mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Changes for pretrained.py (tedlium3 pruned RNN-T) (#311)
This commit is contained in:
parent
62fbfb52d0
commit
d88e786513
@ -1,4 +1,5 @@
|
|||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
||||||
|
# Mingshuang Luo)
|
||||||
#
|
#
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
#
|
#
|
||||||
@ -86,7 +87,12 @@ def fast_beam_search(
|
|||||||
# (shape.NumElements(), 1, encoder_out_dim)
|
# (shape.NumElements(), 1, encoder_out_dim)
|
||||||
# fmt: off
|
# fmt: off
|
||||||
current_encoder_out = torch.index_select(
|
current_encoder_out = torch.index_select(
|
||||||
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1)
|
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).long()
|
||||||
|
# in some old versions of pytorch, the type of index requires
|
||||||
|
# to be LongTensor. In the newest version of pytorch, the type
|
||||||
|
# of index can be IntTensor or LongTensor. For supporting the
|
||||||
|
# old and new versions of pytorch, we set the type of index
|
||||||
|
# to LongTensor.
|
||||||
)
|
)
|
||||||
# fmt: on
|
# fmt: on
|
||||||
logits = model.joiner(
|
logits = model.joiner(
|
||||||
@ -124,6 +130,7 @@ def greedy_search(
|
|||||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
blank_id = model.decoder.blank_id
|
||||||
|
unk_id = model.decoder.unk_id
|
||||||
context_size = model.decoder.context_size
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
device = model.device
|
device = model.device
|
||||||
@ -160,7 +167,7 @@ def greedy_search(
|
|||||||
# logits is (1, 1, 1, vocab_size)
|
# logits is (1, 1, 1, vocab_size)
|
||||||
|
|
||||||
y = logits.argmax().item()
|
y = logits.argmax().item()
|
||||||
if y != blank_id:
|
if y != blank_id and y != unk_id:
|
||||||
hyp.append(y)
|
hyp.append(y)
|
||||||
decoder_input = torch.tensor(
|
decoder_input = torch.tensor(
|
||||||
[hyp[-context_size:]], device=device
|
[hyp[-context_size:]], device=device
|
||||||
@ -200,6 +207,7 @@ def greedy_search_batch(
|
|||||||
T = encoder_out.size(1)
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
blank_id = model.decoder.blank_id
|
||||||
|
unk_id = model.decoder.unk_id
|
||||||
context_size = model.decoder.context_size
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
hyps = [[blank_id] * context_size for _ in range(batch_size)]
|
hyps = [[blank_id] * context_size for _ in range(batch_size)]
|
||||||
@ -223,7 +231,7 @@ def greedy_search_batch(
|
|||||||
y = logits.argmax(dim=1).tolist()
|
y = logits.argmax(dim=1).tolist()
|
||||||
emitted = False
|
emitted = False
|
||||||
for i, v in enumerate(y):
|
for i, v in enumerate(y):
|
||||||
if v != blank_id:
|
if v != blank_id and v != unk_id:
|
||||||
hyps[i].append(v)
|
hyps[i].append(v)
|
||||||
emitted = True
|
emitted = True
|
||||||
if emitted:
|
if emitted:
|
||||||
@ -415,6 +423,7 @@ def modified_beam_search(
|
|||||||
T = encoder_out.size(1)
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
blank_id = model.decoder.blank_id
|
||||||
|
unk_id = model.decoder.unk_id
|
||||||
context_size = model.decoder.context_size
|
context_size = model.decoder.context_size
|
||||||
device = model.device
|
device = model.device
|
||||||
B = [HypothesisList() for _ in range(batch_size)]
|
B = [HypothesisList() for _ in range(batch_size)]
|
||||||
@ -491,7 +500,7 @@ def modified_beam_search(
|
|||||||
|
|
||||||
new_ys = hyp.ys[:]
|
new_ys = hyp.ys[:]
|
||||||
new_token = topk_token_indexes[k]
|
new_token = topk_token_indexes[k]
|
||||||
if new_token != blank_id:
|
if new_token != blank_id and new_token != unk_id:
|
||||||
new_ys.append(new_token)
|
new_ys.append(new_token)
|
||||||
|
|
||||||
new_log_prob = topk_log_probs[k]
|
new_log_prob = topk_log_probs[k]
|
||||||
@ -532,6 +541,7 @@ def _deprecated_modified_beam_search(
|
|||||||
# support only batch_size == 1 for now
|
# support only batch_size == 1 for now
|
||||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||||
blank_id = model.decoder.blank_id
|
blank_id = model.decoder.blank_id
|
||||||
|
unk_id = model.decoder.unk_id
|
||||||
context_size = model.decoder.context_size
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
device = model.device
|
device = model.device
|
||||||
@ -597,7 +607,7 @@ def _deprecated_modified_beam_search(
|
|||||||
hyp = A[topk_hyp_indexes[i]]
|
hyp = A[topk_hyp_indexes[i]]
|
||||||
new_ys = hyp.ys[:]
|
new_ys = hyp.ys[:]
|
||||||
new_token = topk_token_indexes[i]
|
new_token = topk_token_indexes[i]
|
||||||
if new_token != blank_id:
|
if new_token != blank_id and new_token != unk_id:
|
||||||
new_ys.append(new_token)
|
new_ys.append(new_token)
|
||||||
new_log_prob = topk_log_probs[i]
|
new_log_prob = topk_log_probs[i]
|
||||||
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||||
@ -634,6 +644,7 @@ def beam_search(
|
|||||||
