From 4a900c6cc785f7e85fa7e76ebf502c460190669a Mon Sep 17 00:00:00 2001 From: Yuekai Zhang Date: Mon, 16 Oct 2023 19:28:21 +0800 Subject: [PATCH 01/10] support far field based on yyf's branch --- .../ASR/local/compute_fbank_icmcasr.py | 220 ++ egs/icmcasr/ASR/local/compute_fbank_musan.py | 109 + .../ASR/local/compute_overlap_ratio.py | 94 + egs/icmcasr/ASR/prepare.sh | 166 + egs/icmcasr/ASR/run.sh | 3 + egs/icmcasr/ASR/shared | 1 + egs/icmcasr/ASR/zipformer/asr_datamodule.py | 475 +++ egs/icmcasr/ASR/zipformer/beam_search.py | 2942 +++++++++++++++++ egs/icmcasr/ASR/zipformer/ctc_decode.py | 847 +++++ egs/icmcasr/ASR/zipformer/decode.py | 1052 ++++++ egs/icmcasr/ASR/zipformer/decode_stream.py | 148 + egs/icmcasr/ASR/zipformer/decoder.py | 130 + .../ASR/zipformer/encoder_interface.py | 43 + egs/icmcasr/ASR/zipformer/joiner.py | 67 + egs/icmcasr/ASR/zipformer/model.py | 358 ++ egs/icmcasr/ASR/zipformer/optim.py | 1169 +++++++ egs/icmcasr/ASR/zipformer/scaling.py | 1907 +++++++++++ .../ASR/zipformer/streaming_beam_search.py | 295 ++ egs/icmcasr/ASR/zipformer/streaming_decode.py | 853 +++++ egs/icmcasr/ASR/zipformer/subsampling.py | 406 +++ egs/icmcasr/ASR/zipformer/train.py | 1389 ++++++++ egs/icmcasr/ASR/zipformer/zipformer.py | 2432 ++++++++++++++ 22 files changed, 15106 insertions(+) create mode 100755 egs/icmcasr/ASR/local/compute_fbank_icmcasr.py create mode 100755 egs/icmcasr/ASR/local/compute_fbank_musan.py create mode 100755 egs/icmcasr/ASR/local/compute_overlap_ratio.py create mode 100755 egs/icmcasr/ASR/prepare.sh create mode 100644 egs/icmcasr/ASR/run.sh create mode 120000 egs/icmcasr/ASR/shared create mode 100644 egs/icmcasr/ASR/zipformer/asr_datamodule.py create mode 100644 egs/icmcasr/ASR/zipformer/beam_search.py create mode 100755 egs/icmcasr/ASR/zipformer/ctc_decode.py create mode 100755 egs/icmcasr/ASR/zipformer/decode.py create mode 100644 egs/icmcasr/ASR/zipformer/decode_stream.py create mode 100644 egs/icmcasr/ASR/zipformer/decoder.py create mode 100644 egs/icmcasr/ASR/zipformer/encoder_interface.py create mode 100644 egs/icmcasr/ASR/zipformer/joiner.py create mode 100644 egs/icmcasr/ASR/zipformer/model.py create mode 100644 egs/icmcasr/ASR/zipformer/optim.py create mode 100644 egs/icmcasr/ASR/zipformer/scaling.py create mode 100644 egs/icmcasr/ASR/zipformer/streaming_beam_search.py create mode 100755 egs/icmcasr/ASR/zipformer/streaming_decode.py create mode 100644 egs/icmcasr/ASR/zipformer/subsampling.py create mode 100755 egs/icmcasr/ASR/zipformer/train.py create mode 100644 egs/icmcasr/ASR/zipformer/zipformer.py diff --git a/egs/icmcasr/ASR/local/compute_fbank_icmcasr.py b/egs/icmcasr/ASR/local/compute_fbank_icmcasr.py new file mode 100755 index 000000000..6e986cb4f --- /dev/null +++ b/egs/icmcasr/ASR/local/compute_fbank_icmcasr.py @@ -0,0 +1,220 @@ +#!/usr/bin/env python3 +# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This file computes fbank features of the icmcasr dataset. +It looks for manifests in the directory data/manifests. + +The generated fbank features are saved in data/fbank. +""" + +import argparse +import logging +import os +from pathlib import Path + +import torch +from lhotse import CutSet, LilcomChunkyWriter +from lhotse.features.kaldifeat import ( + KaldifeatFbank, + KaldifeatFbankConfig, + KaldifeatFrameOptions, + KaldifeatMelOptions, +) +from lhotse.recipes.utils import read_manifests_if_cached + +from icefall.utils import get_executor, str2bool + +# Torch's multithreaded behavior needs to be disabled or +# it wastes a lot of CPU and slow things down. +# Do this outside of main() in case it needs to take effect +# even when we are not invoking the main (e.g. when spawning subprocesses). +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +def compute_fbank_icmcasr(num_mel_bins: int = 80, perturb_speed: bool = False): + src_dir = Path("data/manifests") + output_dir = Path("data/fbank") + + manifests_ihm = read_manifests_if_cached( + dataset_parts=["train", "dev"], + output_dir=src_dir, + prefix="icmcasr-ihm", + suffix="jsonl.gz", + ) + manifests_sdm = read_manifests_if_cached( + dataset_parts=["train", "dev"], + output_dir=src_dir, + prefix="icmcasr-sdm", + suffix="jsonl.gz", + ) + # For GSS we already have cuts so we read them directly. + # manifests_gss = read_manifests_if_cached( + # dataset_parts=["train", "dev"], + # output_dir=src_dir, + # prefix="icmcasr-gss", + # suffix="jsonl.gz", + # ) + + sampling_rate = 16000 + + extractor = KaldifeatFbank( + KaldifeatFbankConfig( + frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate), + mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins), + device="cuda", + ) + ) + + def _extract_feats( + cuts: CutSet, storage_path: Path, manifest_path: Path, speed_perturb: bool + ) -> None: + if speed_perturb: + logging.info(f"Doing speed perturb") + cuts = cuts + cuts.perturb_speed(0.9) + cuts.perturb_speed(1.1) + _ = cuts.compute_and_store_features_batch( + extractor=extractor, + storage_path=storage_path, + manifest_path=manifest_path, + batch_duration=5000, + num_workers=8, + storage_type=LilcomChunkyWriter, + ) + + logging.info( + "Preparing training cuts: IHM + reverberated IHM + SDM + GSS (optional)" + ) + + logging.info("Processing train split IHM") + cuts_ihm = ( + CutSet.from_manifests(**manifests_ihm["train"]) + .trim_to_supervisions(keep_overlapping=False, keep_all_channels=False) + .modify_ids(lambda x: x + "-ihm") + ) + _extract_feats( + cuts_ihm, + output_dir / "feats_train_ihm", + src_dir / "cuts_train_ihm.jsonl.gz", + perturb_speed, + ) + + logging.info("Processing train split IHM + reverberated IHM") + cuts_ihm_rvb = cuts_ihm.reverb_rir() + _extract_feats( + cuts_ihm_rvb, + output_dir / "feats_train_ihm_rvb", + src_dir / "cuts_train_ihm_rvb.jsonl.gz", + perturb_speed, + ) + + logging.info("Processing train split SDM") + cuts_sdm = ( + CutSet.from_manifests(**manifests_sdm["train"]) + .trim_to_supervisions(keep_overlapping=False) + .modify_ids(lambda x: x + "-sdm") + ) + _extract_feats( + cuts_sdm, + output_dir / "feats_train_sdm", + src_dir / "cuts_train_sdm.jsonl.gz", + perturb_speed, + ) + + logging.info("Processing train split GSS") + # cuts_gss = ( + # CutSet.from_manifests(**manifests_gss["train"]) + # .trim_to_supervisions(keep_overlapping=False) + # .modify_ids(lambda x: x + "-gss") + # ) + # _extract_feats( + # cuts_gss, + # output_dir / "feats_train_gss", + # src_dir / "cuts_train_gss.jsonl.gz", + # perturb_speed, + # ) + + logging.info("Preparing test cuts: IHM, SDM, GSS (optional)") + for split in ["dev"]: + logging.info(f"Processing {split} IHM") + cuts_ihm = ( + CutSet.from_manifests(**manifests_ihm[split]) + .trim_to_supervisions(keep_overlapping=False, keep_all_channels=False) + .compute_and_store_features_batch( + extractor=extractor, + storage_path=output_dir / f"feats_{split}_ihm", + manifest_path=src_dir / f"cuts_{split}_ihm.jsonl.gz", + batch_duration=500, + num_workers=4, + storage_type=LilcomChunkyWriter, + ) + ) + logging.info(f"Processing {split} SDM") + cuts_sdm = ( + CutSet.from_manifests(**manifests_sdm[split]) + .trim_to_supervisions(keep_overlapping=False) + .compute_and_store_features_batch( + extractor=extractor, + storage_path=output_dir / f"feats_{split}_sdm", + manifest_path=src_dir / f"cuts_{split}_sdm.jsonl.gz", + batch_duration=500, + num_workers=4, + storage_type=LilcomChunkyWriter, + ) + ) + # logging.info(f"Processing {split} GSS") + # cuts_gss = ( + # CutSet.from_manifests(**manifests_gss[split]) + # .trim_to_supervisions(keep_overlapping=False) + # .compute_and_store_features_batch( + # extractor=extractor, + # storage_path=output_dir / f"feats_{split}_gss", + # manifest_path=src_dir / f"cuts_{split}_gss.jsonl.gz", + # batch_duration=500, + # num_workers=4, + # storage_type=LilcomChunkyWriter, + # ) + # ) + + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--num-mel-bins", + type=int, + default=80, + help="""The number of mel bins for Fbank""", + ) + parser.add_argument( + "--perturb-speed", + type=str2bool, + default=False, + help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.", + ) + return parser.parse_args() + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + + args = get_args() + compute_fbank_icmcasr( + num_mel_bins=args.num_mel_bins, perturb_speed=args.perturb_speed + ) diff --git a/egs/icmcasr/ASR/local/compute_fbank_musan.py b/egs/icmcasr/ASR/local/compute_fbank_musan.py new file mode 100755 index 000000000..62036467e --- /dev/null +++ b/egs/icmcasr/ASR/local/compute_fbank_musan.py @@ -0,0 +1,109 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This file computes fbank features of the musan dataset. +It looks for manifests in the directory data/manifests. + +The generated fbank features are saved in data/fbank. +""" + +import logging +import os +from pathlib import Path + +import torch +from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter, MonoCut, combine +from lhotse.recipes.utils import read_manifests_if_cached + +from icefall.utils import get_executor + +# Torch's multithreaded behavior needs to be disabled or +# it wastes a lot of CPU and slow things down. +# Do this outside of main() in case it needs to take effect +# even when we are not invoking the main (e.g. when spawning subprocesses). +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + + +def is_cut_long(c: MonoCut) -> bool: + return c.duration > 5 + + +def compute_fbank_musan(): + src_dir = Path("data/manifests") + output_dir = Path("data/fbank") + num_jobs = min(15, os.cpu_count()) + num_mel_bins = 80 + + dataset_parts = ( + "music", + "speech", + "noise", + ) + prefix = "musan" + suffix = "jsonl.gz" + manifests = read_manifests_if_cached( + dataset_parts=dataset_parts, + output_dir=src_dir, + prefix=prefix, + suffix=suffix, + ) + assert manifests is not None + + assert len(manifests) == len(dataset_parts), ( + len(manifests), + len(dataset_parts), + list(manifests.keys()), + dataset_parts, + ) + + musan_cuts_path = output_dir / "musan_cuts.jsonl.gz" + + if musan_cuts_path.is_file(): + logging.info(f"{musan_cuts_path} already exists - skipping") + return + + logging.info("Extracting features for Musan") + + extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) + + with get_executor() as ex: # Initialize the executor only once. + # create chunks of Musan with duration 5 - 10 seconds + musan_cuts = ( + CutSet.from_manifests( + recordings=combine(part["recordings"] for part in manifests.values()) + ) + .cut_into_windows(10.0) + .filter(is_cut_long) + .compute_and_store_features( + extractor=extractor, + storage_path=f"{output_dir}/musan_feats", + num_jobs=num_jobs if ex is None else 80, + executor=ex, + storage_type=LilcomChunkyWriter, + ) + ) + musan_cuts.to_file(musan_cuts_path) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + compute_fbank_musan() diff --git a/egs/icmcasr/ASR/local/compute_overlap_ratio.py b/egs/icmcasr/ASR/local/compute_overlap_ratio.py new file mode 100755 index 000000000..459348127 --- /dev/null +++ b/egs/icmcasr/ASR/local/compute_overlap_ratio.py @@ -0,0 +1,94 @@ +import argparse +import logging +import os +from pathlib import Path +from typing import Optional + +POSITIONS = ("DA01", "DA02", "DA03", "DA04") + + +def get_args(): + parser = argparse.ArgumentParser() + + parser.add_argument( + "--corpus-dir", + type=str, + help="""Corpus directory path to compute overlap ratio. If None, we will use all""", + ) + + return parser.parse_args() + + +def compute_overlap_ratio( + corpus_dir: Optional[str] = None, +): + corpus_dir = Path(corpus_dir) + sections = os.listdir(corpus_dir / "train") + infos = [] + for section in sorted(sections): + intervals = [] + overlap = 0 + duration = 0 + for position in POSITIONS: + text_path = ( + corpus_dir / "train" / section / (position + ".TextGrid") + ).resolve() + if not text_path.is_file(): + continue + + with open(text_path) as f: + datalines = f.read().splitlines() + + for dataline in datalines: + if "xmin =" in dataline: + start = float(dataline.split("=")[1].strip()) + elif "xmax =" in dataline: + end = float(dataline.split("=")[1].strip()) + elif "text" in dataline: + text = dataline.split('"')[1].strip() + if len(text) > 0: + intervals.append((start, end)) + duration += end - start + + intervals = sorted(intervals, key=lambda x: x[1]) + st = -1 + ed = -1 + for interval in intervals: + if ed < interval[0]: # No overlap + st = interval[0] + ed = interval[1] + else: + overlap += ed - max(st, interval[0]) + st = min(st, interval[0]) + ed = interval[1] + + infos.append((section, overlap, duration)) + + total_overlap = 0 + total_duration = 0 + for info in infos: + total_overlap += info[1] + total_duration += info[2] + logging.info( + f"section: {info[0]}\t overlap: {info[1]}\t duration: {info[2]}\t overlap ratio: {info[1] / info[2]}" + ) + + logging.info( + f"total duration: {total_duration}\t total overlap: {total_overlap}\t total overlap ratio: {total_overlap / total_duration}" + ) + + +def main(): + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO, filename="overlap_info.log") + args = get_args() + logging.info(vars(args)) + compute_overlap_ratio( + corpus_dir=args.corpus_dir, + ) + logging.info("Done") + + +if __name__ == "__main__": + main() diff --git a/egs/icmcasr/ASR/prepare.sh b/egs/icmcasr/ASR/prepare.sh new file mode 100755 index 000000000..0b8bbd676 --- /dev/null +++ b/egs/icmcasr/ASR/prepare.sh @@ -0,0 +1,166 @@ +#!/usr/bin/env bash + +# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 +export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python + +set -eou pipefail + +nj=15 +stage=3 +stop_stage=3 + +# We assume dl_dir (download dir) contains the following +# directories and files. If not, they will be downloaded +# by this script automatically. +# +# - $dl_dir/icmcasr +# You can find data_icmcasr, resource_icmcasr inside it. +# You can download them from https://www.openslr.org/33 +# +# - $dl_dir/musan +# This directory contains the following directories downloaded from +# http://www.openslr.org/17/ +# +# - music +# - noise +# - speech + +# ln -s /your/parent/path/to/ICMC-ASR $PWD/downloa +dl_dir=$PWD/download + +. shared/parse_options.sh || exit 1 + +# vocab size for sentence piece models. +# It will generate data/lang_bbpe_xxx, +# data/lang_bbpe_yyy if the array contains xxx, yyy +vocab_sizes=( + # 2000 + # 1000 + 500 +) + +# All files generated by this script are saved in "data". +# You can safely remove "data" and rerun this script to regenerate it. +mkdir -p data + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +log "dl_dir: $dl_dir" + + +if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then + log "Stage 1: Prepare icmcasr manifest" + # We assume that you have downloaded the icmcasr corpus + # to $dl_dir/icmcasr + if [ ! -f data/manifests/.icmcasr_manifests.done ]; then + mkdir -p data/manifests + for part in ihm sdm; do + lhotse prepare icmcasr --mic ${part} $dl_dir/ICMC-ASR data/manifests + done + touch data/manifests/.icmcasr_manifests.done + fi +fi + +if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then + log "Stage 2: Prepare musan manifest" + # We assume that you have downloaded the musan corpus + # to data/musan + if [ ! -f data/manifests/.musan_manifests.done ]; then + mkdir -p data/manifests + lhotse prepare musan $dl_dir/musan data/manifests + touch data/manifests/.musan_manifests.done + fi +fi + +if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then + log "Stage 3: Compute fbank for icmcasr" + if [ ! -f data/fbank/.icmcasr.done ]; then + mkdir -p data/fbank + ./local/compute_fbank_icmcasr.py --perturb-speed True + touch data/fbank/.icmcasr.done + fi +fi + +if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then + log "Stage 4: Compute fbank for musan" + if [ ! -f data/fbank/.msuan.done ]; then + mkdir -p data/fbank + ./local/compute_fbank_musan.py + touch data/fbank/.msuan.done + fi +fi + +lang_phone_dir=data/lang_phone +if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then + log "Stage 5: Prepare phone based lang" + mkdir -p $lang_phone_dir + + (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | + cat - $dl_dir/icmcasr/resource_icmcasr/lexicon.txt | + sort | uniq > $lang_phone_dir/lexicon.txt + + ./local/generate_unique_lexicon.py --lang-dir $lang_phone_dir + + if [ ! -f $lang_phone_dir/L_disambig.pt ]; then + ./local/prepare_lang.py --lang-dir $lang_phone_dir + fi +fi + +lang_char_dir=data/lang_char +if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then + log "Stage 6: Prepare char based lang" + mkdir -p $lang_char_dir + # We reuse words.txt from phone based lexicon + # so that the two can share G.pt later. + + # The transcripts in training set, generated in stage 5 + cp $lang_phone_dir/transcript_words.txt $lang_char_dir/transcript_words.txt + + cat $dl_dir/icmcasr/data_icmcasr/transcript/icmcasr_transcript_v0.8.txt | + cut -d " " -f 2- > $lang_char_dir/text + + (echo ' 0'; echo '!SIL 1'; echo ' 2'; echo ' 3';) \ + > $lang_char_dir/words.txt + + cat $lang_char_dir/text | sed 's/ /\n/g' | sort -u | sed '/^$/d' \ + | awk '{print $1" "NR+3}' >> $lang_char_dir/words.txt + + num_lines=$(< $lang_char_dir/words.txt wc -l) + (echo "#0 $num_lines"; echo " $(($num_lines + 1))"; echo " $(($num_lines + 2))";) \ + >> $lang_char_dir/words.txt + + if [ ! -f $lang_char_dir/L_disambig.pt ]; then + ./local/prepare_char.py --lang-dir $lang_char_dir + fi + + if [ ! -f $lang_char_dir/HLG.fst ]; then + ./local/prepare_lang_fst.py --lang-dir $lang_phone_dir --ngram-G ./data/lm/G_3_gram.fst.txt + fi +fi + +if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then + log "Stage 7: Prepare Byte BPE based lang" + + for vocab_size in ${vocab_sizes[@]}; do + lang_dir=data/lang_bbpe_${vocab_size} + mkdir -p $lang_dir + + cp $lang_char_dir/words.txt $lang_dir + cp $lang_char_dir/text $lang_dir + + if [ ! -f $lang_dir/bbpe.model ]; then + ./local/train_bbpe_model.py \ + --lang-dir $lang_dir \ + --vocab-size $vocab_size \ + --transcript $lang_dir/text + fi + + if [ ! -f $lang_dir/L_disambig.pt ]; then + ./local/prepare_lang_bbpe.py --lang-dir $lang_dir + fi + done +fi diff --git a/egs/icmcasr/ASR/run.sh b/egs/icmcasr/ASR/run.sh new file mode 100644 index 000000000..0a41ff26a --- /dev/null +++ b/egs/icmcasr/ASR/run.sh @@ -0,0 +1,3 @@ +export CUDA_VISIBLE_DEVICES="1" +export PYTHONPATH=$PYTHONPATH:$(pwd)/../../../ +bash prepare.sh diff --git a/egs/icmcasr/ASR/shared b/egs/icmcasr/ASR/shared new file mode 120000 index 000000000..4cbd91a7e --- /dev/null +++ b/egs/icmcasr/ASR/shared @@ -0,0 +1 @@ +../../../icefall/shared \ No newline at end of file diff --git a/egs/icmcasr/ASR/zipformer/asr_datamodule.py b/egs/icmcasr/ASR/zipformer/asr_datamodule.py new file mode 100644 index 000000000..20df469da --- /dev/null +++ b/egs/icmcasr/ASR/zipformer/asr_datamodule.py @@ -0,0 +1,475 @@ +# Copyright 2021 Piotr Żelasko +# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import inspect +import logging +from functools import lru_cache +from pathlib import Path +from typing import Any, Dict, Optional + +import torch +from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy +from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures + CutConcatenate, + CutMix, + DynamicBucketingSampler, + K2SpeechRecognitionDataset, + PrecomputedFeatures, + SimpleCutSampler, + SpecAugment, +) +from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples + AudioSamples, + OnTheFlyFeatures, +) +from lhotse.utils import fix_random_seed +from torch.utils.data import DataLoader + +from icefall.utils import str2bool + + +class _SeedWorkers: + def __init__(self, seed: int): + self.seed = seed + + def __call__(self, worker_id: int): + fix_random_seed(self.seed + worker_id) + + +class LibriSpeechAsrDataModule: + """ + DataModule for k2 ASR experiments. + It assumes there is always one train and valid dataloader, + but there can be multiple test dataloaders (e.g. LibriSpeech test-clean + and test-other). + + It contains all the common data pipeline modules used in ASR + experiments, e.g.: + - dynamic batch size, + - bucketing samplers, + - cut concatenation, + - augmentation, + - on-the-fly feature extraction + + This class should be derived for specific corpora used in ASR tasks. + """ + + def __init__(self, args: argparse.Namespace): + self.args = args + + @classmethod + def add_arguments(cls, parser: argparse.ArgumentParser): + group = parser.add_argument_group( + title="ASR data related options", + description="These options are used for the preparation of " + "PyTorch DataLoaders from Lhotse CutSet's -- they control the " + "effective batch sizes, sampling strategies, applied data " + "augmentations, etc.", + ) + group.add_argument( + "--full-libri", + type=str2bool, + default=True, + help="""Used only when --mini-libri is False.When enabled, + use 960h LibriSpeech. Otherwise, use 100h subset.""", + ) + group.add_argument( + "--mini-libri", + type=str2bool, + default=False, + help="True for mini librispeech", + ) + + group.add_argument( + "--manifest-dir", + type=Path, + default=Path("data/fbank"), + help="Path to directory with train/valid/test cuts.", + ) + group.add_argument( + "--max-duration", + type=int, + default=200.0, + help="Maximum pooled recordings duration (seconds) in a " + "single batch. You can reduce it if it causes CUDA OOM.", + ) + group.add_argument( + "--bucketing-sampler", + type=str2bool, + default=True, + help="When enabled, the batches will come from buckets of " + "similar duration (saves padding frames).", + ) + group.add_argument( + "--num-buckets", + type=int, + default=30, + help="The number of buckets for the DynamicBucketingSampler" + "(you might want to increase it for larger datasets).", + ) + group.add_argument( + "--concatenate-cuts", + type=str2bool, + default=False, + help="When enabled, utterances (cuts) will be concatenated " + "to minimize the amount of padding.", + ) + group.add_argument( + "--duration-factor", + type=float, + default=1.0, + help="Determines the maximum duration of a concatenated cut " + "relative to the duration of the longest cut in a batch.", + ) + group.add_argument( + "--gap", + type=float, + default=1.0, + help="The amount of padding (in seconds) inserted between " + "concatenated cuts. This padding is filled with noise when " + "noise augmentation is used.", + ) + group.add_argument( + "--on-the-fly-feats", + type=str2bool, + default=False, + help="When enabled, use on-the-fly cut mixing and feature " + "extraction. Will drop existing precomputed feature manifests " + "if available.", + ) + group.add_argument( + "--shuffle", + type=str2bool, + default=True, + help="When enabled (=default), the examples will be " + "shuffled for each epoch.", + ) + group.add_argument( + "--drop-last", + type=str2bool, + default=True, + help="Whether to drop last batch. Used by sampler.", + ) + group.add_argument( + "--return-cuts", + type=str2bool, + default=True, + help="When enabled, each batch will have the " + "field: batch['supervisions']['cut'] with the cuts that " + "were used to construct it.", + ) + + group.add_argument( + "--num-workers", + type=int, + default=2, + help="The number of training dataloader workers that " + "collect the batches.", + ) + + group.add_argument( + "--enable-spec-aug", + type=str2bool, + default=True, + help="When enabled, use SpecAugment for training dataset.", + ) + + group.add_argument( + "--spec-aug-time-warp-factor", + type=int, + default=80, + help="Used only when --enable-spec-aug is True. " + "It specifies the factor for time warping in SpecAugment. " + "Larger values mean more warping. " + "A value less than 1 means to disable time warp.", + ) + + group.add_argument( + "--enable-musan", + type=str2bool, + default=True, + help="When enabled, select noise from MUSAN and mix it" + "with training dataset. ", + ) + + group.add_argument( + "--input-strategy", + type=str, + default="PrecomputedFeatures", + help="AudioSamples or PrecomputedFeatures", + ) + + def train_dataloaders( + self, + cuts_train: CutSet, + sampler_state_dict: Optional[Dict[str, Any]] = None, + ) -> DataLoader: + """ + Args: + cuts_train: + CutSet for training. + sampler_state_dict: + The state dict for the training sampler. + """ + transforms = [] + if self.args.enable_musan: + logging.info("Enable MUSAN") + logging.info("About to get Musan cuts") + cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz") + transforms.append( + CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True) + ) + else: + logging.info("Disable MUSAN") + + if self.args.concatenate_cuts: + logging.info( + f"Using cut concatenation with duration factor " + f"{self.args.duration_factor} and gap {self.args.gap}." + ) + # Cut concatenation should be the first transform in the list, + # so that if we e.g. mix noise in, it will fill the gaps between + # different utterances. + transforms = [ + CutConcatenate( + duration_factor=self.args.duration_factor, gap=self.args.gap + ) + ] + transforms + + input_transforms = [] + if self.args.enable_spec_aug: + logging.info("Enable SpecAugment") + logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}") + # Set the value of num_frame_masks according to Lhotse's version. + # In different Lhotse's versions, the default of num_frame_masks is + # different. + num_frame_masks = 10 + num_frame_masks_parameter = inspect.signature( + SpecAugment.__init__ + ).parameters["num_frame_masks"] + if num_frame_masks_parameter.default == 1: + num_frame_masks = 2 + logging.info(f"Num frame mask: {num_frame_masks}") + input_transforms.append( + SpecAugment( + time_warp_factor=self.args.spec_aug_time_warp_factor, + num_frame_masks=num_frame_masks, + features_mask_size=27, + num_feature_masks=2, + frames_mask_size=100, + ) + ) + else: + logging.info("Disable SpecAugment") + + logging.info("About to create train dataset") + train = K2SpeechRecognitionDataset( + input_strategy=eval(self.args.input_strategy)(), + cut_transforms=transforms, + input_transforms=input_transforms, + return_cuts=self.args.return_cuts, + ) + + if self.args.on_the_fly_feats: + # NOTE: the PerturbSpeed transform should be added only if we + # remove it from data prep stage. + # Add on-the-fly speed perturbation; since originally it would + # have increased epoch size by 3, we will apply prob 2/3 and use + # 3x more epochs. + # Speed perturbation probably should come first before + # concatenation, but in principle the transforms order doesn't have + # to be strict (e.g. could be randomized) + # transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa + # Drop feats to be on the safe side. + train = K2SpeechRecognitionDataset( + cut_transforms=transforms, + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), + input_transforms=input_transforms, + return_cuts=self.args.return_cuts, + ) + + if self.args.bucketing_sampler: + logging.info("Using DynamicBucketingSampler.") + train_sampler = DynamicBucketingSampler( + cuts_train, + max_duration=self.args.max_duration, + shuffle=self.args.shuffle, + num_buckets=self.args.num_buckets, + drop_last=self.args.drop_last, + ) + else: + logging.info("Using SimpleCutSampler.") + train_sampler = SimpleCutSampler( + cuts_train, + max_duration=self.args.max_duration, + shuffle=self.args.shuffle, + ) + logging.info("About to create train dataloader") + + if sampler_state_dict is not None: + logging.info("Loading sampler state dict") + train_sampler.load_state_dict(sampler_state_dict) + + # 'seed' is derived from the current random state, which will have + # previously been set in the main process. + seed = torch.randint(0, 100000, ()).item() + worker_init_fn = _SeedWorkers(seed) + + train_dl = DataLoader( + train, + sampler=train_sampler, + batch_size=None, + num_workers=self.args.num_workers, + persistent_workers=False, + worker_init_fn=worker_init_fn, + ) + + return train_dl + + def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader: + transforms = [] + if self.args.concatenate_cuts: + transforms = [ + CutConcatenate( + duration_factor=self.args.duration_factor, gap=self.args.gap + ) + ] + transforms + + logging.info("About to create dev dataset") + if self.args.on_the_fly_feats: + validate = K2SpeechRecognitionDataset( + cut_transforms=transforms, + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), + return_cuts=self.args.return_cuts, + ) + else: + validate = K2SpeechRecognitionDataset( + cut_transforms=transforms, + return_cuts=self.args.return_cuts, + ) + valid_sampler = DynamicBucketingSampler( + cuts_valid, + max_duration=self.args.max_duration, + shuffle=False, + ) + logging.info("About to create dev dataloader") + valid_dl = DataLoader( + validate, + sampler=valid_sampler, + batch_size=None, + num_workers=2, + persistent_workers=False, + ) + + return valid_dl + + def test_dataloaders(self, cuts: CutSet) -> DataLoader: + logging.debug("About to create test dataset") + test = K2SpeechRecognitionDataset( + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))) + if self.args.on_the_fly_feats + else eval(self.args.input_strategy)(), + return_cuts=self.args.return_cuts, + ) + sampler = DynamicBucketingSampler( + cuts, + max_duration=self.args.max_duration, + shuffle=False, + ) + logging.debug("About to create test dataloader") + test_dl = DataLoader( + test, + batch_size=None, + sampler=sampler, + num_workers=self.args.num_workers, + ) + return test_dl + + @lru_cache() + def train_clean_5_cuts(self) -> CutSet: + logging.info("mini_librispeech: About to get train-clean-5 cuts") + return load_manifest_lazy( + self.args.manifest_dir / "librispeech_cuts_train-clean-5.jsonl.gz" + ) + + @lru_cache() + def train_clean_100_cuts(self) -> CutSet: + logging.info("About to get train-clean-100 cuts") + return load_manifest_lazy( + self.args.manifest_dir / "librispeech_cuts_train-clean-100.jsonl.gz" + ) + + @lru_cache() + def train_clean_360_cuts(self) -> CutSet: + logging.info("About to get train-clean-360 cuts") + return load_manifest_lazy( + self.args.manifest_dir / "librispeech_cuts_train-clean-360.jsonl.gz" + ) + + @lru_cache() + def train_other_500_cuts(self) -> CutSet: + logging.info("About to get train-other-500 cuts") + return load_manifest_lazy( + self.args.manifest_dir / "librispeech_cuts_train-other-500.jsonl.gz" + ) + + @lru_cache() + def train_all_shuf_cuts(self) -> CutSet: + logging.info( + "About to get the shuffled train-clean-100, \ + train-clean-360 and train-other-500 cuts" + ) + return load_manifest_lazy( + self.args.manifest_dir / "librispeech_cuts_train-all-shuf.jsonl.gz" + ) + + @lru_cache() + def dev_clean_2_cuts(self) -> CutSet: + logging.info("mini_librispeech: About to get dev-clean-2 cuts") + return load_manifest_lazy( + self.args.manifest_dir / "librispeech_cuts_dev-clean-2.jsonl.gz" + ) + + @lru_cache() + def dev_clean_cuts(self) -> CutSet: + logging.info("About to get dev-clean cuts") + return load_manifest_lazy( + self.args.manifest_dir / "librispeech_cuts_dev-clean.jsonl.gz" + ) + + @lru_cache() + def dev_other_cuts(self) -> CutSet: + logging.info("About to get dev-other cuts") + return load_manifest_lazy( + self.args.manifest_dir / "librispeech_cuts_dev-other.jsonl.gz" + ) + + @lru_cache() + def test_clean_cuts(self) -> CutSet: + logging.info("About to get test-clean cuts") + return load_manifest_lazy( + self.args.manifest_dir / "librispeech_cuts_test-clean.jsonl.gz" + ) + + @lru_cache() + def test_other_cuts(self) -> CutSet: + logging.info("About to get test-other cuts") + return load_manifest_lazy( + self.args.manifest_dir / "librispeech_cuts_test-other.jsonl.gz" + ) diff --git a/egs/icmcasr/ASR/zipformer/beam_search.py b/egs/icmcasr/ASR/zipformer/beam_search.py new file mode 100644 index 000000000..7fcd242fc --- /dev/null +++ b/egs/icmcasr/ASR/zipformer/beam_search.py @@ -0,0 +1,2942 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang +# Xiaoyu Yang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import warnings +from dataclasses import dataclass, field +from typing import Dict, List, Optional, Tuple, Union + +import k2 +import sentencepiece as spm +import torch +from torch import nn + +from icefall import ContextGraph, ContextState, NgramLm, NgramLmStateCost +from icefall.decode import Nbest, one_best_decoding +from icefall.lm_wrapper import LmScorer +from icefall.rnn_lm.model import RnnLmModel +from icefall.transformer_lm.model import TransformerLM +from icefall.utils import ( + DecodingResults, + add_eos, + add_sos, + get_texts, + get_texts_with_timestamp, +) + + +def fast_beam_search_one_best( + model: nn.Module, + decoding_graph: k2.Fsa, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + beam: float, + max_states: int, + max_contexts: int, + temperature: float = 1.0, + ilme_scale: float = 0.0, + blank_penalty: float = 0.0, + return_timestamps: bool = False, + allow_partial: bool = False, +) -> Union[List[List[int]], DecodingResults]: + """It limits the maximum number of symbols per frame to 1. + + A lattice is first obtained using fast beam search, and then + the shortest path within the lattice is used as the final output. + + Args: + model: + An instance of `Transducer`. + decoding_graph: + Decoding graph used for decoding, may be a TrivialGraph or a LG. + encoder_out: + A tensor of shape (N, T, C) from the encoder. + encoder_out_lens: + A tensor of shape (N,) containing the number of frames in `encoder_out` + before padding. + beam: + Beam value, similar to the beam used in Kaldi.. + max_states: + Max states per stream per frame. + max_contexts: + Max contexts pre stream per frame. + temperature: + Softmax temperature. + return_timestamps: + Whether to return timestamps. + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + lattice = fast_beam_search( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=beam, + max_states=max_states, + max_contexts=max_contexts, + temperature=temperature, + ilme_scale=ilme_scale, + allow_partial=allow_partial, + blank_penalty=blank_penalty, + ) + + best_path = one_best_decoding(lattice) + + if not return_timestamps: + return get_texts(best_path) + else: + return get_texts_with_timestamp(best_path) + + +def fast_beam_search_nbest_LG( + model: nn.Module, + decoding_graph: k2.Fsa, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + beam: float, + max_states: int, + max_contexts: int, + num_paths: int, + nbest_scale: float = 0.5, + use_double_scores: bool = True, + temperature: float = 1.0, + blank_penalty: float = 0.0, + ilme_scale: float = 0.0, + return_timestamps: bool = False, + allow_partial: bool = False, +) -> Union[List[List[int]], DecodingResults]: + """It limits the maximum number of symbols per frame to 1. + + The process to get the results is: + - (1) Use fast beam search to get a lattice + - (2) Select `num_paths` paths from the lattice using k2.random_paths() + - (3) Unique the selected paths + - (4) Intersect the selected paths with the lattice and compute the + shortest path from the intersection result + - (5) The path with the largest score is used as the decoding output. + + Args: + model: + An instance of `Transducer`. + decoding_graph: + Decoding graph used for decoding, may be a TrivialGraph or a LG. + encoder_out: + A tensor of shape (N, T, C) from the encoder. + encoder_out_lens: + A tensor of shape (N,) containing the number of frames in `encoder_out` + before padding. + beam: + Beam value, similar to the beam used in Kaldi.. + max_states: + Max states per stream per frame. + max_contexts: + Max contexts pre stream per frame. + num_paths: + Number of paths to extract from the decoded lattice. + nbest_scale: + It's the scale applied to the lattice.scores. A smaller value + yields more unique paths. + use_double_scores: + True to use double precision for computation. False to use + single precision. + temperature: + Softmax temperature. + return_timestamps: + Whether to return timestamps. + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + lattice = fast_beam_search( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=beam, + max_states=max_states, + max_contexts=max_contexts, + temperature=temperature, + allow_partial=allow_partial, + blank_penalty=blank_penalty, + ilme_scale=ilme_scale, + ) + + nbest = Nbest.from_lattice( + lattice=lattice, + num_paths=num_paths, + use_double_scores=use_double_scores, + nbest_scale=nbest_scale, + ) + + # The following code is modified from nbest.intersect() + word_fsa = k2.invert(nbest.fsa) + if hasattr(lattice, "aux_labels"): + # delete token IDs as it is not needed + del word_fsa.aux_labels + word_fsa.scores.zero_() + word_fsa_with_epsilon_loops = k2.linear_fsa_with_self_loops(word_fsa) + path_to_utt_map = nbest.shape.row_ids(1) + + if hasattr(lattice, "aux_labels"): + # lattice has token IDs as labels and word IDs as aux_labels. + # inv_lattice has word IDs as labels and token IDs as aux_labels + inv_lattice = k2.invert(lattice) + inv_lattice = k2.arc_sort(inv_lattice) + else: + inv_lattice = k2.arc_sort(lattice) + + if inv_lattice.shape[0] == 1: + path_lattice = k2.intersect_device( + inv_lattice, + word_fsa_with_epsilon_loops, + b_to_a_map=torch.zeros_like(path_to_utt_map), + sorted_match_a=True, + ) + else: + path_lattice = k2.intersect_device( + inv_lattice, + word_fsa_with_epsilon_loops, + b_to_a_map=path_to_utt_map, + sorted_match_a=True, + ) + + # path_lattice has word IDs as labels and token IDs as aux_labels + path_lattice = k2.top_sort(k2.connect(path_lattice)) + tot_scores = path_lattice.get_tot_scores( + use_double_scores=use_double_scores, + log_semiring=True, # Note: we always use True + ) + # See https://github.com/k2-fsa/icefall/pull/420 for why + # we always use log_semiring=True + + ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores) + best_hyp_indexes = ragged_tot_scores.argmax() + best_path = k2.index_fsa(nbest.fsa, best_hyp_indexes) + + if not return_timestamps: + return get_texts(best_path) + else: + return get_texts_with_timestamp(best_path) + + +def fast_beam_search_nbest( + model: nn.Module, + decoding_graph: k2.Fsa, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + beam: float, + max_states: int, + max_contexts: int, + num_paths: int, + nbest_scale: float = 0.5, + use_double_scores: bool = True, + temperature: float = 1.0, + blank_penalty: float = 0.0, + return_timestamps: bool = False, + allow_partial: bool = False, +) -> Union[List[List[int]], DecodingResults]: + """It limits the maximum number of symbols per frame to 1. + + The process to get the results is: + - (1) Use fast beam search to get a lattice + - (2) Select `num_paths` paths from the lattice using k2.random_paths() + - (3) Unique the selected paths + - (4) Intersect the selected paths with the lattice and compute the + shortest path from the intersection result + - (5) The path with the largest score is used as the decoding output. + + Args: + model: + An instance of `Transducer`. + decoding_graph: + Decoding graph used for decoding, may be a TrivialGraph or a LG. + encoder_out: + A tensor of shape (N, T, C) from the encoder. + encoder_out_lens: + A tensor of shape (N,) containing the number of frames in `encoder_out` + before padding. + beam: + Beam value, similar to the beam used in Kaldi.. + max_states: + Max states per stream per frame. + max_contexts: + Max contexts pre stream per frame. + num_paths: + Number of paths to extract from the decoded lattice. + nbest_scale: + It's the scale applied to the lattice.scores. A smaller value + yields more unique paths. + use_double_scores: + True to use double precision for computation. False to use + single precision. + temperature: + Softmax temperature. + return_timestamps: + Whether to return timestamps. + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + lattice = fast_beam_search( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=beam, + max_states=max_states, + max_contexts=max_contexts, + blank_penalty=blank_penalty, + temperature=temperature, + allow_partial=allow_partial, + ) + + nbest = Nbest.from_lattice( + lattice=lattice, + num_paths=num_paths, + use_double_scores=use_double_scores, + nbest_scale=nbest_scale, + ) + + # at this point, nbest.fsa.scores are all zeros. + + nbest = nbest.intersect(lattice) + # Now nbest.fsa.scores contains acoustic scores + + max_indexes = nbest.tot_scores().argmax() + + best_path = k2.index_fsa(nbest.fsa, max_indexes) + + if not return_timestamps: + return get_texts(best_path) + else: + return get_texts_with_timestamp(best_path) + + +def fast_beam_search_nbest_oracle( + model: nn.Module, + decoding_graph: k2.Fsa, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + beam: float, + max_states: int, + max_contexts: int, + num_paths: int, + ref_texts: List[List[int]], + use_double_scores: bool = True, + nbest_scale: float = 0.5, + temperature: float = 1.0, + blank_penalty: float = 0.0, + return_timestamps: bool = False, + allow_partial: bool = False, +) -> Union[List[List[int]], DecodingResults]: + """It limits the maximum number of symbols per frame to 1. + + A lattice is first obtained using fast beam search, and then + we select `num_paths` linear paths from the lattice. The path + that has the minimum edit distance with the given reference transcript + is used as the output. + + This is the best result we can achieve for any nbest based rescoring + methods. + + Args: + model: + An instance of `Transducer`. + decoding_graph: + Decoding graph used for decoding, may be a TrivialGraph or a LG. + encoder_out: + A tensor of shape (N, T, C) from the encoder. + encoder_out_lens: + A tensor of shape (N,) containing the number of frames in `encoder_out` + before padding. + beam: + Beam value, similar to the beam used in Kaldi.. + max_states: + Max states per stream per frame. + max_contexts: + Max contexts pre stream per frame. + num_paths: + Number of paths to extract from the decoded lattice. + ref_texts: + A list-of-list of integers containing the reference transcripts. + If the decoding_graph is a trivial_graph, the integer ID is the + BPE token ID. + use_double_scores: + True to use double precision for computation. False to use + single precision. + nbest_scale: + It's the scale applied to the lattice.scores. A smaller value + yields more unique paths. + temperature: + Softmax temperature. + return_timestamps: + Whether to return timestamps. + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + lattice = fast_beam_search( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=beam, + max_states=max_states, + max_contexts=max_contexts, + temperature=temperature, + allow_partial=allow_partial, + blank_penalty=blank_penalty, + ) + + nbest = Nbest.from_lattice( + lattice=lattice, + num_paths=num_paths, + use_double_scores=use_double_scores, + nbest_scale=nbest_scale, + ) + + hyps = nbest.build_levenshtein_graphs() + refs = k2.levenshtein_graph(ref_texts, device=hyps.device) + + levenshtein_alignment = k2.levenshtein_alignment( + refs=refs, + hyps=hyps, + hyp_to_ref_map=nbest.shape.row_ids(1), + sorted_match_ref=True, + ) + + tot_scores = levenshtein_alignment.get_tot_scores( + use_double_scores=False, log_semiring=False + ) + ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores) + + max_indexes = ragged_tot_scores.argmax() + + best_path = k2.index_fsa(nbest.fsa, max_indexes) + + if not return_timestamps: + return get_texts(best_path) + else: + return get_texts_with_timestamp(best_path) + + +def fast_beam_search( + model: nn.Module, + decoding_graph: k2.Fsa, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + beam: float, + max_states: int, + max_contexts: int, + temperature: float = 1.0, + subtract_ilme: bool = False, + ilme_scale: float = 0.1, + allow_partial: bool = False, + blank_penalty: float = 0.0, +) -> k2.Fsa: + """It limits the maximum number of symbols per frame to 1. + + Args: + model: + An instance of `Transducer`. + decoding_graph: + Decoding graph used for decoding, may be a TrivialGraph or a LG. + encoder_out: + A tensor of shape (N, T, C) from the encoder. + encoder_out_lens: + A tensor of shape (N,) containing the number of frames in `encoder_out` + before padding. + beam: + Beam value, similar to the beam used in Kaldi.. + max_states: + Max states per stream per frame. + max_contexts: + Max contexts pre stream per frame. + temperature: + Softmax temperature. + Returns: + Return an FsaVec with axes [utt][state][arc] containing the decoded + lattice. Note: When the input graph is a TrivialGraph, the returned + lattice is actually an acceptor. + """ + assert encoder_out.ndim == 3 + + context_size = model.decoder.context_size + vocab_size = model.decoder.vocab_size + + B, T, C = encoder_out.shape + + config = k2.RnntDecodingConfig( + vocab_size=vocab_size, + decoder_history_len=context_size, + beam=beam, + max_contexts=max_contexts, + max_states=max_states, + ) + individual_streams = [] + for i in range(B): + individual_streams.append(k2.RnntDecodingStream(decoding_graph)) + decoding_streams = k2.RnntDecodingStreams(individual_streams, config) + + encoder_out = model.joiner.encoder_proj(encoder_out) + + for t in range(T): + # shape is a RaggedShape of shape (B, context) + # contexts is a Tensor of shape (shape.NumElements(), context_size) + shape, contexts = decoding_streams.get_contexts() + # `nn.Embedding()` in torch below v1.7.1 supports only torch.int64 + contexts = contexts.to(torch.int64) + # decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim) + decoder_out = model.decoder(contexts, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + # current_encoder_out is of shape + # (shape.NumElements(), 1, joiner_dim) + # fmt: off + current_encoder_out = torch.index_select( + encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64) + ) + # fmt: on + logits = model.joiner( + current_encoder_out.unsqueeze(2), + decoder_out.unsqueeze(1), + project_input=False, + ) + logits = logits.squeeze(1).squeeze(1) + + if blank_penalty != 0: + logits[:, 0] -= blank_penalty + + log_probs = (logits / temperature).log_softmax(dim=-1) + + if ilme_scale != 0: + ilme_logits = model.joiner( + torch.zeros_like( + current_encoder_out, device=current_encoder_out.device + ).unsqueeze(2), + decoder_out.unsqueeze(1), + project_input=False, + ) + ilme_logits = ilme_logits.squeeze(1).squeeze(1) + if blank_penalty != 0: + ilme_logits[:, 0] -= blank_penalty + ilme_log_probs = (ilme_logits / temperature).log_softmax(dim=-1) + log_probs -= ilme_scale * ilme_log_probs + + decoding_streams.advance(log_probs) + decoding_streams.terminate_and_flush_to_streams() + lattice = decoding_streams.format_output( + encoder_out_lens.tolist(), allow_partial=allow_partial + ) + + return lattice + + +def greedy_search( + model: nn.Module, + encoder_out: torch.Tensor, + max_sym_per_frame: int, + blank_penalty: float = 0.0, + return_timestamps: bool = False, +) -> Union[List[int], DecodingResults]: + """Greedy search for a single utterance. + Args: + model: + An instance of `Transducer`. + encoder_out: + A tensor of shape (N, T, C) from the encoder. Support only N==1 for now. + max_sym_per_frame: + Maximum number of symbols per frame. If it is set to 0, the WER + would be 100%. + return_timestamps: + Whether to return timestamps. + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + assert encoder_out.ndim == 3 + + # support only batch_size == 1 for now + assert encoder_out.size(0) == 1, encoder_out.size(0) + + blank_id = model.decoder.blank_id + context_size = model.decoder.context_size + unk_id = getattr(model, "unk_id", blank_id) + + device = next(model.parameters()).device + + decoder_input = torch.tensor( + [-1] * (context_size - 1) + [blank_id], device=device, dtype=torch.int64 + ).reshape(1, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + + encoder_out = model.joiner.encoder_proj(encoder_out) + + T = encoder_out.size(1) + t = 0 + hyp = [blank_id] * context_size + + # timestamp[i] is the frame index after subsampling + # on which hyp[i] is decoded + timestamp = [] + + # Maximum symbols per utterance. + max_sym_per_utt = 1000 + + # symbols per frame + sym_per_frame = 0 + + # symbols per utterance decoded so far + sym_per_utt = 0 + + while t < T and sym_per_utt < max_sym_per_utt: + if sym_per_frame >= max_sym_per_frame: + sym_per_frame = 0 + t += 1 + continue + + # fmt: off + current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2) + # fmt: on + logits = model.joiner( + current_encoder_out, decoder_out.unsqueeze(1), project_input=False + ) + # logits is (1, 1, 1, vocab_size) + + if blank_penalty != 0: + logits[:, :, :, 0] -= blank_penalty + + y = logits.argmax().item() + if y not in (blank_id, unk_id): + hyp.append(y) + timestamp.append(t) + decoder_input = torch.tensor([hyp[-context_size:]], device=device).reshape( + 1, context_size + ) + + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + + sym_per_utt += 1 + sym_per_frame += 1 + else: + sym_per_frame = 0 + t += 1 + hyp = hyp[context_size:] # remove blanks + + if not return_timestamps: + return hyp + else: + return