoder(self, decoder_model_filename: str):
|
||||
self.decoder = ort.InferenceSession(
|
||||
decoder_model_filename,
|
||||
sess_options=self.session_opts,
|
||||
)
|
||||
|
||||
decoder_meta = self.decoder.get_modelmeta().custom_metadata_map
|
||||
self.context_size = int(decoder_meta["context_size"])
|
||||
self.vocab_size = int(decoder_meta["vocab_size"])
|
||||
|
||||
logging.info(f"context_size: {self.context_size}")
|
||||
logging.info(f"vocab_size: {self.vocab_size}")
|
||||
|
||||
def init_joiner(self, joiner_model_filename: str):
|
||||
self.joiner = ort.InferenceSession(
|
||||
joiner_model_filename,
|
||||
sess_options=self.session_opts,
|
||||
)
|
||||
|
||||
joiner_meta = self.joiner.get_modelmeta().custom_metadata_map
|
||||
self.joiner_dim = int(joiner_meta["joiner_dim"])
|
||||
|
||||
logging.info(f"joiner_dim: {self.joiner_dim}")
|
||||
|
||||
def _build_encoder_input_output(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
) -> Tuple[Dict[str, np.ndarray], List[str]]:
|
||||
encoder_input = {"x": x.numpy()}
|
||||
encoder_output = ["encoder_out"]
|
||||
|
||||
def build_inputs_outputs(tensors, i):
|
||||
assert len(tensors) == 6, len(tensors)
|
||||
|
||||
# (downsample_left, batch_size, key_dim)
|
||||
name = f'cached_key_{i}'
|
||||
encoder_input[f"{name}"] = tensors[0].numpy() if isinstance(tensors[0], torch.Tensor) else tensors[0]
|
||||
encoder_output.append(f"new_{name}")
|
||||
|
||||
# (1, batch_size, downsample_left, nonlin_attn_head_dim)
|
||||
name = f'cached_nonlin_attn_{i}'
|
||||
encoder_input[f"{name}"] = tensors[1].numpy() if isinstance(tensors[1], torch.Tensor) else tensors[1]
|
||||
encoder_output.append(f"new_{name}")
|
||||
|
||||
# (downsample_left, batch_size, value_dim)
|
||||
name = f'cached_val1_{i}'
|
||||
encoder_input[f"{name}"] = tensors[2].numpy() if isinstance(tensors[2], torch.Tensor) else tensors[2]
|
||||
encoder_output.append(f"new_{name}")
|
||||
|
||||
# (downsample_left, batch_size, value_dim)
|
||||
name = f'cached_val2_{i}'
|
||||
encoder_input[f"{name}"] = tensors[3].numpy() if isinstance(tensors[3], torch.Tensor) else tensors[3]
|
||||
encoder_output.append(f"new_{name}")
|
||||
|
||||
# (batch_size, embed_dim, conv_left_pad)
|
||||
name = f'cached_conv1_{i}'
|
||||
encoder_input[f"{name}"] = tensors[4].numpy() if isinstance(tensors[4], torch.Tensor) else tensors[4]
|
||||
encoder_output.append(f"new_{name}")
|
||||
|
||||
# (batch_size, embed_dim, conv_left_pad)
|
||||
name = f'cached_conv2_{i}'
|
||||
encoder_input[f"{name}"] = tensors[5].numpy() if isinstance(tensors[5], torch.Tensor) else tensors[5]
|
||||
encoder_output.append(f"new_{name}")
|
||||
|
||||
for i in range(len(self.states[:-2]) // 6):
|
||||
build_inputs_outputs(self.states[i*6:(i+1)*6], i)
|
||||
|
||||
return encoder_input, encoder_output
|
||||
|
||||
def _update_states(self, states: List[np.ndarray]):
|
||||
self.states = states
|
||||
|
||||
def run_encoder(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 3-D tensor of shape (N, T, C)
|
||||
Returns:
|
||||
Return a 3-D tensor of shape (N, T', joiner_dim) where
|
||||
T' is usually equal to ((T-7)//2+1)//2
|
||||
"""
|
||||
encoder_input, encoder_output_names = self._build_encoder_input_output(x)
|
||||
out = self.encoder.run(encoder_output_names, encoder_input)
|
||||
|
||||
self._update_states(out[1:])
|
||||
|
||||
return torch.from_numpy(out[0])
|
||||
|
||||
def run_decoder(self, decoder_input: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
decoder_input:
|
||||
A 2-D tensor of shape (N, context_size)
|
||||
Returns:
|
||||
Return a 2-D tensor of shape (N, joiner_dim)
|
||||
"""
|
||||
out = self.decoder.run(
|
||||
[self.decoder.get_outputs()[0].name],
|
||||
{self.decoder.get_inputs()[0].name: decoder_input.numpy()},
|
||||
)[0]
|
||||
|
||||
return torch.from_numpy(out)
|
||||
|
||||
def run_joiner(
|
||||
self, encoder_out: torch.Tensor, decoder_out: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
encoder_out:
|
||||
A 2-D tensor of shape (N, joiner_dim)
|
||||
decoder_out:
|
||||
A 2-D tensor of shape (N, joiner_dim)
|
||||
Returns:
|
||||
Return a 2-D tensor of shape (N, vocab_size)
|
||||
"""
|
||||
out = self.joiner.run(
|
||||
[self.joiner.get_outputs()[0].name],
|
||||
{
|
||||
self.joiner.get_inputs()[0].name: encoder_out.numpy(),
|
||||
self.joiner.get_inputs()[1].name: decoder_out.numpy(),
|
||||
},
|
||||
)[0]
|
||||
|
||||
return torch.from_numpy(out)
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert (
|
||||
sample_rate == expected_sample_rate
|
||||
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||
# We use only the first channel
|
||||
ans.append(wave[0].contiguous())
|
||||
return ans
|
||||
|
||||
|
||||
def create_streaming_feature_extractor() -> OnlineFeature:
|
||||
"""Create a CPU streaming feature extractor.