# support only batch_size == 1 for now
|
# support only batch_size == 1 for now
|
||||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||||
blank_id = model.decoder.blank_id
|
blank_id = model.decoder.blank_id
|
||||||
|
unk_id = model.decoder.unk_id
|
||||||
context_size = model.decoder.context_size
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
device = model.device
|
device = model.device
|
||||||
@ -714,7 +725,7 @@ def beam_search(
|
|||||||
# Second, process other non-blank labels
|
# Second, process other non-blank labels
|
||||||
values, indices = log_prob.topk(beam + 1)
|
values, indices = log_prob.topk(beam + 1)
|
||||||
for i, v in zip(indices.tolist(), values.tolist()):
|
for i, v in zip(indices.tolist(), values.tolist()):
|
||||||
if i == blank_id:
|
if i == blank_id or i == unk_id:
|
||||||
continue
|
continue
|
||||||
new_ys = y_star.ys + [i]
|
new_ys = y_star.ys + [i]
|
||||||
new_log_prob = y_star.log_prob + v
|
new_log_prob = y_star.log_prob + v
|
||||||
|
@ -1,746 +0,0 @@
|
|||||||
# Copyright 2020 Xiaomi Corp. (authors: Fangjun Kuang
|
|
||||||
# Mingshuang Luo)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from dataclasses import dataclass
|
|
||||||
from typing import Dict, List, Optional
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import torch
|
|
||||||
from model import Transducer
|
|
||||||
|
|
||||||
from icefall.decode import one_best_decoding
|
|
||||||
from icefall.utils import get_texts
|
|
||||||
|
|
||||||
|
|
||||||
def fast_beam_search(
|
|
||||||
model: Transducer,
|
|
||||||
decoding_graph: k2.Fsa,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
encoder_out_lens: torch.Tensor,
|
|
||||||
beam: float,
|
|
||||||
max_states: int,
|
|
||||||
max_contexts: int,
|
|
||||||
) -> List[List[int]]:
|
|
||||||
"""It limits the maximum number of symbols per frame to 1.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
An instance of `Transducer`.
|
|
||||||
decoding_graph:
|
|
||||||
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
|
||||||
encoder_out:
|
|
||||||
A tensor of shape (N, T, C) from the encoder.
|
|
||||||
encoder_out_lens:
|
|
||||||
A tensor of shape (N,) containing the number of frames in `encoder_out`
|
|
||||||
before padding.
|
|
||||||
beam:
|
|
||||||
Beam value, similar to the beam used in Kaldi..
|
|
||||||
max_states:
|
|
||||||
Max states per stream per frame.
|
|
||||||
max_contexts:
|
|
||||||
Max contexts pre stream per frame.
|
|
||||||
Returns:
|
|
||||||
Return the decoded result.
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == 3
|
|
||||||
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
vocab_size = model.decoder.vocab_size
|
|
||||||
unk_id = model.decoder.unk_id
|
|
||||||
|
|
||||||
B, T, C = encoder_out.shape
|
|
||||||
|
|
||||||
config = k2.RnntDecodingConfig(
|
|
||||||
vocab_size=vocab_size,
|
|
||||||
decoder_history_len=context_size,
|
|
||||||
beam=beam,
|
|
||||||
max_contexts=max_contexts,
|
|
||||||
max_states=max_states,
|
|
||||||
)
|
|
||||||
individual_streams = []
|
|
||||||
for i in range(B):
|
|
||||||
individual_streams.append(k2.RnntDecodingStream(decoding_graph))
|
|
||||||
decoding_streams = k2.RnntDecodingStreams(individual_streams, config)
|
|
||||||
|
|
||||||
for t in range(T):
|
|
||||||
# shape is a RaggedShape of shape (B, context)
|
|
||||||
# contexts is a Tensor of shape (shape.NumElements(), context_size)
|
|
||||||
shape, contexts = decoding_streams.get_contexts()
|
|
||||||
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
|
|
||||||
contexts = contexts.to(torch.int64)
|
|
||||||
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
|
|
||||||
decoder_out = model.decoder(contexts, need_pad=False)
|
|
||||||
# current_encoder_out is of shape
|
|
||||||
# (shape.NumElements(), 1, encoder_out_dim)
|
|
||||||
# fmt: off
|
|
||||||
current_encoder_out = torch.index_select(
|
|
||||||
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1)
|
|
||||||
)
|
|
||||||
# fmt: on
|
|
||||||
logits = model.joiner(
|
|
||||||
current_encoder_out.unsqueeze(2), decoder_out.unsqueeze(1)
|
|
||||||
)
|
|
||||||
logits = logits.squeeze(1).squeeze(1)
|
|
||||||
log_probs = logits.log_softmax(dim=-1)
|
|
||||||
decoding_streams.advance(log_probs)
|
|
||||||
decoding_streams.terminate_and_flush_to_streams()
|
|
||||||
lattice = decoding_streams.format_output(encoder_out_lens.tolist())
|
|
||||||
best_path = one_best_decoding(lattice)
|
|
||||||
hyps = get_texts(best_path)
|
|
||||||
new_hyps = []
|
|
||||||
for hyp in hyps:
|
|
||||||
hyp = [idx for idx in hyp if idx != unk_id]
|
|
||||||
new_hyps.append(hyp)
|
|
||||||
return new_hyps
|
|
||||||
|
|
||||||
|
|
||||||
def greedy_search(
|
|
||||||
model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int
|
|
||||||
) -> List[int]:
|
|
||||||
"""Greedy search for a single utterance.
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
An instance of `Transducer`.
|
|
||||||
encoder_out:
|
|
||||||
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
|
||||||
max_sym_per_frame:
|
|
||||||
Maximum number of symbols per frame. If it is set to 0, the WER
|
|
||||||
would be 100%.
|
|
||||||
Returns:
|
|
||||||
Return the decoded result.
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == 3
|
|
||||||
|
|
||||||
# support only batch_size == 1 for now
|
|
||||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
|
||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
|
||||||
unk_id = model.decoder.unk_id
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
|
|
||||||
device = model.device
|
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[blank_id] * context_size, device=device, dtype=torch.int64
|
|
||||||
).reshape(1, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
|
|
||||||
T = encoder_out.size(1)
|
|
||||||
t = 0
|
|
||||||
hyp = [blank_id] * context_size
|
|
||||||
|
|
||||||
# Maximum symbols per utterance.
|
|
||||||
max_sym_per_utt = 1000
|
|
||||||
|
|
||||||
# symbols per frame
|
|
||||||
sym_per_frame = 0
|
|
||||||
|
|
||||||
# symbols per utterance decoded so far
|
|
||||||
sym_per_utt = 0
|
|
||||||
|
|
||||||
while t < T and sym_per_utt < max_sym_per_utt:
|
|
||||||
if sym_per_frame >= max_sym_per_frame:
|
|
||||||
sym_per_frame = 0
|
|
||||||
t += 1
|
|
||||||
continue
|
|
||||||
|
|
||||||
# fmt: off
|
|
||||||
current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
|
|
||||||
# fmt: on
|
|
||||||
logits = model.joiner(current_encoder_out, decoder_out.unsqueeze(1))
|
|
||||||
# logits is (1, 1, 1, vocab_size)
|
|
||||||
|
|
||||||
y = logits.argmax().item()
|
|
||||||
if y != blank_id and y != unk_id:
|
|
||||||
hyp.append(y)
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[hyp[-context_size:]], device=device
|
|
||||||
).reshape(1, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
|
|
||||||
sym_per_utt += 1
|
|
||||||
sym_per_frame += 1
|
|
||||||
else:
|
|
||||||
sym_per_frame = 0
|
|
||||||
t += 1
|
|
||||||
hyp = hyp[context_size:] # remove blanks
|
|
||||||
|
|
||||||
return hyp
|
|
||||||
|
|
||||||
|
|
||||||
def greedy_search_batch(
|
|
||||||
model: Transducer, encoder_out: torch.Tensor
|
|
||||||
) -> List[List[int]]:
|
|
||||||
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
The transducer model.
|
|
||||||
encoder_out:
|
|
||||||
Output from the encoder. Its shape is (N, T, C), where N >= 1.
|
|
||||||
Returns:
|
|
||||||
Return a list-of-list integers containing the decoded results.
|
|
||||||
len(ans) equals to encoder_out.size(0).
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == 3
|
|
||||||
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
|
||||||
|
|
||||||
device = model.device
|
|
||||||
|
|
||||||
batch_size = encoder_out.size(0)
|
|
||||||
T = encoder_out.size(1)
|
|
||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
|
||||||
unk_id = model.decoder.unk_id
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
|
|
||||||
hyps = [[blank_id] * context_size for _ in range(batch_size)]
|
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
hyps,
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
) # (batch_size, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
# decoder_out: (batch_size, 1, decoder_out_dim)
|
|
||||||
for t in range(T):
|
|
||||||
current_encoder_out = encoder_out[:, t : t + 1, :].unsqueeze(2) # noqa
|
|
||||||
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
|
|
||||||
logits = model.joiner(current_encoder_out, decoder_out.unsqueeze(1))
|
|
||||||
# logits'shape (batch_size, 1, 1, vocab_size)
|
|
||||||
|
|
||||||
logits = logits.squeeze(1).squeeze(1) # (batch_size, vocab_size)
|
|
||||||
assert logits.ndim == 2, logits.shape
|
|
||||||
y = logits.argmax(dim=1).tolist()
|
|
||||||
emitted = False
|
|
||||||
for i, v in enumerate(y):
|
|
||||||
if v != blank_id and v != unk_id:
|
|
||||||
hyps[i].append(v)
|
|
||||||
emitted = True
|
|
||||||
if emitted:
|
|
||||||
# update decoder output
|
|
||||||
decoder_input = [h[-context_size:] for h in hyps]
|
|
||||||
decoder_input = torch.tensor(decoder_input, device=device)
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
|
|
||||||
ans = [h[context_size:] for h in hyps]
|
|
||||||
return ans
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class Hypothesis:
|
|
||||||
# The predicted tokens so far.
|
|
||||||
# Newly predicted tokens are appended to `ys`.
|
|
||||||
ys: List[int]
|
|
||||||
|
|
||||||
# The log prob of ys.
|
|
||||||
# It contains only one entry.
|
|
||||||
log_prob: torch.Tensor
|
|
||||||
|
|
||||||
@property
|
|
||||||
def key(self) -> str:
|
|
||||||
"""Return a string representation of self.ys"""
|
|
||||||
return "_".join(map(str, self.ys))
|
|
||||||
|
|
||||||
|
|
||||||
class HypothesisList(object):
|
|
||||||
def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
data:
|
|
||||||
A dict of Hypotheses. Its key is its `value.key`.
|
|
||||||
"""
|
|
||||||
if data is None:
|
|
||||||
self._data = {}
|
|
||||||
else:
|
|
||||||
self._data = data
|
|
||||||
|
|
||||||
@property
|
|
||||||
def data(self) -> Dict[str, Hypothesis]:
|
|
||||||
return self._data
|
|
||||||
|
|
||||||
def add(self, hyp: Hypothesis) -> None:
|
|
||||||
"""Add a Hypothesis to `self`.
|
|
||||||
|
|
||||||
If `hyp` already exists in `self`, its probability is updated using
|
|
||||||
`log-sum-exp` with the existed one.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
hyp:
|
|
||||||
The hypothesis to be added.
|
|
||||||
"""
|
|
||||||
key = hyp.key
|
|
||||||
if key in self:
|
|
||||||
old_hyp = self._data[key] # shallow copy
|
|
||||||
torch.logaddexp(
|
|
||||||
old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
self._data[key] = hyp
|
|
||||||
|
|
||||||
def get_most_probable(self, length_norm: bool = False) -> Hypothesis:
|
|
||||||
"""Get the most probable hypothesis, i.e., the one with
|
|
||||||
the largest `log_prob`.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
length_norm:
|
|
||||||
If True, the `log_prob` of a hypothesis is normalized by the
|
|
||||||
number of tokens in it.
|
|
||||||
Returns:
|
|
||||||
Return the hypothesis that has the largest `log_prob`.
|
|
||||||
"""
|
|
||||||
if length_norm:
|
|
||||||
return max(
|
|
||||||
self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
return max(self._data.values(), key=lambda hyp: hyp.log_prob)
|
|
||||||
|
|
||||||
def remove(self, hyp: Hypothesis) -> None:
|
|
||||||
"""Remove a given hypothesis.
|
|
||||||
|
|
||||||
Caution:
|
|
||||||
`self` is modified **in-place**.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
hyp:
|
|
||||||
The hypothesis to be removed from `self`.
|
|
||||||
Note: It must be contained in `self`. Otherwise,
|
|
||||||
an exception is raised.
|
|
||||||
"""
|
|
||||||
key = hyp.key
|
|
||||||
assert key in self, f"{key} does not exist"
|
|
||||||
del self._data[key]
|
|
||||||
|
|
||||||
def filter(self, threshold: torch.Tensor) -> "HypothesisList":
|
|
||||||
"""Remove all Hypotheses whose log_prob is less than threshold.
|
|
||||||
|
|
||||||
Caution:
|
|
||||||
`self` is not modified. Instead, a new HypothesisList is returned.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Return a new HypothesisList containing all hypotheses from `self`
|
|
||||||
with `log_prob` being greater than the given `threshold`.
|
|
||||||
"""
|
|
||||||
ans = HypothesisList()
|
|
||||||
for _, hyp in self._data.items():
|
|
||||||
if hyp.log_prob > threshold:
|
|
||||||
ans.add(hyp) # shallow copy
|
|
||||||
return ans
|
|
||||||
|
|
||||||
def topk(self, k: int) -> "HypothesisList":
|
|
||||||
"""Return the top-k hypothesis."""
|
|
||||||
hyps = list(self._data.items())
|
|
||||||
|
|
||||||
hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k]
|
|
||||||
|
|
||||||
ans = HypothesisList(dict(hyps))
|
|
||||||
return ans
|
|
||||||
|
|
||||||
def __contains__(self, key: str):
|
|
||||||
return key in self._data
|
|
||||||
|
|
||||||
def __iter__(self):
|
|
||||||
return iter(self._data.values())
|
|
||||||
|
|
||||||
def __len__(self) -> int:
|
|
||||||
return len(self._data)
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
|
||||||
s = []
|
|
||||||
for key in self:
|
|
||||||
s.append(key)
|
|
||||||
return ", ".join(s)
|
|
||||||
|
|
||||||
|
|
||||||
def _get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape:
|
|
||||||
"""Return a ragged shape with axes [utt][num_hyps].