|
||||
|
||||
At present, we assume it returns a fbank feature extractor with
|
||||
fixed options. In the future, we will support passing in the options
|
||||
from outside.
|
||||
|
||||
Returns:
|
||||
Return a CPU streaming feature extractor.
|
||||
"""
|
||||
opts = FbankOptions()
|
||||
opts.device = "cpu"
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = 16000
|
||||
opts.mel_opts.num_bins = 80
|
||||
return OnlineFbank(opts)
|
||||
|
||||
|
||||
def greedy_search(
|
||||
model: OnnxModel,
|
||||
encoder_out: torch.Tensor,
|
||||
context_size: int,
|
||||
decoder_out: Optional[torch.Tensor] = None,
|
||||
hyp: Optional[List[int]] = None,
|
||||
) -> List[int]:
|
||||
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
||||
Args:
|
||||
model:
|
||||
The transducer model.
|
||||
encoder_out:
|
||||
A 3-D tensor of shape (1, T, joiner_dim)
|
||||
context_size:
|
||||
The context size of the decoder model.
|
||||
decoder_out:
|
||||
Optional. Decoder output of the previous chunk.
|
||||
hyp:
|
||||
Decoding results for previous chunks.
|
||||
Returns:
|
||||
Return the decoded results so far.
|
||||
"""
|
||||
|
||||
blank_id = 0
|
||||
|
||||
if decoder_out is None:
|
||||
assert hyp is None, hyp
|
||||
hyp = [blank_id] * context_size
|
||||
decoder_input = torch.tensor([hyp], dtype=torch.int64)
|
||||
decoder_out = model.run_decoder(decoder_input)
|
||||
else:
|
||||
assert hyp is not None, hyp
|
||||
|
||||
encoder_out = encoder_out.squeeze(0)
|
||||
T = encoder_out.size(0)
|
||||
for t in range(T):
|
||||
cur_encoder_out = encoder_out[t : t + 1]
|
||||
joiner_out = model.run_joiner(cur_encoder_out, decoder_out).squeeze(0)
|
||||
y = joiner_out.argmax(dim=0).item()
|
||||
if y != blank_id:
|
||||
hyp.append(y)
|
||||
decoder_input = hyp[-context_size:]
|
||||
decoder_input = torch.tensor([decoder_input], dtype=torch.int64)
|
||||
decoder_out = model.run_decoder(decoder_input)
|
||||
|
||||
return hyp, decoder_out
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
logging.info(vars(args))
|
||||
|
||||
model = OnnxModel(
|
||||
encoder_model_filename=args.encoder_model_filename,
|
||||
decoder_model_filename=args.decoder_model_filename,
|
||||
joiner_model_filename=args.joiner_model_filename,
|
||||
)
|
||||
|
||||
sample_rate = 16000
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
online_fbank = create_streaming_feature_extractor()
|
||||
|
||||
logging.info(f"Reading sound files: {args.sound_file}")
|
||||
waves = read_sound_files(
|
||||
filenames=[args.sound_file],
|
||||
expected_sample_rate=sample_rate,
|
||||
)[0]
|
||||
|
||||
tail_padding = torch.zeros(int(0.3 * sample_rate), dtype=torch.float32)
|
||||
wave_samples = torch.cat([waves, tail_padding])
|
||||
|
||||
num_processed_frames = 0
|
||||
segment = model.segment
|
||||
offset = model.offset
|
||||
|
||||
context_size = model.context_size
|
||||
hyp = None
|
||||
decoder_out = None
|
||||
|
||||
chunk = int(1 * sample_rate) # 1 second
|
||||
start = 0
|
||||
while start < wave_samples.numel():
|
||||
end = min(start + chunk, wave_samples.numel())
|
||||
samples = wave_samples[start:end]
|
||||
start += chunk
|
||||
|
||||
online_fbank.accept_waveform(
|
||||
sampling_rate=sample_rate,
|
||||
waveform=samples,
|
||||
)
|
||||
|
||||
while online_fbank.num_frames_ready - num_processed_frames >= segment:
|
||||
frames = []
|
||||
for i in range(segment):
|
||||
frames.append(online_fbank.get_frame(num_processed_frames + i))
|
||||
num_processed_frames += offset
|
||||
frames = torch.cat(frames, dim=0)
|
||||
frames = frames.unsqueeze(0)
|
||||
encoder_out = model.run_encoder(frames)
|
||||
hyp, decoder_out = greedy_search(
|
||||
model,
|
||||
encoder_out,
|
||||
context_size,
|
||||
decoder_out,
|
||||
hyp,
|
||||
)
|
||||
|
||||
symbol_table = k2.SymbolTable.from_file(args.tokens)
|
||||
|
||||
text = ""
|
||||
for i in hyp[context_size:]:
|
||||
text += symbol_table[i]
|
||||
text = text.replace("▁", " ").strip()
|
||||
|
||||
logging.info(args.sound_file)
|
||||
logging.info(text)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user