|
|
||||||
|
|
||||||
Args:
|
|
||||||
hyps:
|
|
||||||
len(hyps) == batch_size. It contains the current hypothesis for
|
|
||||||
each utterance in the batch.
|
|
||||||
Returns:
|
|
||||||
Return a ragged shape with 2 axes [utt][num_hyps]. Note that
|
|
||||||
the shape is on CPU.
|
|
||||||
"""
|
|
||||||
num_hyps = [len(h) for h in hyps]
|
|
||||||
|
|
||||||
# torch.cumsum() is inclusive sum, so we put a 0 at the beginning
|
|
||||||
# to get exclusive sum later.
|
|
||||||
num_hyps.insert(0, 0)
|
|
||||||
|
|
||||||
num_hyps = torch.tensor(num_hyps)
|
|
||||||
row_splits = torch.cumsum(num_hyps, dim=0, dtype=torch.int32)
|
|
||||||
ans = k2.ragged.create_ragged_shape2(
|
|
||||||
row_splits=row_splits, cached_tot_size=row_splits[-1].item()
|
|
||||||
)
|
|
||||||
return ans
|
|
||||||
|
|
||||||
|
|
||||||
def modified_beam_search(
|
|
||||||
model: Transducer,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
beam: int = 4,
|
|
||||||
) -> List[List[int]]:
|
|
||||||
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
The transducer model.
|
|
||||||
encoder_out:
|
|
||||||
Output from the encoder. Its shape is (N, T, C).
|
|
||||||
beam:
|
|
||||||
Number of active paths during the beam search.
|
|
||||||
Returns:
|
|
||||||
Return a list-of-list of token IDs. ans[i] is the decoding results
|
|
||||||
for the i-th utterance.
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == 3, encoder_out.shape
|
|
||||||
|
|
||||||
batch_size = encoder_out.size(0)
|
|
||||||
T = encoder_out.size(1)
|
|
||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
|
||||||
unk_id = model.decoder.unk_id
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
device = model.device
|
|
||||||
B = [HypothesisList() for _ in range(batch_size)]
|
|
||||||
for i in range(batch_size):
|
|
||||||
B[i].add(
|
|
||||||
Hypothesis(
|
|
||||||
ys=[blank_id] * context_size,
|
|
||||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
for t in range(T):
|
|
||||||
current_encoder_out = encoder_out[:, t : t + 1, :].unsqueeze(2) # noqa
|
|
||||||
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
|
|
||||||
|
|
||||||
hyps_shape = _get_hyps_shape(B).to(device)
|
|
||||||
|
|
||||||
A = [list(b) for b in B]
|
|
||||||
B = [HypothesisList() for _ in range(batch_size)]
|
|
||||||
|
|
||||||
ys_log_probs = torch.cat(
|
|
||||||
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
|
|
||||||
) # (num_hyps, 1)
|
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
) # (num_hyps, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
|
||||||
# decoder_output is of shape (num_hyps, 1, 1, decoder_output_dim)
|
|
||||||
|
|
||||||
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
|
||||||
# as index, so we use `to(torch.int64)` below.
|
|
||||||
current_encoder_out = torch.index_select(
|
|
||||||
current_encoder_out,
|
|
||||||
dim=0,
|
|
||||||
index=hyps_shape.row_ids(1).to(torch.int64),
|
|
||||||
) # (num_hyps, 1, 1, encoder_out_dim)
|
|
||||||
|
|
||||||
logits = model.joiner(
|
|
||||||
current_encoder_out,
|
|
||||||
decoder_out,
|
|
||||||
) # (num_hyps, 1, 1, vocab_size)
|
|
||||||
|
|
||||||
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
|
|
||||||
|
|
||||||
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
|
|
||||||
|
|
||||||
log_probs.add_(ys_log_probs)
|
|
||||||
|
|
||||||
vocab_size = log_probs.size(-1)
|
|
||||||
|
|
||||||
log_probs = log_probs.reshape(-1)
|
|
||||||
|
|
||||||
row_splits = hyps_shape.row_splits(1) * vocab_size
|
|
||||||
log_probs_shape = k2.ragged.create_ragged_shape2(
|
|
||||||
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
|
||||||
)
|
|
||||||
ragged_log_probs = k2.RaggedTensor(
|
|
||||||
shape=log_probs_shape, value=log_probs
|
|
||||||
)
|
|
||||||
|
|
||||||
for i in range(batch_size):
|
|
||||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
|
||||||
|
|
||||||
topk_hyp_indexes = torch.div(
|
|
||||||
topk_indexes, vocab_size, rounding_mode="trunc"
|
|
||||||
)
|
|
||||||
topk_hyp_indexes = topk_hyp_indexes.tolist()
|
|
||||||
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
|
||||||
|
|
||||||
for k in range(len(topk_hyp_indexes)):
|
|
||||||
hyp_idx = topk_hyp_indexes[k]
|
|
||||||
hyp = A[i][hyp_idx]
|
|
||||||
|
|
||||||
new_ys = hyp.ys[:]
|
|
||||||
new_token = topk_token_indexes[k]
|
|
||||||
if new_token != blank_id and new_token != unk_id:
|
|
||||||
new_ys.append(new_token)
|
|
||||||
|
|
||||||
new_log_prob = topk_log_probs[k]
|
|
||||||
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
|
||||||
B[i].add(new_hyp)
|
|
||||||
|
|
||||||
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
|
|
||||||
ans = [h.ys[context_size:] for h in best_hyps]
|
|
||||||
|
|
||||||
return ans
|
|
||||||
|
|
||||||
|
|
||||||
def _deprecated_modified_beam_search(
|
|
||||||
model: Transducer,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
beam: int = 4,
|
|
||||||
) -> List[int]:
|
|
||||||
"""It limits the maximum number of symbols per frame to 1.
|
|
||||||
|
|
||||||
It decodes only one utterance at a time. We keep it only for reference.
|
|
||||||
The function :func:`modified_beam_search` should be preferred as it
|
|
||||||
supports batch decoding.
|
|
||||||
|
|
||||||
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
An instance of `Transducer`.
|
|
||||||
encoder_out:
|
|
||||||
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
|
||||||
beam:
|
|
||||||
Beam size.
|
|
||||||
Returns:
|
|
||||||
Return the decoded result.
|
|
||||||
"""
|
|
||||||
|
|
||||||
assert encoder_out.ndim == 3
|
|
||||||
|
|
||||||
# support only batch_size == 1 for now
|
|
||||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
|
||||||
blank_id = model.decoder.blank_id
|
|
||||||
unk_id = model.decoder.unk_id
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
|
|
||||||
device = model.device
|
|
||||||
|
|
||||||
T = encoder_out.size(1)
|
|
||||||
|
|
||||||
B = HypothesisList()
|
|
||||||
B.add(
|
|
||||||
Hypothesis(
|
|
||||||
ys=[blank_id] * context_size,
|
|
||||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
for t in range(T):
|
|
||||||
# fmt: off
|
|
||||||
current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
|
|
||||||
# current_encoder_out is of shape (1, 1, 1, encoder_out_dim)
|
|
||||||
# fmt: on
|
|
||||||
A = list(B)
|
|
||||||
B = HypothesisList()
|
|
||||||
|
|
||||||
ys_log_probs = torch.cat([hyp.log_prob.reshape(1, 1) for hyp in A])
|
|
||||||
# ys_log_probs is of shape (num_hyps, 1)
|
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[hyp.ys[-context_size:] for hyp in A],
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
)
|
|
||||||
# decoder_input is of shape (num_hyps, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
|
||||||
# decoder_output is of shape (num_hyps, 1, 1, decoder_output_dim)
|
|
||||||
|
|
||||||
current_encoder_out = current_encoder_out.expand(
|
|
||||||
decoder_out.size(0), 1, 1, -1
|
|
||||||
) # (num_hyps, 1, 1, encoder_out_dim)
|
|
||||||
|
|
||||||
logits = model.joiner(
|
|
||||||
current_encoder_out,
|
|
||||||
decoder_out,
|
|
||||||
)
|
|
||||||
# logits is of shape (num_hyps, 1, 1, vocab_size)
|
|
||||||
logits = logits.squeeze(1).squeeze(1)
|
|
||||||
|
|
||||||
# now logits is of shape (num_hyps, vocab_size)
|
|
||||||
log_probs = logits.log_softmax(dim=-1)
|
|
||||||
|
|
||||||
log_probs.add_(ys_log_probs)
|
|
||||||
|
|
||||||
log_probs = log_probs.reshape(-1)
|
|
||||||
topk_log_probs, topk_indexes = log_probs.topk(beam)
|
|
||||||
|
|
||||||
# topk_hyp_indexes are indexes into `A`
|
|
||||||
topk_hyp_indexes = topk_indexes // logits.size(-1)
|
|
||||||
topk_token_indexes = topk_indexes % logits.size(-1)
|
|
||||||
|
|
||||||
topk_hyp_indexes = topk_hyp_indexes.tolist()
|
|
||||||
topk_token_indexes = topk_token_indexes.tolist()
|
|
||||||
|
|
||||||
for i in range(len(topk_hyp_indexes)):
|
|
||||||
hyp = A[topk_hyp_indexes[i]]
|
|
||||||
new_ys = hyp.ys[:]
|
|
||||||
new_token = topk_token_indexes[i]
|
|
||||||
if new_token != blank_id and new_token != unk_id:
|
|
||||||
new_ys.append(new_token)
|
|
||||||
new_log_prob = topk_log_probs[i]
|
|
||||||
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
|
||||||
B.add(new_hyp)
|
|
||||||
|
|
||||||
best_hyp = B.get_most_probable(length_norm=True)
|
|
||||||
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
|
||||||
|
|
||||||
return ys
|
|
||||||
|
|
||||||
|
|
||||||
def beam_search(
|
|
||||||
model: Transducer,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
beam: int = 4,
|
|
||||||
) -> List[int]:
|
|
||||||
"""
|
|
||||||
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
|
|
||||||
|
|
||||||
espnet/nets/beam_search_transducer.py#L247 is used as a reference.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
An instance of `Transducer`.
|
|
||||||
encoder_out:
|
|
||||||
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
|
||||||
beam:
|
|
||||||
Beam size.
|
|
||||||
Returns:
|
|
||||||
Return the decoded result.
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == 3
|
|
||||||
|
|
||||||
# support only batch_size == 1 for now
|
|
||||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
|
||||||
blank_id = model.decoder.blank_id
|
|
||||||
unk_id = model.decoder.unk_id
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
|
|
||||||
device = model.device
|
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[blank_id] * context_size,
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
).reshape(1, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
|
|
||||||
T = encoder_out.size(1)
|
|
||||||
t = 0
|
|
||||||
|
|
||||||
B = HypothesisList()
|
|
||||||
B.add(Hypothesis(ys=[blank_id] * context_size, log_prob=0.0))
|
|
||||||
|
|
||||||
max_sym_per_utt = 20000
|
|
||||||
|
|
||||||
sym_per_utt = 0
|
|
||||||
|
|
||||||
decoder_cache: Dict[str, torch.Tensor] = {}
|
|
||||||
|
|
||||||
while t < T and sym_per_utt < max_sym_per_utt:
|
|
||||||
# fmt: off
|
|
||||||
current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
|
|
||||||
# fmt: on
|
|
||||||
A = B
|
|
||||||
B = HypothesisList()
|
|
||||||
|
|
||||||
joint_cache: Dict[str, torch.Tensor] = {}
|
|
||||||
|
|
||||||
# TODO(fangjun): Implement prefix search to update the `log_prob`
|
|
||||||
# of hypotheses in A
|
|
||||||
|
|
||||||
while True:
|
|
||||||
y_star = A.get_most_probable()
|
|
||||||
A.remove(y_star)
|
|
||||||
|
|
||||||
cached_key = y_star.key
|
|
||||||
|
|
||||||
if cached_key not in decoder_cache:
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[y_star.ys[-context_size:]],
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
).reshape(1, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
decoder_cache[cached_key] = decoder_out
|
|
||||||
else:
|
|
||||||
decoder_out = decoder_cache[cached_key]
|
|
||||||
|
|
||||||
cached_key += f"-t-{t}"
|
|
||||||
if cached_key not in joint_cache:
|
|
||||||
logits = model.joiner(
|
|
||||||
current_encoder_out, decoder_out.unsqueeze(1)
|
|
||||||
)
|
|
||||||
|
|
||||||
# TODO(fangjun): Scale the blank posterior
|
|
||||||
|
|
||||||
log_prob = logits.log_softmax(dim=-1)
|
|
||||||
# log_prob is (1, 1, 1, vocab_size)
|
|
||||||
log_prob = log_prob.squeeze()
|
|
||||||
# Now log_prob is (vocab_size,)
|
|
||||||
joint_cache[cached_key] = log_prob
|
|
||||||
else:
|
|
||||||
log_prob = joint_cache[cached_key]
|
|
||||||
|
|
||||||
# First, process the blank symbol
|
|
||||||
skip_log_prob = log_prob[blank_id]
|
|
||||||
new_y_star_log_prob = y_star.log_prob + skip_log_prob
|
|
||||||
|
|
||||||
# ys[:] returns a copy of ys
|
|
||||||
B.add(Hypothesis(ys=y_star.ys[:], log_prob=new_y_star_log_prob))
|
|
||||||
|
|
||||||
# Second, process other non-blank labels
|
|
||||||
values, indices = log_prob.topk(beam + 1)
|
|
||||||
for i, v in zip(indices.tolist(), values.tolist()):
|
|
||||||
if i == blank_id or i == unk_id:
|
|
||||||
continue
|
|
||||||
new_ys = y_star.ys + [i]
|
|
||||||
new_log_prob = y_star.log_prob + v
|
|
||||||
A.add(Hypothesis(ys=new_ys, log_prob=new_log_prob))
|
|
||||||
|
|
||||||
# Check whether B contains more than "beam" elements more probable
|
|
||||||
# than the most probable in A
|
|
||||||
A_most_probable = A.get_most_probable()
|
|
||||||
|
|
||||||
kept_B = B.filter(A_most_probable.log_prob)
|
|
||||||
|
|
||||||
if len(kept_B) >= beam:
|
|
||||||
B = kept_B.topk(beam)
|
|
||||||
break
|
|
||||||
|
|
||||||
t += 1
|
|
||||||
|
|
||||||
best_hyp = B.get_most_probable(length_norm=True)
|
|
||||||
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
|
||||||
return ys
|
|
1
egs/tedlium3/ASR/pruned_transducer_stateless/beam_search.py
Symbolic link
1
egs/tedlium3/ASR/pruned_transducer_stateless/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless/beam_search.py
|
@ -36,7 +36,6 @@ Usage:
|
|||||||
/path/to/foo.wav \
|
/path/to/foo.wav \
|
||||||
/path/to/bar.wav
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
|
||||||
(3) modified beam search
|
(3) modified beam search
|
||||||
./pruned_transducer_stateless/pretrained.py \
|
./pruned_transducer_stateless/pretrained.py \
|
||||||
--checkpoint ./pruned_transducer_stateless/exp/pretrained.pt \
|
--checkpoint ./pruned_transducer_stateless/exp/pretrained.pt \
|
||||||
@ -46,6 +45,17 @@ Usage:
|
|||||||
/path/to/foo.wav \
|
/path/to/foo.wav \
|
||||||
/path/to/bar.wav
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(4) fast beam search
|
||||||
|
./pruned_transducer_stateless/pretrained.py \
|
||||||
|
--checkpoint ./pruned_transducer_stateless/exp/pretrained.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--method fast_beam_search \
|
||||||
|
--beam 4 \
|
||||||
|
--max-contexts 4 \
|
||||||
|
--max-states 8 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
You can also use `./pruned_transducer_stateless/exp/epoch-xx.pt`.
|
You can also use `./pruned_transducer_stateless/exp/epoch-xx.pt`.
|
||||||
|
|
||||||
Note: ./pruned_transducer_stateless/exp/pretrained.pt is generated by
|
Note: ./pruned_transducer_stateless/exp/pretrained.pt is generated by
|
||||||
@ -58,12 +68,19 @@ import logging
|
|||||||
import math
|
import math
|
||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
|
import k2
|
||||||
import kaldifeat
|
import kaldifeat
|
||||||
import sentencepiece as spm
|
import sentencepiece as spm
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torchaudio
|
import torchaudio
|
||||||
from beam_search import beam_search, greedy_search, modified_beam_search
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
from conformer import Conformer
|
from conformer import Conformer
|
||||||
from decoder import Decoder
|
from decoder import Decoder
|
||||||
from joiner import Joiner
|
from joiner import Joiner
|
||||||
@ -97,12 +114,14 @@ def get_parser():
|
|||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--method",
|
"--decoding-method",
|
||||||
type=str,
|
type=str,
|
||||||
default="greedy_search",
|
default="greedy_search",
|
||||||
help="""Possible values are:
|
help="""Possible values are:
|
||||||
- greedy_search
|
- greedy_search
|
||||||
- beam_search
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -123,6 +142,32 @@ def get_parser():
|
|||||||
help="Used only when --method is beam_search and modified_beam_search ",
|
help="Used only when --method is beam_search and modified_beam_search ",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
@ -134,7 +179,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
type=int,
|
type=int,
|
||||||
default=3,
|
default=1,
|
||||||
help="""Maximum number of symbols per frame. Used only when
|
help="""Maximum number of symbols per frame. Used only when
|
||||||
--method is greedy_search.
|
--method is greedy_search.
|
||||||
""",
|
""",
|
||||||
@ -268,6 +313,11 @@ def main():
|
|||||||
model.eval()
|
model.eval()
|
||||||
model.device = device
|
model.device = device
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
else:
|
||||||
|
decoding_graph = None
|
||||||
|
|
||||||
logging.info("Constructing Fbank computer")
|
logging.info("Constructing Fbank computer")
|
||||||
opts = kaldifeat.FbankOptions()
|
opts = kaldifeat.FbankOptions()
|
||||||
opts.device = device
|
opts.device = device
|
||||||
@ -299,33 +349,63 @@ def main():
|
|||||||
x=features, x_lens=feature_lengths
|
x=features, x_lens=feature_lengths
|
||||||
)
|
)
|
||||||
|
|
||||||
num_waves = encoder_out.size(0)
|
|
||||||
hyps = []
|
hyps = []
|
||||||
msg = f"Using {params.method}"
|
msg = f"Using {params.decoding_method}"
|
||||||
if params.method == "beam_search":
|
|
||||||
msg += f" with beam size {params.beam_size}"
|
|
||||||
logging.info(msg)
|
logging.info(msg)
|
||||||
for i in range(num_waves):
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
hyp_tokens = fast_beam_search(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif (
|
||||||
|
params.decoding_method == "greedy_search"
|
||||||
|
and params.max_sym_per_frame == 1
|
||||||
|
):
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
else:
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
# fmt: off
|
# fmt: off
|
||||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
# fmt: on
|
# fmt: on
|
||||||
if params.method == "greedy_search":
|
if params.decoding_method == "greedy_search":
|
||||||
hyp = greedy_search(
|
hyp = greedy_search(
|
||||||
model=model,
|
model=model,
|
||||||
encoder_out=encoder_out_i,
|
encoder_out=encoder_out_i,
|
||||||
max_sym_per_frame=params.max_sym_per_frame,
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
)
|
)
|
||||||
elif params.method == "beam_search":
|
elif params.decoding_method == "beam_search":
|
||||||
hyp = beam_search(
|
hyp = beam_search(
|
||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
model=model,
|
||||||
)
|
encoder_out=encoder_out_i,
|
||||||
elif params.method == "modified_beam_search":
|
beam=params.beam_size,
|
||||||
hyp = modified_beam_search(
|
|
||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unsupported method: {params.method}")
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
hyps.append(sp.decode(hyp).split())
|
hyps.append(sp.decode(hyp).split())
|
||||||
|
|
||||||
s = "\n"
|
s = "\n"
|
||||||
|
Loading…
x
Reference in New Issue
Block a user