DecodingResults( + hyps=[hyp], + timestamps=[timestamp], + ) + + +def greedy_search_batch( + model: nn.Module, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + blank_penalty: float = 0, + return_timestamps: bool = False, +) -> Union[List[List[int]], DecodingResults]: + """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. + Args: + model: + The transducer model. + encoder_out: + Output from the encoder. Its shape is (N, T, C), where N >= 1. + encoder_out_lens: + A 1-D tensor of shape (N,), containing number of valid frames in + encoder_out before padding. + return_timestamps: + Whether to return timestamps. + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + assert encoder_out.ndim == 3 + assert encoder_out.size(0) >= 1, encoder_out.size(0) + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + device = next(model.parameters()).device + + blank_id = model.decoder.blank_id + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + hyps = [[-1] * (context_size - 1) + [blank_id] for _ in range(N)] + + # timestamp[n][i] is the frame index after subsampling + # on which hyp[n][i] is decoded + timestamps = [[] for _ in range(N)] + # scores[n][i] is the logits on which hyp[n][i] is decoded + scores = [[] for _ in range(N)] + + decoder_input = torch.tensor( + hyps, + device=device, + dtype=torch.int64, + ) # (N, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + # decoder_out: (N, 1, decoder_out_dim) + + encoder_out = model.joiner.encoder_proj(packed_encoder_out.data) + + offset = 0 + for t, batch_size in enumerate(batch_size_list): + start = offset + end = offset + batch_size + current_encoder_out = encoder_out.data[start:end] + current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim) + offset = end + + decoder_out = decoder_out[:batch_size] + + logits = model.joiner( + current_encoder_out, decoder_out.unsqueeze(1), project_input=False + ) + # logits'shape (batch_size, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (batch_size, vocab_size) + assert logits.ndim == 2, logits.shape + + if blank_penalty != 0: + logits[:, 0] -= blank_penalty + + y = logits.argmax(dim=1).tolist() + emitted = False + for i, v in enumerate(y): + if v not in (blank_id, unk_id): + hyps[i].append(v) + timestamps[i].append(t) + scores[i].append(logits[i, v].item()) + emitted = True + if emitted: + # update decoder output + decoder_input = [h[-context_size:] for h in hyps[:batch_size]] + decoder_input = torch.tensor( + decoder_input, + device=device, + dtype=torch.int64, + ) + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + + sorted_ans = [h[context_size:] for h in hyps] + ans = [] + ans_timestamps = [] + ans_scores = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + ans_timestamps.append(timestamps[unsorted_indices[i]]) + ans_scores.append(scores[unsorted_indices[i]]) + + if not return_timestamps: + return ans + else: + return DecodingResults( + hyps=ans, + timestamps=ans_timestamps, + scores=ans_scores, + ) + + +@dataclass +class Hypothesis: + # The predicted tokens so far. + # Newly predicted tokens are appended to `ys`. + ys: List[int] + + # The log prob of ys. + # It contains only one entry. + log_prob: torch.Tensor + + # timestamp[i] is the frame index after subsampling + # on which ys[i] is decoded + timestamp: List[int] = field(default_factory=list) + + # the lm score for next token given the current ys + lm_score: Optional[torch.Tensor] = None + + # the RNNLM states (h and c in LSTM) + state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None + + # N-gram LM state + state_cost: Optional[NgramLmStateCost] = None + + # Context graph state + context_state: Optional[ContextState] = None + + @property + def key(self) -> str: + """Return a string representation of self.ys""" + return "_".join(map(str, self.ys)) + + +class HypothesisList(object): + def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None: + """ + Args: + data: + A dict of Hypotheses. Its key is its `value.key`. + """ + if data is None: + self._data = {} + else: + self._data = data + + @property + def data(self) -> Dict[str, Hypothesis]: + return self._data + + def add(self, hyp: Hypothesis) -> None: + """Add a Hypothesis to `self`. + + If `hyp` already exists in `self`, its probability is updated using + `log-sum-exp` with the existed one. + + Args: + hyp: + The hypothesis to be added. + """ + key = hyp.key + if key in self: + old_hyp = self._data[key] # shallow copy + torch.logaddexp(old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob) + else: + self._data[key] = hyp + + def get_most_probable(self, length_norm: bool = False) -> Hypothesis: + """Get the most probable hypothesis, i.e., the one with + the largest `log_prob`. + + Args: + length_norm: + If True, the `log_prob` of a hypothesis is normalized by the + number of tokens in it. + Returns: + Return the hypothesis that has the largest `log_prob`. + """ + if length_norm: + return max(self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys)) + else: + return max(self._data.values(), key=lambda hyp: hyp.log_prob) + + def remove(self, hyp: Hypothesis) -> None: + """Remove a given hypothesis. + + Caution: + `self` is modified **in-place**. + + Args: + hyp: + The hypothesis to be removed from `self`. + Note: It must be contained in `self`. Otherwise, + an exception is raised. + """ + key = hyp.key + assert key in self, f"{key} does not exist" + del self._data[key] + + def filter(self, threshold: torch.Tensor) -> "HypothesisList": + """Remove all Hypotheses whose log_prob is less than threshold. + + Caution: + `self` is not modified. Instead, a new HypothesisList is returned. + + Returns: + Return a new HypothesisList containing all hypotheses from `self` + with `log_prob` being greater than the given `threshold`. + """ + ans = HypothesisList() + for _, hyp in self._data.items(): + if hyp.log_prob > threshold: + ans.add(hyp) # shallow copy + return ans + + def topk(self, k: int, length_norm: bool = False) -> "HypothesisList": + """Return the top-k hypothesis. + + Args: + length_norm: + If True, the `log_prob` of a hypothesis is normalized by the + number of tokens in it. + """ + hyps = list(self._data.items()) + + if length_norm: + hyps = sorted( + hyps, key=lambda h: h[1].log_prob / len(h[1].ys), reverse=True + )[:k] + else: + hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k] + + ans = HypothesisList(dict(hyps)) + return ans + + def __contains__(self, key: str): + return key in self._data + + def __iter__(self): + return iter(self._data.values()) + + def __len__(self) -> int: + return len(self._data) + + def __str__(self) -> str: + s = [] + for key in self: + s.append(key) + return ", ".join(s) + + +def get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape: + """Return a ragged shape with axes [utt][num_hyps]. + + Args: + hyps: + len(hyps) == batch_size. It contains the current hypothesis for + each utterance in the batch. + Returns: + Return a ragged shape with 2 axes [utt][num_hyps]. Note that + the shape is on CPU. + """ + num_hyps = [len(h) for h in hyps] + + # torch.cumsum() is inclusive sum, so we put a 0 at the beginning + # to get exclusive sum later. + num_hyps.insert(0, 0) + + num_hyps = torch.tensor(num_hyps) + row_splits = torch.cumsum(num_hyps, dim=0, dtype=torch.int32) + ans = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=row_splits[-1].item() + ) + return ans + + +def modified_beam_search( + model: nn.Module, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + context_graph: Optional[ContextGraph] = None, + beam: int = 4, + temperature: float = 1.0, + blank_penalty: float = 0.0, + return_timestamps: bool = False, +) -> Union[List[List[int]], DecodingResults]: + """Beam search in batch mode with --max-sym-per-frame=1 being hardcoded. + + Args: + model: + The transducer model. + encoder_out: + Output from the encoder. Its shape is (N, T, C). + encoder_out_lens: + A 1-D tensor of shape (N,), containing number of valid frames in + encoder_out before padding. + beam: + Number of active paths during the beam search. + temperature: + Softmax temperature. + return_timestamps: + Whether to return timestamps. + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + assert encoder_out.ndim == 3, encoder_out.shape + assert encoder_out.size(0) >= 1, encoder_out.size(0) + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + blank_id = model.decoder.blank_id + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + device = next(model.parameters()).device + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + B = [HypothesisList() for _ in range(N)] + for i in range(N): + B[i].add( + Hypothesis( + ys=[-1] * (context_size - 1) + [blank_id], + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + context_state=None if context_graph is None else context_graph.root, + timestamp=[], + ) + ) + + encoder_out = model.joiner.encoder_proj(packed_encoder_out.data) + + offset = 0 + finalized_B = [] + for t, batch_size in enumerate(batch_size_list): + start = offset + end = offset + batch_size + current_encoder_out = encoder_out.data[start:end] + current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim) + offset = end + + finalized_B = B[batch_size:] + finalized_B + B = B[:batch_size] + + hyps_shape = get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.cat( + [hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps] + ) # (num_hyps, 1) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + # decoder_out is of shape (num_hyps, 1, 1, joiner_dim) + + # Note: For torch 1.7.1 and below, it requires a torch.int64 tensor + # as index, so we use `to(torch.int64)` below. + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) # (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) + + if blank_penalty != 0: + logits[:, 0] -= blank_penalty + + log_probs = (logits / temperature).log_softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs.add_(ys_log_probs) + + vocab_size = log_probs.size(-1) + + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) + + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + new_ys = hyp.ys[:] + new_token = topk_token_indexes[k] + new_timestamp = hyp.timestamp[:] + context_score = 0 + new_context_state = None if context_graph is None else hyp.context_state + if new_token not in (blank_id, unk_id): + new_ys.append(new_token) + new_timestamp.append(t) + if context_graph is not None: + ( + context_score, + new_context_state, + ) = context_graph.forward_one_step(hyp.context_state, new_token) + + new_log_prob = topk_log_probs[k] + context_score + + new_hyp = Hypothesis( + ys=new_ys, + log_prob=new_log_prob, + timestamp=new_timestamp, + context_state=new_context_state, + ) + B[i].add(new_hyp) + + B = B + finalized_B + + # finalize context_state, if the matched contexts do not reach final state + # we need to add the score on the corresponding backoff arc + if context_graph is not None: + finalized_B = [HypothesisList() for _ in range(len(B))] + for i, hyps in enumerate(B): + for hyp in list(hyps): + context_score, new_context_state = context_graph.finalize( + hyp.context_state + ) + finalized_B[i].add( + Hypothesis( + ys=hyp.ys, + log_prob=hyp.log_prob + context_score, + timestamp=hyp.timestamp, + context_state=new_context_state, + ) + ) + B = finalized_B + + best_hyps = [b.get_most_probable(length_norm=True) for b in B] + + sorted_ans = [h.ys[context_size:] for h in best_hyps] + sorted_timestamps = [h.timestamp for h in best_hyps] + ans = [] + ans_timestamps = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + ans_timestamps.append(sorted_timestamps[unsorted_indices[i]]) + + if not return_timestamps: + return ans + else: + return DecodingResults( + hyps=ans, + timestamps=ans_timestamps, + ) + + +def modified_beam_search_lm_rescore( + model: nn.Module, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + LM: LmScorer, + lm_scale_list: List[int], + beam: int = 4, + temperature: float = 1.0, + return_timestamps: bool = False, +) -> Union[List[List[int]], DecodingResults]: + """Beam search in batch mode with --max-sym-per-frame=1 being hardcoded. + Rescore the final results with RNNLM and return the one with the highest score + + Args: + model: + The transducer model. + encoder_out: + Output from the encoder. Its shape is (N, T, C). + encoder_out_lens: + A 1-D tensor of shape (N,), containing number of valid frames in + encoder_out before padding. + beam: + Number of active paths during the beam search. + temperature: + Softmax temperature. + LM: + A neural network language model + return_timestamps: + Whether to return timestamps. + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + assert encoder_out.ndim == 3, encoder_out.shape + assert encoder_out.size(0) >= 1, encoder_out.size(0) + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + blank_id = model.decoder.blank_id + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + device = next(model.parameters()).device + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + B = [HypothesisList() for _ in range(N)] + for i in range(N): + B[i].add( + Hypothesis( + ys=[-1] * (context_size - 1) + [blank_id], + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + timestamp=[], + ) + ) + + encoder_out = model.joiner.encoder_proj(packed_encoder_out.data) + + offset = 0 + finalized_B = [] + for t, batch_size in enumerate(batch_size_list): + start = offset + end = offset + batch_size + current_encoder_out = encoder_out.data[start:end] + current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim) + offset = end + + finalized_B = B[batch_size:] + finalized_B + B = B[:batch_size] + + hyps_shape = get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.cat( + [hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps] + ) # (num_hyps, 1) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + # decoder_out is of shape (num_hyps, 1, 1, joiner_dim) + + # Note: For torch 1.7.1 and below, it requires a torch.int64 tensor + # as index, so we use `to(torch.int64)` below. + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) # (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) + + log_probs = (logits / temperature).log_softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs.add_(ys_log_probs) + + vocab_size = log_probs.size(-1) + + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) + + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + new_ys = hyp.ys[:] + new_token = topk_token_indexes[k] + new_timestamp = hyp.timestamp[:] + if new_token not in (blank_id, unk_id): + new_ys.append(new_token) + new_timestamp.append(t) + + new_log_prob = topk_log_probs[k] + new_hyp = Hypothesis( + ys=new_ys, log_prob=new_log_prob, timestamp=new_timestamp + ) + B[i].add(new_hyp) + + B = B + finalized_B + + # get the am_scores for n-best list + hyps_shape = get_hyps_shape(B) + am_scores = torch.tensor([hyp.log_prob.item() for b in B for hyp in b]) + am_scores = k2.RaggedTensor(value=am_scores, shape=hyps_shape).to(device) + + # now LM rescore + # prepare input data to LM + candidate_seqs = [hyp.ys[context_size:] for b in B for hyp in b] + possible_seqs = k2.RaggedTensor(candidate_seqs) + row_splits = possible_seqs.shape.row_splits(1) + sentence_token_lengths = row_splits[1:] - row_splits[:-1] + possible_seqs_with_sos = add_sos(possible_seqs, sos_id=1) + possible_seqs_with_eos = add_eos(possible_seqs, eos_id=1) + sentence_token_lengths += 1 + + x = possible_seqs_with_sos.pad(mode="constant", padding_value=blank_id) + y = possible_seqs_with_eos.pad(mode="constant", padding_value=blank_id) + x = x.to(device).to(torch.int64) + y = y.to(device).to(torch.int64) + sentence_token_lengths = sentence_token_lengths.to(device).to(torch.int64) + + lm_scores = LM.lm(x=x, y=y, lengths=sentence_token_lengths) + assert lm_scores.ndim == 2 + lm_scores = -1 * lm_scores.sum(dim=1) + + ans = {} + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + + # get the best hyp with different lm_scale + for lm_scale in lm_scale_list: + key = f"nnlm_scale_{lm_scale:.2f}" + tot_scores = am_scores.values + lm_scores * lm_scale + ragged_tot_scores = k2.RaggedTensor(shape=am_scores.shape, value=tot_scores) + max_indexes = ragged_tot_scores.argmax().tolist() + unsorted_hyps = [candidate_seqs[idx] for idx in max_indexes] + hyps = [] + for idx in unsorted_indices: + hyps.append(unsorted_hyps[idx]) + + ans[key] = hyps + return ans + + +def modified_beam_search_lm_rescore_LODR( + model: nn.Module, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + LM: LmScorer, + LODR_lm: NgramLm, + sp: spm.SentencePieceProcessor, + lm_scale_list: List[int], + beam: int = 4, + temperature: float = 1.0, + return_timestamps: bool = False, +) -> Union[List[List[int]], DecodingResults]: + """Beam search in batch mode with --max-sym-per-frame=1 being hardcoded. + Rescore the final results with RNNLM and return the one with the highest score + + Args: + model: + The transducer model. + encoder_out: + Output from the encoder. Its shape is (N, T, C). + encoder_out_lens: + A 1-D tensor of shape (N,), containing number of valid frames in + encoder_out before padding. + beam: + Number of active paths during the beam search. + temperature: + Softmax temperature. + LM: + A neural network language model + return_timestamps: + Whether to return timestamps. + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + assert encoder_out.ndim == 3, encoder_out.shape + assert encoder_out.size(0) >= 1, encoder_out.size(0) + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + blank_id = model.decoder.blank_id + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + device = next(model.parameters()).device + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + B = [HypothesisList() for _ in range(N)] + for i in range(N): + B[i].add( + Hypothesis( + ys=[-1] * (context_size - 1) + [blank_id], + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + timestamp=[], + ) + ) + + encoder_out = model.joiner.encoder_proj(packed_encoder_out.data) + + offset = 0 + finalized_B = [] + for t, batch_size in enumerate(batch_size_list): + start = offset + end = offset + batch_size + current_encoder_out = encoder_out.data[start:end] + current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim) + offset = end + + finalized_B = B[batch_size:] + finalized_B + B = B[:batch_size] + + hyps_shape = get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.cat( + [hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps] + ) # (num_hyps, 1) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + # decoder_out is of shape (num_hyps, 1, 1, joiner_dim) + + # Note: For torch 1.7.1 and below, it requires a torch.int64 tensor + # as index, so we use `to(torch.int64)` below. + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) # (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) + + log_probs = (logits / temperature).log_softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs.add_(ys_log_probs) + + vocab_size = log_probs.size(-1) + + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) + + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + new_ys = hyp.ys[:] + new_token = topk_token_indexes[k] + new_timestamp = hyp.timestamp[:] + if new_token not in (blank_id, unk_id): + new_ys.append(new_token) + new_timestamp.append(t) + + new_log_prob = topk_log_probs[k] + new_hyp = Hypothesis( + ys=new_ys, log_prob=new_log_prob, timestamp=new_timestamp + ) + B[i].add(new_hyp) + + B = B + finalized_B + + # get the am_scores for n-best list + hyps_shape = get_hyps_shape(B) + am_scores = torch.tensor([hyp.log_prob.item() for b in B for hyp in b]) + am_scores = k2.RaggedTensor(value=am_scores, shape=hyps_shape).to(device) + + # now LM rescore + # prepare input data to LM + candidate_seqs = [hyp.ys[context_size:] for b in B for hyp in b] + possible_seqs = k2.RaggedTensor(candidate_seqs) + row_splits = possible_seqs.shape.row_splits(1) + sentence_token_lengths = row_splits[1:] - row_splits[:-1] + possible_seqs_with_sos = add_sos(possible_seqs, sos_id=1) + possible_seqs_with_eos = add_eos(possible_seqs, eos_id=1) + sentence_token_lengths += 1 + + x = possible_seqs_with_sos.pad(mode="constant", padding_value=blank_id) + y = possible_seqs_with_eos.pad(mode="constant", padding_value=blank_id) + x = x.to(device).to(torch.int64) + y = y.to(device).to(torch.int64) + sentence_token_lengths = sentence_token_lengths.to(device).to(torch.int64) + + lm_scores = LM.lm(x=x, y=y, lengths=sentence_token_lengths) + assert lm_scores.ndim == 2 + lm_scores = -1 * lm_scores.sum(dim=1) + + # now LODR scores + import math + + LODR_scores = [] + for seq in candidate_seqs: + tokens = " ".join(sp.id_to_piece(seq)) + LODR_scores.append(LODR_lm.score(tokens)) + LODR_scores = torch.tensor(LODR_scores).to(device) * math.log( + 10 + ) # arpa scores are 10-based + assert lm_scores.shape == LODR_scores.shape + + ans = {} + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + + LODR_scale_list = [0.05 * i for i in range(1, 20)] + # get the best hyp with different lm_scale and lodr_scale + for lm_scale in lm_scale_list: + for lodr_scale in LODR_scale_list: + key = f"nnlm_scale_{lm_scale:.2f}_lodr_scale_{lodr_scale:.2f}" + tot_scores = ( + am_scores.values / lm_scale + lm_scores - LODR_scores * lodr_scale + ) + ragged_tot_scores = k2.RaggedTensor(shape=am_scores.shape, value=tot_scores) + max_indexes = ragged_tot_scores.argmax().tolist() + unsorted_hyps = [candidate_seqs[idx] for idx in max_indexes] + hyps = [] + for idx in unsorted_indices: + hyps.append(unsorted_hyps[idx]) + + ans[key] = hyps + return ans + + +def _deprecated_modified_beam_search( + model: nn.Module, + encoder_out: torch.Tensor, + beam: int = 4, + return_timestamps: bool = False, +) -> Union[List[int], DecodingResults]: + """It limits the maximum number of symbols per frame to 1. + + It decodes only one utterance at a time. We keep it only for reference. + The function :func:`modified_beam_search` should be preferred as it + supports batch decoding. + + + Args: + model: + An instance of `Transducer`. + encoder_out: + A tensor of shape (N, T, C) from the encoder. Support only N==1 for now. + beam: + Beam size. + return_timestamps: + Whether to return timestamps. + + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + + assert encoder_out.ndim == 3 + + # support only batch_size == 1 for now + assert encoder_out.size(0) == 1, encoder_out.size(0) + blank_id = model.decoder.blank_id + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + + device = next(model.parameters()).device + + T = encoder_out.size(1) + + B = HypothesisList() + B.add( + Hypothesis( + ys=[-1] * (context_size - 1) + [blank_id], + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + timestamp=[], + ) + ) + encoder_out = model.joiner.encoder_proj(encoder_out) + + for t in range(T): + # fmt: off + current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2) + # current_encoder_out is of shape (1, 1, 1, encoder_out_dim) + # fmt: on + A = list(B) + B = HypothesisList() + + ys_log_probs = torch.cat([hyp.log_prob.reshape(1, 1) for hyp in A]) + # ys_log_probs is of shape (num_hyps, 1) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyp in A], + device=device, + dtype=torch.int64, + ) + # decoder_input is of shape (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + # decoder_output is of shape (num_hyps, 1, 1, joiner_dim) + + current_encoder_out = current_encoder_out.expand( + decoder_out.size(0), 1, 1, -1 + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) + # logits is of shape (num_hyps, 1, 1, vocab_size) + logits = logits.squeeze(1).squeeze(1) + + # now logits is of shape (num_hyps, vocab_size) + log_probs = logits.log_softmax(dim=-1) + + log_probs.add_(ys_log_probs) + + log_probs = log_probs.reshape(-1) + topk_log_probs, topk_indexes = log_probs.topk(beam) + + # topk_hyp_indexes are indexes into `A` + topk_hyp_indexes = topk_indexes // logits.size(-1) + topk_token_indexes = topk_indexes % logits.size(-1) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = topk_hyp_indexes.tolist() + topk_token_indexes = topk_token_indexes.tolist() + + for i in range(len(topk_hyp_indexes)): + hyp = A[topk_hyp_indexes[i]] + new_ys = hyp.ys[:] + new_timestamp = hyp.timestamp[:] + new_token = topk_token_indexes[i] + if new_token not in (blank_id, unk_id): + new_ys.append(new_token) + new_timestamp.append(t) + new_log_prob = topk_log_probs[i] + new_hyp = Hypothesis( + ys=new_ys, log_prob=new_log_prob, timestamp=new_timestamp + ) + B.add(new_hyp) + + best_hyp = B.get_most_probable(length_norm=True) + ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks + + if not return_timestamps: + return ys + else: + return DecodingResults(hyps=[ys], timestamps=[best_hyp.timestamp]) + + +def beam_search( + model: nn.Module, + encoder_out: torch.Tensor, + beam: int = 4, + temperature: float = 1.0, + blank_penalty: float = 0.0, + return_timestamps: bool = False, +) -> Union[List[int], DecodingResults]: + """ + It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf + + espnet/nets/beam_search_transducer.py#L247 is used as a reference. + + Args: + model: + An instance of `Transducer`. + encoder_out: + A tensor of shape (N, T, C) from the encoder. Support only N==1 for now. + beam: + Beam size. + temperature: + Softmax temperature. + return_timestamps: + Whether to return timestamps. + + Returns: + If return_timestamps is False, return the decoded result. + Else, return a DecodingResults object containing + decoded result and corresponding timestamps. + """ + assert encoder_out.ndim == 3 + + # support only batch_size == 1 for now + assert encoder_out.size(0) == 1, encoder_out.size(0) + blank_id = model.decoder.blank_id + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + + device = next(model.parameters()).device + + decoder_input = torch.tensor( + [blank_id] * context_size, + device=device, + dtype=torch.int64, + ).reshape(1, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + + encoder_out = model.joiner.encoder_proj(encoder_out) + + T = encoder_out.size(1) + t = 0 + + B = HypothesisList() + B.add( + Hypothesis( + ys=[-1] * (context_size - 1) + [blank_id], log_prob=0.0, timestamp=[] + ) + ) + + max_sym_per_utt = 20000 + + sym_per_utt = 0 + + decoder_cache: Dict[str, torch.Tensor] = {} + + while t < T and sym_per_utt < max_sym_per_utt: + # fmt: off + current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2) + # fmt: on + A = B + B = HypothesisList() + + joint_cache: Dict[str, torch.Tensor] = {} + + # TODO(fangjun): Implement prefix search to update the `log_prob` + # of hypotheses in A + + while True: + y_star = A.get_most_probable() + A.remove(y_star) + + cached_key = y_star.key + + if cached_key not in decoder_cache: + decoder_input = torch.tensor( + [y_star.ys[-context_size:]], + device=device, + dtype=torch.int64, + ).reshape(1, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + decoder_cache[cached_key] = decoder_out + else: + decoder_out = decoder_cache[cached_key] + + cached_key += f"-t-{t}" + if cached_key not in joint_cache: + logits = model.joiner( + current_encoder_out, + decoder_out.unsqueeze(1), + project_input=False, + ) + + if blank_penalty != 0: + logits[:, :, :, 0] -= blank_penalty + + # TODO(fangjun): Scale the blank posterior + log_prob = (logits / temperature).log_softmax(dim=-1) + # log_prob is (1, 1, 1, vocab_size) + log_prob = log_prob.squeeze() + # Now log_prob is (vocab_size,) + joint_cache[cached_key] = log_prob + else: + log_prob = joint_cache[cached_key] + + # First, process the blank symbol + skip_log_prob = log_prob[blank_id] + new_y_star_log_prob = y_star.log_prob + skip_log_prob + + # ys[:] returns a copy of ys + B.add( + Hypothesis( + ys=y_star.ys[:], + log_prob=new_y_star_log_prob, + timestamp=y_star.timestamp[:], + ) + ) + + # Second, process other non-blank labels + values, indices = log_prob.topk(beam + 1) + for i, v in zip(indices.tolist(), values.tolist()): + if i in (blank_id, unk_id): + continue + new_ys = y_star.ys + [i] + new_log_prob = y_star.log_prob + v + new_timestamp = y_star.timestamp + [t] + A.add( + Hypothesis( + ys=new_ys, + log_prob=new_log_prob, + timestamp=new_timestamp, + ) + ) + + # Check whether B contains more than "beam" elements more probable + # than the most probable in A + A_most_probable = A.get_most_probable() + + kept_B = B.filter(A_most_probable.log_prob) + + if len(kept_B) >= beam: + B = kept_B.topk(beam) + break + + t += 1 + + best_hyp = B.get_most_probable(length_norm=True) + ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks + + if not return_timestamps: + return ys + else: + return DecodingResults(hyps=[ys], timestamps=[best_hyp.timestamp]) + + +def fast_beam_search_with_nbest_rescoring( + model: nn.Module, + decoding_graph: k2.Fsa, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + beam: float, + max_states: int, + max_contexts: int, + ngram_lm_scale_list: List[float], + num_paths: int, + G: k2.Fsa, + sp: spm.SentencePieceProcessor, + word_table: k2.SymbolTable, + oov_word: str = "", + use_double_scores: bool = True, + nbest_scale: float = 0.5, + temperature: float = 1.0, + return_timestamps: bool = False, +) -> Dict[str, Union[List[List[int]], DecodingResults]]: + """It limits the maximum number of symbols per frame to 1. + A lattice is first obtained using fast beam search, num_path are selected + and rescored using a given language model. The shortest path within the + lattice is used as the final output. + + Args: + model: + An instance of `Transducer`. + decoding_graph: + Decoding graph used for decoding, may be a TrivialGraph or a LG. + encoder_out: + A tensor of shape (N, T, C) from the encoder. + encoder_out_lens: + A tensor of shape (N,) containing the number of frames in `encoder_out` + before padding. + beam: + Beam value, similar to the beam used in Kaldi. + max_states: + Max states per stream per frame. + max_contexts: + Max contexts pre stream per frame. + ngram_lm_scale_list: + A list of floats representing LM score scales. + num_paths: + Number of paths to extract from the decoded lattice. + G: + An FsaVec containing only a single FSA. It is an n-gram LM. + sp: + The BPE model. + word_table: + The word symbol table. + oov_word: + OOV words are replaced with this word. + use_double_scores: + True to use double precision for computation. False to use + single precision. + nbest_scale: + It's the scale applied to the lattice.scores. A smaller value + yields more unique paths. + temperature: + Softmax temperature. + return_timestamps: + Whether to return timestamps. + Returns: + Return the decoded result in a dict, where the key has the form + 'ngram_lm_scale_xx' and the value is the decoded results + optionally with timestamps. `xx` is the ngram LM scale value + used during decoding, i.e., 0.1. + """ + lattice = fast_beam_search( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=beam, + max_states=max_states, + max_contexts=max_contexts, + temperature=temperature, + ) + + nbest = Nbest.from_lattice( + lattice=lattice, + num_paths=num_paths, + use_double_scores=use_double_scores, + nbest_scale=nbest_scale, + ) + # at this point, nbest.fsa.scores are all zeros. + + nbest = nbest.intersect(lattice) + # Now nbest.fsa.scores contains acoustic scores + + am_scores = nbest.tot_scores() + + # Now we need to compute the LM scores of each path. + # (1) Get the token IDs of each Path. We assume the decoding_graph + # is an acceptor, i.e., lattice is also an acceptor + tokens_shape = nbest.fsa.arcs.shape().remove_axis(1) # [path][arc] + + tokens = k2.RaggedTensor(tokens_shape, nbest.fsa.labels.contiguous()) + tokens = tokens.remove_values_leq(0) # remove -1 and 0 + + token_list: List[List[int]] = tokens.tolist() + word_list: List[List[str]] = sp.decode(token_list) + + assert isinstance(oov_word, str), oov_word + assert oov_word in word_table, oov_word + oov_word_id = word_table[oov_word] + + word_ids_list: List[List[int]] = [] + + for words in word_list: + this_word_ids = [] + for w in words.split(): + if w in word_table: + this_word_ids.append(word_table[w]) + else: + this_word_ids.append(oov_word_id) + word_ids_list.append(this_word_ids) + + word_fsas = k2.linear_fsa(word_ids_list, device=lattice.device) + word_fsas_with_self_loops = k2.add_epsilon_self_loops(word_fsas) + + num_unique_paths = len(word_ids_list) + + b_to_a_map = torch.zeros( + num_unique_paths, + dtype=torch.int32, + device=lattice.device, + ) + + rescored_word_fsas = k2.intersect_device( + a_fsas=G, + b_fsas=word_fsas_with_self_loops, + b_to_a_map=b_to_a_map, + sorted_match_a=True, + ret_arc_maps=False, + ) + + rescored_word_fsas = k2.remove_epsilon_self_loops(rescored_word_fsas) + rescored_word_fsas = k2.top_sort(k2.connect(rescored_word_fsas)) + ngram_lm_scores = rescored_word_fsas.get_tot_scores( + use_double_scores=True, + log_semiring=False, + ) + + ans: Dict[str, Union[List[List[int]], DecodingResults]] = {} + for s in ngram_lm_scale_list: + key = f"ngram_lm_scale_{s}" + tot_scores = am_scores.values + s * ngram_lm_scores + ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores) + max_indexes = ragged_tot_scores.argmax() + best_path = k2.index_fsa(nbest.fsa, max_indexes) + + if not return_timestamps: + ans[key] = get_texts(best_path) + else: + ans[key] = get_texts_with_timestamp(best_path) + + return ans + + +def fast_beam_search_with_nbest_rnn_rescoring( + model: nn.Module, + decoding_graph: k2.Fsa, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + beam: float, + max_states: int, + max_contexts: int, + ngram_lm_scale_list: List[float], + num_paths: int, + G: k2.Fsa, + sp: spm.SentencePieceProcessor, + word_table: k2.SymbolTable, + rnn_lm_model: torch.nn.Module, + rnn_lm_scale_list: List[float], + oov_word: str = "", + use_double_scores: bool = True, + nbest_scale: float = 0.5, + temperature: float = 1.0, + return_timestamps: bool = False, +) -> Dict[str, Union[List[List[int]], DecodingResults]]: + """It limits the maximum number of symbols per frame to 1. + A lattice is first obtained using fast beam search, num_path are selected + and rescored using a given language model and a rnn-lm. + The shortest path within the lattice is used as the final output. + + Args: + model: + An instance of `Transducer`. + decoding_graph: + Decoding graph used for decoding, may be a TrivialGraph or a LG. + encoder_out: + A tensor of shape (N, T, C) from the encoder. + encoder_out_lens: + A tensor of shape (N,) containing the number of frames in `encoder_out` + before padding. + beam: + Beam value, similar to the beam used in Kaldi. + max_states: + Max states per stream per frame. + max_contexts: + Max contexts pre stream per frame. + ngram_lm_scale_list: + A list of floats representing LM score scales. + num_paths: + Number of paths to extract from the decoded lattice. + G: + An FsaVec containing only a single FSA. It is an n-gram LM. + sp: + The BPE model. + word_table: + The word symbol table. + rnn_lm_model: + A rnn-lm model used for LM rescoring + rnn_lm_scale_list: + A list of floats representing RNN score scales. + oov_word: + OOV words are replaced with this word. + use_double_scores: + True to use double precision for computation. False to use + single precision. + nbest_scale: + It's the scale applied to the lattice.scores. A smaller value + yields more unique paths. + temperature: + Softmax temperature. + return_timestamps: + Whether to return timestamps. + Returns: + Return the decoded result in a dict, where the key has the form + 'ngram_lm_scale_xx' and the value is the decoded results + optionally with timestamps. `xx` is the ngram LM scale value + used during decoding, i.e., 0.1. + """ + lattice = fast_beam_search( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=beam, + max_states=max_states, + max_contexts=max_contexts, + temperature=temperature, + ) + + nbest = Nbest.from_lattice( + lattice=lattice, + num_paths=num_paths, + use_double_scores=use_double_scores, + nbest_scale=nbest_scale, + ) + # at this point, nbest.fsa.scores are all zeros. + + nbest = nbest.intersect(lattice) + # Now nbest.fsa.scores contains acoustic scores + + am_scores = nbest.tot_scores() + + # Now we need to compute the LM scores of each path. + # (1) Get the token IDs of each Path. We assume the decoding_graph + # is an acceptor, i.e., lattice is also an acceptor + tokens_shape = nbest.fsa.arcs.shape().remove_axis(1) # [path][arc] + + tokens = k2.RaggedTensor(tokens_shape, nbest.fsa.labels.contiguous()) + tokens = tokens.remove_values_leq(0) # remove -1 and 0 + + token_list: List[List[int]] = tokens.tolist() + word_list: List[List[str]] = sp.decode(token_list) + + assert isinstance(oov_word, str), oov_word + assert oov_word in word_table, oov_word + oov_word_id = word_table[oov_word] + + word_ids_list: List[List[int]] = [] + + for words in word_list: + this_word_ids = [] + for w in words.split(): + if w in word_table: + this_word_ids.append(word_table[w]) + else: + this_word_ids.append(oov_word_id) + word_ids_list.append(this_word_ids) + + word_fsas = k2.linear_fsa(word_ids_list, device=lattice.device) + word_fsas_with_self_loops = k2.add_epsilon_self_loops(word_fsas) + + num_unique_paths = len(word_ids_list) + + b_to_a_map = torch.zeros( + num_unique_paths, + dtype=torch.int32, + device=lattice.device, + ) + + rescored_word_fsas = k2.intersect_device( + a_fsas=G, + b_fsas=word_fsas_with_self_loops, + b_to_a_map=b_to_a_map, + sorted_match_a=True, + ret_arc_maps=False, + ) + + rescored_word_fsas = k2.remove_epsilon_self_loops(rescored_word_fsas) + rescored_word_fsas = k2.top_sort(k2.connect(rescored_word_fsas)) + ngram_lm_scores = rescored_word_fsas.get_tot_scores( + use_double_scores=True, + log_semiring=False, + ) + + # Now RNN-LM + blank_id = model.decoder.blank_id + sos_id = sp.piece_to_id("sos_id") + eos_id = sp.piece_to_id("eos_id") + + sos_tokens = add_sos(tokens, sos_id) + tokens_eos = add_eos(tokens, eos_id) + sos_tokens_row_splits = sos_tokens.shape.row_splits(1) + sentence_lengths = sos_tokens_row_splits[1:] - sos_tokens_row_splits[:-1] + + x_tokens = sos_tokens.pad(mode="constant", padding_value=blank_id) + y_tokens = tokens_eos.pad(mode="constant", padding_value=blank_id) + + x_tokens = x_tokens.to(torch.int64) + y_tokens = y_tokens.to(torch.int64) + sentence_lengths = sentence_lengths.to(torch.int64) + + rnn_lm_nll = rnn_lm_model(x=x_tokens, y=y_tokens, lengths=sentence_lengths) + assert rnn_lm_nll.ndim == 2 + assert rnn_lm_nll.shape[0] == len(token_list) + rnn_lm_scores = -1 * rnn_lm_nll.sum(dim=1) + + ans: Dict[str, List[List[int]]] = {} + for n_scale in ngram_lm_scale_list: + for rnn_scale in rnn_lm_scale_list: + key = f"ngram_lm_scale_{n_scale}_rnn_lm_scale_{rnn_scale}" + tot_scores = ( + am_scores.values + n_scale * ngram_lm_scores + rnn_scale * rnn_lm_scores + ) + ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores) + max_indexes = ragged_tot_scores.argmax() + best_path = k2.index_fsa(nbest.fsa, max_indexes) + + if not return_timestamps: + ans[key] = get_texts(best_path) + else: + ans[key] = get_texts_with_timestamp(best_path) + + return ans + + +def modified_beam_search_ngram_rescoring( + model: nn.Module, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + ngram_lm: NgramLm, + ngram_lm_scale: float, + beam: int = 4, + temperature: float = 1.0, +) -> List[List[int]]: + """Beam search in batch mode with --max-sym-per-frame=1 being hardcoded. + + Args: + model: + The transducer model. + encoder_out: + Output from the encoder. Its shape is (N, T, C). + encoder_out_lens: + A 1-D tensor of shape (N,), containing number of valid frames in + encoder_out before padding. + beam: + Number of active paths during the beam search. + temperature: + Softmax temperature. + Returns: + Return a list-of-list of token IDs. ans[i] is the decoding results + for the i-th utterance. + """ + assert encoder_out.ndim == 3, encoder_out.shape + assert encoder_out.size(0) >= 1, encoder_out.size(0) + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + blank_id = model.decoder.blank_id + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + device = next(model.parameters()).device + lm_scale = ngram_lm_scale + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + B = [HypothesisList() for _ in range(N)] + for i in range(N): + B[i].add( + Hypothesis( + ys=[-1] * (context_size - 1) + [blank_id], + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + state_cost=NgramLmStateCost(ngram_lm), + ) + ) + + encoder_out = model.joiner.encoder_proj(packed_encoder_out.data) + + offset = 0 + finalized_B = [] + for batch_size in batch_size_list: + start = offset + end = offset + batch_size + current_encoder_out = encoder_out.data[start:end] + current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim) + offset = end + + finalized_B = B[batch_size:] + finalized_B + B = B[:batch_size] + + hyps_shape = get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.cat( + [ + hyp.log_prob.reshape(1, 1) + hyp.state_cost.lm_score * lm_scale + for hyps in A + for hyp in hyps + ] + ) # (num_hyps, 1) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + # decoder_out is of shape (num_hyps, 1, 1, joiner_dim) + + # Note: For torch 1.7.1 and below, it requires a torch.int64 tensor + # as index, so we use `to(torch.int64)` below. + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) # (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) + + log_probs = (logits / temperature).log_softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs.add_(ys_log_probs) + vocab_size = log_probs.size(-1) + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) + + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + new_ys = hyp.ys[:] + new_token = topk_token_indexes[k] + if new_token not in (blank_id, unk_id): + new_ys.append(new_token) + state_cost = hyp.state_cost.forward_one_step(new_token) + else: + state_cost = hyp.state_cost + + # We only keep AM scores in new_hyp.log_prob + new_log_prob = topk_log_probs[k] - hyp.state_cost.lm_score * lm_scale + + new_hyp = Hypothesis( + ys=new_ys, log_prob=new_log_prob, state_cost=state_cost + ) + B[i].add(new_hyp) + + B = B + finalized_B + best_hyps = [b.get_most_probable(length_norm=True) for b in B] + + sorted_ans = [h.ys[context_size:] for h in best_hyps] + ans = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + + return ans + + +def modified_beam_search_LODR( + model: nn.Module, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + LODR_lm: NgramLm, + LODR_lm_scale: float, + LM: LmScorer, + beam: int = 4, + context_graph: Optional[ContextGraph] = None, +) -> List[List[int]]: + """This function implements LODR (https://arxiv.org/abs/2203.16776) with + `modified_beam_search`. It uses a bi-gram language model as the estimate + of the internal language model and subtracts its score during shallow fusion + with an external language model. This implementation uses a RNNLM as the + external language model. + + Args: + model (Transducer): + The transducer model + encoder_out (torch.Tensor): + Encoder output in (N,T,C) + encoder_out_lens (torch.Tensor): + A 1-D tensor of shape (N,), containing the number of + valid frames in encoder_out before padding. + LODR_lm: + A low order n-gram LM, whose score will be subtracted during shallow fusion + LODR_lm_scale: + The scale of the LODR_lm + LM: + A neural net LM, e.g an RNNLM or transformer LM + beam (int, optional): + Beam size. Defaults to 4. + + Returns: + Return a list-of-list of token IDs. ans[i] is the decoding results + for the i-th utterance. + + """ + assert encoder_out.ndim == 3, encoder_out.shape + assert encoder_out.size(0) >= 1, encoder_out.size(0) + assert LM is not None + lm_scale = LM.lm_scale + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + blank_id = model.decoder.blank_id + sos_id = getattr(LM, "sos_id", 1) + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + device = next(model.parameters()).device + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + # get initial lm score and lm state by scoring the "sos" token + sos_token = torch.tensor([[sos_id]]).to(torch.int64).to(device) + lens = torch.tensor([1]).to(device) + init_score, init_states = LM.score_token(sos_token, lens) + + B = [HypothesisList() for _ in range(N)] + for i in range(N): + B[i].add( + Hypothesis( + ys=[-1] * (context_size - 1) + [blank_id], + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + state=init_states, # state of the NN LM + lm_score=init_score.reshape(-1), + state_cost=NgramLmStateCost( + LODR_lm + ), # state of the source domain ngram + context_state=None if context_graph is None else context_graph.root, + ) + ) + + encoder_out = model.joiner.encoder_proj(packed_encoder_out.data) + + offset = 0 + finalized_B = [] + for batch_size in batch_size_list: + start = offset + end = offset + batch_size + current_encoder_out = encoder_out.data[start:end] # get batch + current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim) + offset = end + + finalized_B = B[batch_size:] + finalized_B + B = B[:batch_size] + + hyps_shape = get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.cat( + [hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps] + ) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) # (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) + + log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs.add_(ys_log_probs) + + vocab_size = log_probs.size(-1) + + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) + """ + for all hyps with a non-blank new token, score this token. + It is a little confusing here because this for-loop + looks very similar to the one below. Here, we go through all + top-k tokens and only add the non-blanks ones to the token_list. + LM will score those tokens given the LM states. Note that + the variable `scores` is the LM score after seeing the new + non-blank token. + """ + token_list = [] + hs = [] + cs = [] + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + new_token = topk_token_indexes[k] + if new_token not in (blank_id, unk_id): + if LM.lm_type == "rnn": + token_list.append([new_token]) + # store the LSTM states + hs.append(hyp.state[0]) + cs.append(hyp.state[1]) + else: + # for transformer LM + token_list.append( + [sos_id] + hyp.ys[context_size:] + [new_token] + ) + + # forward NN LM to get new states and scores + if len(token_list) != 0: + x_lens = torch.tensor([len(tokens) for tokens in token_list]).to(device) + if LM.lm_type == "rnn": + tokens_to_score = ( + torch.tensor(token_list).to(torch.int64).to(device).reshape(-1, 1) + ) + hs = torch.cat(hs, dim=1).to(device) + cs = torch.cat(cs, dim=1).to(device) + state = (hs, cs) + else: + # for transformer LM + tokens_list = [torch.tensor(tokens) for tokens in token_list] + tokens_to_score = ( + torch.nn.utils.rnn.pad_sequence( + tokens_list, batch_first=True, padding_value=0.0 + ) + .to(device) + .to(torch.int64) + ) + + state = None + + scores, lm_states = LM.score_token(tokens_to_score, x_lens, state) + + count = 0 # index, used to locate score and lm states + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + ys = hyp.ys[:] + + # current score of hyp + lm_score = hyp.lm_score + state = hyp.state + + hyp_log_prob = topk_log_probs[k] # get score of current hyp + new_token = topk_token_indexes[k] + + context_score = 0 + new_context_state = None if context_graph is None else hyp.context_state + if new_token not in (blank_id, unk_id): + if context_graph is not None: + ( + context_score, + new_context_state, + ) = context_graph.forward_one_step(hyp.context_state, new_token) + + ys.append(new_token) + state_cost = hyp.state_cost.forward_one_step(new_token) + + # calculate the score of the latest token + current_ngram_score = state_cost.lm_score - hyp.state_cost.lm_score + + assert current_ngram_score <= 0.0, ( + state_cost.lm_score, + hyp.state_cost.lm_score, + ) + # score = score + TDLM_score - LODR_score + # LODR_LM_scale should be a negative number here + hyp_log_prob += ( + lm_score[new_token] * lm_scale + + LODR_lm_scale * current_ngram_score + + context_score + ) # add the lm score + + lm_score = scores[count] + if LM.lm_type == "rnn": + state = ( + lm_states[0][:, count, :].unsqueeze(1), + lm_states[1][:, count, :].unsqueeze(1), + ) + count += 1 + else: + state_cost = hyp.state_cost + + new_hyp = Hypothesis( + ys=ys, + log_prob=hyp_log_prob, + state=state, + lm_score=lm_score, + state_cost=state_cost, + context_state=new_context_state, + ) + B[i].add(new_hyp) + + B = B + finalized_B + + # finalize context_state, if the matched contexts do not reach final state + # we need to add the score on the corresponding backoff arc + if context_graph is not None: + finalized_B = [HypothesisList() for _ in range(len(B))] + for i, hyps in enumerate(B): + for hyp in list(hyps): + context_score, new_context_state = context_graph.finalize( + hyp.context_state + ) + finalized_B[i].add( + Hypothesis( + ys=hyp.ys, + log_prob=hyp.log_prob + context_score, + timestamp=hyp.timestamp, + context_state=new_context_state, + ) + ) + B = finalized_B + + best_hyps = [b.get_most_probable(length_norm=True) for b in B] + + sorted_ans = [h.ys[context_size:] for h in best_hyps] + ans = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + + return ans + + +def modified_beam_search_lm_shallow_fusion( + model: nn.Module, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + LM: LmScorer, + beam: int = 4, + return_timestamps: bool = False, +) -> List[List[int]]: + """Modified_beam_search + NN LM shallow fusion + + Args: + model (Transducer): + The transducer model + encoder_out (torch.Tensor): + Encoder output in (N,T,C) + encoder_out_lens (torch.Tensor): + A 1-D tensor of shape (N,), containing the number of + valid frames in encoder_out before padding. + sp: + Sentence piece generator. + LM (LmScorer): + A neural net LM, e.g RNN or Transformer + beam (int, optional): + Beam size. Defaults to 4. + + Returns: + Return a list-of-list of token IDs. ans[i] is the decoding results + for the i-th utterance. + """ + assert encoder_out.ndim == 3, encoder_out.shape + assert encoder_out.size(0) >= 1, encoder_out.size(0) + assert LM is not None + lm_scale = LM.lm_scale + + packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( + input=encoder_out, + lengths=encoder_out_lens.cpu(), + batch_first=True, + enforce_sorted=False, + ) + + blank_id = model.decoder.blank_id + sos_id = getattr(LM, "sos_id", 1) + unk_id = getattr(model, "unk_id", blank_id) + context_size = model.decoder.context_size + device = next(model.parameters()).device + + batch_size_list = packed_encoder_out.batch_sizes.tolist() + N = encoder_out.size(0) + assert torch.all(encoder_out_lens > 0), encoder_out_lens + assert N == batch_size_list[0], (N, batch_size_list) + + # get initial lm score and lm state by scoring the "sos" token + sos_token = torch.tensor([[sos_id]]).to(torch.int64).to(device) + lens = torch.tensor([1]).to(device) + init_score, init_states = LM.score_token(sos_token, lens) + + B = [HypothesisList() for _ in range(N)] + for i in range(N): + B[i].add( + Hypothesis( + ys=[-1] * (context_size - 1) + [blank_id], + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + state=init_states, + lm_score=init_score.reshape(-1), + timestamp=[], + ) + ) + + encoder_out = model.joiner.encoder_proj(packed_encoder_out.data) + + offset = 0 + finalized_B = [] + for t, batch_size in enumerate(batch_size_list): + start = offset + end = offset + batch_size + current_encoder_out = encoder_out.data[start:end] # get batch + current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim) + offset = end + + finalized_B = B[batch_size:] + finalized_B + B = B[:batch_size] + + hyps_shape = get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.cat( + [hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps] + ) + + lm_scores = torch.cat( + [hyp.lm_score.reshape(1, -1) for hyps in A for hyp in hyps] + ) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, 1, 1, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, + decoder_out, + project_input=False, + ) # (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) + + log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs.add_(ys_log_probs) + + vocab_size = log_probs.size(-1) + + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) + """ + for all hyps with a non-blank new token, score this token. + It is a little confusing here because this for-loop + looks very similar to the one below. Here, we go through all + top-k tokens and only add the non-blanks ones to the token_list. + `LM` will score those tokens given the LM states. Note that + the variable `scores` is the LM score after seeing the new + non-blank token. + """ + token_list = [] # a list of list + hs = [] + cs = [] + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + new_token = topk_token_indexes[k] + if new_token not in (blank_id, unk_id): + if LM.lm_type == "rnn": + token_list.append([new_token]) + # store the LSTM states + hs.append(hyp.state[0]) + cs.append(hyp.state[1]) + else: + # for transformer LM + token_list.append( + [sos_id] + hyp.ys[context_size:] + [new_token] + ) + + if len(token_list) != 0: + x_lens = torch.tensor([len(tokens) for tokens in token_list]).to(device) + if LM.lm_type == "rnn": + tokens_to_score = ( + torch.tensor(token_list).to(torch.int64).to(device).reshape(-1, 1) + ) + hs = torch.cat(hs, dim=1).to(device) + cs = torch.cat(cs, dim=1).to(device) + state = (hs, cs) + else: + # for transformer LM + tokens_list = [torch.tensor(tokens) for tokens in token_list] + tokens_to_score = ( + torch.nn.utils.rnn.pad_sequence( + tokens_list, batch_first=True, padding_value=0.0 + ) + .to(device) + .to(torch.int64) + ) + + state = None + + scores, lm_states = LM.score_token(tokens_to_score, x_lens, state) + + count = 0 # index, used to locate score and lm states + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + ys = hyp.ys[:] + + lm_score = hyp.lm_score + state = hyp.state + + hyp_log_prob = topk_log_probs[k] # get score of current hyp + new_token = topk_token_indexes[k] + new_timestamp = hyp.timestamp[:] + if new_token not in (blank_id, unk_id): + ys.append(new_token) + new_timestamp.append(t) + + hyp_log_prob += lm_score[new_token] * lm_scale # add the lm score + + lm_score = scores[count] + if LM.lm_type == "rnn": + state = ( + lm_states[0][:, count, :].unsqueeze(1), + lm_states[1][:, count, :].unsqueeze(1), + ) + count += 1 + + new_hyp = Hypothesis( + ys=ys, + log_prob=hyp_log_prob, + state=state, + lm_score=lm_score, + timestamp=new_timestamp, + ) + B[i].add(new_hyp) + + B = B + finalized_B + best_hyps = [b.get_most_probable(length_norm=True) for b in B] + + sorted_ans = [h.ys[context_size:] for h in best_hyps] + sorted_timestamps = [h.timestamp for h in best_hyps] + ans = [] + ans_timestamps = [] + unsorted_indices = packed_encoder_out.unsorted_indices.tolist() + for i in range(N): + ans.append(sorted_ans[unsorted_indices[i]]) + ans_timestamps.append(sorted_timestamps[unsorted_indices[i]]) + + if not return_timestamps: + return ans + else: + return DecodingResults( + hyps=ans, + timestamps=ans_timestamps, + ) diff --git a/egs/icmcasr/ASR/zipformer/ctc_decode.py b/egs/icmcasr/ASR/zipformer/ctc_decode.py new file mode 100755 index 000000000..4db50b981 --- /dev/null +++ b/egs/icmcasr/ASR/zipformer/ctc_decode.py @@ -0,0 +1,847 @@ +#!/usr/bin/env python3 +# +# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, +# Liyong Guo, +# Quandong Wang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +(1) ctc-decoding +./zipformer/ctc_decode.py \ + --epoch 30 \ + --avg 15 \ + --exp-dir ./zipformer/exp \ + --use-ctc 1 \ + --max-duration 600 \ + --decoding-method ctc-decoding + +(2) 1best +./zipformer/ctc_decode.py \ + --epoch 30 \ + --avg 15 \ + --exp-dir ./zipformer/exp \ + --use-ctc 1 \ + --max-duration 600 \ + --hlg-scale 0.6 \ + --decoding-method 1best + +(3) nbest +./zipformer/ctc_decode.py \ + --epoch 30 \ + --avg 15 \ + --exp-dir ./zipformer/exp \ + --use-ctc 1 \ + --max-duration 600 \ + --hlg-scale 0.6 \ + --decoding-method nbest + +(4) nbest-rescoring +./zipformer/ctc_decode.py \ + --epoch 30 \ + --avg 15 \ + --exp-dir ./zipformer/exp \ + --use-ctc 1 \ + --max-duration 600 \ + --hlg-scale 0.6 \ + --nbest-scale 1.0 \ + --lm-dir data/lm \ + --decoding-method nbest-rescoring + +(5) whole-lattice-rescoring +./zipformer/ctc_decode.py \ + --epoch 30 \ + --avg 15 \ + --exp-dir ./zipformer/exp \ + --use-ctc 1 \ + --max-duration 600 \ + --hlg-scale 0.6 \ + --nbest-scale 1.0 \ + --lm-dir data/lm \ + --decoding-method whole-lattice-rescoring +""" + + +import argparse +import logging +import math +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from train import add_model_arguments, get_params, get_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.decode import ( + get_lattice, + nbest_decoding, + nbest_oracle, + one_best_decoding, + rescore_with_n_best_list, + rescore_with_whole_lattice, +) +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + get_texts, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + +LOG_EPS = math.log(1e-10) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=15, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="zipformer/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--lang-dir", + type=Path, + default="data/lang_bpe_500", + help="The lang dir containing word table and LG graph", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="ctc-decoding", + help="""Decoding method. + Supported values are: + - (1) ctc-decoding. Use CTC decoding. It uses a sentence piece + model, i.e., lang_dir/bpe.model, to convert word pieces to words. + It needs neither a lexicon nor an n-gram LM. + - (2) 1best. Extract the best path from the decoding lattice as the + decoding result. + - (3) nbest. Extract n paths from the decoding lattice; the path + with the highest score is the decoding result. + - (4) nbest-rescoring. Extract n paths from the decoding lattice, + rescore them with an n-gram LM (e.g., a 4-gram LM), the path with + the highest score is the decoding result. + - (5) whole-lattice-rescoring. Rescore the decoding lattice with an + n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice + is the decoding result. + you have trained an RNN LM using ./rnn_lm/train.py + - (6) nbest-oracle. Its WER is the lower bound of any n-best + rescoring method can achieve. Useful for debugging n-best + rescoring method. + """, + ) + + parser.add_argument( + "--num-paths", + type=int, + default=100, + help="""Number of paths for n-best based decoding method. + Used only when "method" is one of the following values: + nbest, nbest-rescoring, and nbest-oracle + """, + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=1.0, + help="""The scale to be applied to `lattice.scores`. + It's needed if you use any kinds of n-best based rescoring. + Used only when "method" is one of the following values: + nbest, nbest-rescoring, and nbest-oracle + A smaller value results in more unique paths. + """, + ) + + parser.add_argument( + "--hlg-scale", + type=float, + default=0.6, + help="""The scale to be applied to `hlg.scores`. + """, + ) + + parser.add_argument( + "--lm-dir", + type=str, + default="data/lm", + help="""The n-gram LM dir. + It should contain either G_4_gram.pt or G_4_gram.fst.txt + """, + ) + + add_model_arguments(parser) + + return parser + + +def get_decoding_params() -> AttributeDict: + """Parameters for decoding.""" + params = AttributeDict( + { + "frame_shift_ms": 10, + "search_beam": 20, + "output_beam": 8, + "min_active_states": 30, + "max_active_states": 10000, + "use_double_scores": True, + } + ) + return params + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + HLG: Optional[k2.Fsa], + H: Optional[k2.Fsa], + bpe_model: Optional[spm.SentencePieceProcessor], + batch: dict, + word_table: k2.SymbolTable, + G: Optional[k2.Fsa] = None, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + - key: It indicates the setting used for decoding. For example, + if no rescoring is used, the key is the string `no_rescore`. + If LM rescoring is used, the key is the string `lm_scale_xxx`, + where `xxx` is the value of `lm_scale`. An example key is + `lm_scale_0.7` + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + + Args: + params: + It's the return value of :func:`get_params`. + + - params.decoding_method is "1best", it uses 1best decoding without LM rescoring. + - params.decoding_method is "nbest", it uses nbest decoding without LM rescoring. + - params.decoding_method is "nbest-rescoring", it uses nbest LM rescoring. + - params.decoding_method is "whole-lattice-rescoring", it uses whole lattice LM + rescoring. + + model: + The neural model. + HLG: + The decoding graph. Used only when params.decoding_method is NOT ctc-decoding. + H: + The ctc topo. Used only when params.decoding_method is ctc-decoding. + bpe_model: + The BPE model. Used only when params.decoding_method is ctc-decoding. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + word_table: + The word symbol table. + G: + An LM. It is not None when params.decoding_method is "nbest-rescoring" + or "whole-lattice-rescoring". In general, the G in HLG + is a 3-gram LM, while this G is a 4-gram LM. + Returns: + Return the decoding result. See above description for the format of + the returned dict. Note: If it decodes to nothing, then return None. + """ + if HLG is not None: + device = HLG.device + else: + device = H.device + feature = batch["inputs"] + assert feature.ndim == 3 + feature = feature.to(device) + # at entry, feature is (N, T, C) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + if params.causal: + # this seems to cause insertions at the end of the utterance if used with zipformer. + pad_len = 30 + feature_lens += pad_len + feature = torch.nn.functional.pad( + feature, + pad=(0, 0, 0, pad_len), + value=LOG_EPS, + ) + + encoder_out, encoder_out_lens = model.forward_encoder(feature, feature_lens) + ctc_output = model.ctc_output(encoder_out) # (N, T, C) + + supervision_segments = torch.stack( + ( + supervisions["sequence_idx"], + torch.div( + supervisions["start_frame"], + params.subsampling_factor, + rounding_mode="floor", + ), + torch.div( + supervisions["num_frames"], + params.subsampling_factor, + rounding_mode="floor", + ), + ), + 1, + ).to(torch.int32) + + if H is None: + assert HLG is not None + decoding_graph = HLG + else: + assert HLG is None + assert bpe_model is not None + decoding_graph = H + + lattice = get_lattice( + nnet_output=ctc_output, + decoding_graph=decoding_graph, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + + if params.decoding_method == "ctc-decoding": + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + # Note: `best_path.aux_labels` contains token IDs, not word IDs + # since we are using H, not HLG here. + # + # token_ids is a lit-of-list of IDs + token_ids = get_texts(best_path) + + # hyps is a list of str, e.g., ['xxx yyy zzz', ...] + hyps = bpe_model.decode(token_ids) + + # hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ] + hyps = [s.split() for s in hyps] + key = "ctc-decoding" + return {key: hyps} + + if params.decoding_method == "nbest-oracle": + # Note: You can also pass rescored lattices to it. + # We choose the HLG decoded lattice for speed reasons + # as HLG decoding is faster and the oracle WER + # is only slightly worse than that of rescored lattices. + best_path = nbest_oracle( + lattice=lattice, + num_paths=params.num_paths, + ref_texts=supervisions["text"], + word_table=word_table, + nbest_scale=params.nbest_scale, + oov="", + ) + hyps = get_texts(best_path) + hyps = [[word_table[i] for i in ids] for ids in hyps] + key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa + return {key: hyps} + + if params.decoding_method in ["1best", "nbest"]: + if params.decoding_method == "1best": + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + key = "no_rescore" + else: + best_path = nbest_decoding( + lattice=lattice, + num_paths=params.num_paths, + use_double_scores=params.use_double_scores, + nbest_scale=params.nbest_scale, + ) + key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa + + hyps = get_texts(best_path) + hyps = [[word_table[i] for i in ids] for ids in hyps] + return {key: hyps} + + assert params.decoding_method in [ + "nbest-rescoring", + "whole-lattice-rescoring", + ] + + lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] + lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3] + lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0] + + if params.decoding_method == "nbest-rescoring": + best_path_dict = rescore_with_n_best_list( + lattice=lattice, + G=G, + num_paths=params.num_paths, + lm_scale_list=lm_scale_list, + nbest_scale=params.nbest_scale, + ) + elif params.decoding_method == "whole-lattice-rescoring": + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=lm_scale_list, + ) + else: + assert False, f"Unsupported decoding method: {params.decoding_method}" + + ans = dict() + if best_path_dict is not None: + for lm_scale_str, best_path in best_path_dict.items(): + hyps = get_texts(best_path) + hyps = [[word_table[i] for i in ids] for ids in hyps] + ans[lm_scale_str] = hyps + else: + ans = None + return ans + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + HLG: Optional[k2.Fsa], + H: Optional[k2.Fsa], + bpe_model: Optional[spm.SentencePieceProcessor], + word_table: k2.SymbolTable, + G: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + HLG: + The decoding graph. Used only when params.decoding_method is NOT ctc-decoding. + H: + The ctc topo. Used only when params.decoding_method is ctc-decoding. + bpe_model: + The BPE model. Used only when params.decoding_method is ctc-decoding. + word_table: + It is the word symbol table. + G: + An LM. It is not None when params.decoding_method is "nbest-rescoring" + or "whole-lattice-rescoring". In general, the G in HLG + is a 3-gram LM, while this G is a 4-gram LM. + Returns: + Return a dict, whose key may be "no-rescore" if no LM rescoring + is used, or it may be "lm_scale_0.7" if LM rescoring is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + + hyps_dict = decode_one_batch( + params=params, + model=model, + HLG=HLG, + H=H, + bpe_model=bpe_model, + batch=batch, + word_table=word_table, + G=G, + ) + + for name, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): + ref_words = ref_text.split() + this_batch.append((cut_id, ref_words, hyp_words)) + + results[name].extend(this_batch) + + num_cuts += len(texts) + + if batch_idx % 100 == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt" + results = sorted(results) + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt" + with open(errs_filename, "w") as f: + wer = write_error_stats(f, f"{test_set_name}-{key}", results) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt" + with open(errs_info, "w") as f: + print("settings\tWER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + args.lang_dir = Path(args.lang_dir) + args.lm_dir = Path(args.lm_dir) + + params = get_params() + # add decoding params + params.update(get_decoding_params()) + params.update(vars(args)) + + assert params.decoding_method in ( + "ctc-decoding", + "1best", + "nbest", + "nbest-rescoring", + "whole-lattice-rescoring", + "nbest-oracle", + ) + params.res_dir = params.exp_dir / params.decoding_method + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + if params.causal: + assert ( + "," not in params.chunk_size + ), "chunk_size should be one value in decoding." + assert ( + "," not in params.left_context_frames + ), "left_context_frames should be one value in decoding." + params.suffix += f"-chunk-{params.chunk_size}" + params.suffix += f"-left-context-{params.left_context_frames}" + + if params.use_averaged_model: + params.suffix += "-use-averaged-model" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + logging.info(params) + + lexicon = Lexicon(params.lang_dir) + max_token_id = max(lexicon.tokens) + num_classes = max_token_id + 1 # +1 for the blank + + params.vocab_size = num_classes + # and are defined in local/train_bpe_model.py + params.blank_id = 0 + + if params.decoding_method == "ctc-decoding": + HLG = None + H = k2.ctc_topo( + max_token=max_token_id, + modified=False, + device=device, + ) + bpe_model = spm.SentencePieceProcessor() + bpe_model.load(str(params.lang_dir / "bpe.model")) + else: + H = None + bpe_model = None + HLG = k2.Fsa.from_dict( + torch.load(f"{params.lang_dir}/HLG.pt", map_location=device) + ) + assert HLG.requires_grad is False + + HLG.scores *= params.hlg_scale + if not hasattr(HLG, "lm_scores"): + HLG.lm_scores = HLG.scores.clone() + + if params.decoding_method in ( + "nbest-rescoring", + "whole-lattice-rescoring", + ): + if not (params.lm_dir / "G_4_gram.pt").is_file(): + logging.info("Loading G_4_gram.fst.txt") + logging.warning("It may take 8 minutes.") + with open(params.lm_dir / "G_4_gram.fst.txt") as f: + first_word_disambig_id = lexicon.word_table["#0"] + + G = k2.Fsa.from_openfst(f.read(), acceptor=False) + # G.aux_labels is not needed in later computations, so + # remove it here. + del G.aux_labels + # CAUTION: The following line is crucial. + # Arcs entering the back-off state have label equal to #0. + # We have to change it to 0 here. + G.labels[G.labels >= first_word_disambig_id] = 0 + # See https://github.com/k2-fsa/k2/issues/874 + # for why we need to set G.properties to None + G.__dict__["_properties"] = None + G = k2.Fsa.from_fsas([G]).to(device) + G = k2.arc_sort(G) + # Save a dummy value so that it can be loaded in C++. + # See https://github.com/pytorch/pytorch/issues/67902 + # for why we need to do this. + G.dummy = 1 + + torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt") + else: + logging.info("Loading pre-compiled G_4_gram.pt") + d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device) + G = k2.Fsa.from_dict(d) + + if params.decoding_method == "whole-lattice-rescoring": + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + G = G.to(device) + + # G.lm_scores is used to replace HLG.lm_scores during + # LM rescoring. + G.lm_scores = G.scores.clone() + else: + G = None + + logging.info("About to create model") + model = get_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to(device) + model.eval() + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + # we need cut ids to display recognition results. + args.return_cuts = True + librispeech = LibriSpeechAsrDataModule(args) + + test_clean_cuts = librispeech.test_clean_cuts() + test_other_cuts = librispeech.test_other_cuts() + + test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) + test_other_dl = librispeech.test_dataloaders(test_other_cuts) + + test_sets = ["test-clean", "test-other"] + test_dl = [test_clean_dl, test_other_dl] + + for test_set, test_dl in zip(test_sets, test_dl): + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + HLG=HLG, + H=H, + bpe_model=bpe_model, + word_table=lexicon.word_table, + G=G, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/icmcasr/ASR/zipformer/decode.py b/egs/icmcasr/ASR/zipformer/decode.py new file mode 100755 index 000000000..3531d657f --- /dev/null +++ b/egs/icmcasr/ASR/zipformer/decode.py @@ -0,0 +1,1052 @@ +#!/usr/bin/env python3 +# +# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +(1) greedy search +./zipformer/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./zipformer/exp \ + --max-duration 600 \ + --decoding-method greedy_search + +(2) beam search (not recommended) +./zipformer/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./zipformer/exp \ + --max-duration 600 \ + --decoding-method beam_search \ + --beam-size 4 + +(3) modified beam search +./zipformer/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./zipformer/exp \ + --max-duration 600 \ + --decoding-method modified_beam_search \ + --beam-size 4 + +(4) fast beam search (one best) +./zipformer/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./zipformer/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 + +(5) fast beam search (nbest) +./zipformer/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./zipformer/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search_nbest \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 \ + --num-paths 200 \ + --nbest-scale 0.5 + +(6) fast beam search (nbest oracle WER) +./zipformer/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./zipformer/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search_nbest_oracle \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 \ + --num-paths 200 \ + --nbest-scale 0.5 + +(7) fast beam search (with LG) +./zipformer/decode.py \ + --epoch 28 \ + --avg 15 \ + --exp-dir ./zipformer/exp \ + --max-duration 600 \ + --decoding-method fast_beam_search_nbest_LG \ + --beam 20.0 \ + --max-contexts 8 \ + --max-states 64 +""" + + +import argparse +import logging +import math +import os +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from beam_search import ( + beam_search, + fast_beam_search_nbest, + fast_beam_search_nbest_LG, + fast_beam_search_nbest_oracle, + fast_beam_search_one_best, + greedy_search, + greedy_search_batch, + modified_beam_search, + modified_beam_search_lm_rescore, + modified_beam_search_lm_rescore_LODR, + modified_beam_search_lm_shallow_fusion, + modified_beam_search_LODR, +) +from train import add_model_arguments, get_model, get_params + +from icefall import ContextGraph, LmScorer, NgramLm +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + make_pad_mask, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + +LOG_EPS = math.log(1e-10) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=15, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="zipformer/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--lang-dir", + type=Path, + default="data/lang_bpe_500", + help="The lang dir containing word table and LG graph", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - beam_search + - modified_beam_search + - modified_beam_search_LODR + - fast_beam_search + - fast_beam_search_nbest + - fast_beam_search_nbest_oracle + - fast_beam_search_nbest_LG + If you use fast_beam_search_nbest_LG, you have to specify + `--lang-dir`, which should contain `LG.pt`. + """, + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An integer indicating how many candidates we will keep for each + frame. Used only when --decoding-method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=20.0, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --decoding-method is fast_beam_search, + fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle + """, + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=0.01, + help=""" + Used only when --decoding-method is fast_beam_search_nbest_LG. + It specifies the scale for n-gram LM scores. + """, + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=8, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=64, + help="""Used only when --decoding-method is + fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, + and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; " "2 means tri-gram", + ) + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. + Used only when --decoding-method is greedy_search""", + ) + + parser.add_argument( + "--num-paths", + type=int, + default=200, + help="""Number of paths for nbest decoding. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help="""Scale applied to lattice scores when computing nbest paths. + Used only when the decoding method is fast_beam_search_nbest, + fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", + ) + + parser.add_argument( + "--use-shallow-fusion", + type=str2bool, + default=False, + help="""Use neural network LM for shallow fusion. + If you want to use LODR, you will also need to set this to true + """, + ) + + parser.add_argument( + "--lm-type", + type=str, + default="rnn", + help="Type of NN lm", + choices=["rnn", "transformer"], + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.3, + help="""The scale of the neural network LM + Used only when `--use-shallow-fusion` is set to True. + """, + ) + + parser.add_argument( + "--tokens-ngram", + type=int, + default=2, + help="""The order of the ngram lm. + """, + ) + + parser.add_argument( + "--backoff-id", + type=int, + default=500, + help="ID of the backoff symbol in the ngram LM", + ) + + parser.add_argument( + "--context-score", + type=float, + default=2, + help=""" + The bonus score of each token for the context biasing words/phrases. + Used only when --decoding-method is modified_beam_search and + modified_beam_search_LODR. + """, + ) + + parser.add_argument( + "--context-file", + type=str, + default="", + help=""" + The path of the context biasing lists, one word/phrase each line + Used only when --decoding-method is modified_beam_search and + modified_beam_search_LODR. + """, + ) + add_model_arguments(parser) + + return parser + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + batch: dict, + word_table: Optional[k2.SymbolTable] = None, + decoding_graph: Optional[k2.Fsa] = None, + context_graph: Optional[ContextGraph] = None, + LM: Optional[LmScorer] = None, + ngram_lm=None, + ngram_lm_scale: float = 0.0, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: It indicates the setting used for decoding. For example, + if greedy_search is used, it would be "greedy_search" + If beam search with a beam size of 7 is used, it would be + "beam_7" + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + Args: + params: + It's the return value of :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + word_table: + The word symbol table. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding-method is fast_beam_search, fast_beam_search_nbest, + fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + LM: + A neural network language model. + ngram_lm: + A ngram language model + ngram_lm_scale: + The scale for the ngram language model. + Returns: + Return the decoding result. See above description for the format of + the returned dict. + """ + device = next(model.parameters()).device + feature = batch["inputs"] + assert feature.ndim == 3 + + feature = feature.to(device) + # at entry, feature is (N, T, C) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + if params.causal: + # this seems to cause insertions at the end of the utterance if used with zipformer. + pad_len = 30 + feature_lens += pad_len + feature = torch.nn.functional.pad( + feature, + pad=(0, 0, 0, pad_len), + value=LOG_EPS, + ) + + encoder_out, encoder_out_lens = model.forward_encoder(feature, feature_lens) + + hyps = [] + + if params.decoding_method == "fast_beam_search": + hyp_tokens = fast_beam_search_one_best( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "fast_beam_search_nbest_LG": + hyp_tokens = fast_beam_search_nbest_LG( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + nbest_scale=params.nbest_scale, + ) + for hyp in hyp_tokens: + hyps.append([word_table[i] for i in hyp]) + elif params.decoding_method == "fast_beam_search_nbest": + hyp_tokens = fast_beam_search_nbest( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + nbest_scale=params.nbest_scale, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "fast_beam_search_nbest_oracle": + hyp_tokens = fast_beam_search_nbest_oracle( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + num_paths=params.num_paths, + ref_texts=sp.encode(supervisions["text"]), + nbest_scale=params.nbest_scale, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: + hyp_tokens = greedy_search_batch( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search": + hyp_tokens = modified_beam_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + context_graph=context_graph, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search_lm_shallow_fusion": + hyp_tokens = modified_beam_search_lm_shallow_fusion( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + LM=LM, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search_LODR": + hyp_tokens = modified_beam_search_LODR( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + LODR_lm=ngram_lm, + LODR_lm_scale=ngram_lm_scale, + LM=LM, + context_graph=context_graph, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search_lm_rescore": + lm_scale_list = [0.01 * i for i in range(10, 50)] + ans_dict = modified_beam_search_lm_rescore( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + LM=LM, + lm_scale_list=lm_scale_list, + ) + elif params.decoding_method == "modified_beam_search_lm_rescore_LODR": + lm_scale_list = [0.02 * i for i in range(2, 30)] + ans_dict = modified_beam_search_lm_rescore_LODR( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + LM=LM, + LODR_lm=ngram_lm, + sp=sp, + lm_scale_list=lm_scale_list, + ) + else: + batch_size = encoder_out.size(0) + + for i in range(batch_size): + # fmt: off + encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] + # fmt: on + if params.decoding_method == "greedy_search": + hyp = greedy_search( + model=model, + encoder_out=encoder_out_i, + max_sym_per_frame=params.max_sym_per_frame, + ) + elif params.decoding_method == "beam_search": + hyp = beam_search( + model=model, + encoder_out=encoder_out_i, + beam=params.beam_size, + ) + else: + raise ValueError( + f"Unsupported decoding method: {params.decoding_method}" + ) + hyps.append(sp.decode(hyp).split()) + + if params.decoding_method == "greedy_search": + return {"greedy_search": hyps} + elif "fast_beam_search" in params.decoding_method: + key = f"beam_{params.beam}_" + key += f"max_contexts_{params.max_contexts}_" + key += f"max_states_{params.max_states}" + if "nbest" in params.decoding_method: + key += f"_num_paths_{params.num_paths}_" + key += f"nbest_scale_{params.nbest_scale}" + if "LG" in params.decoding_method: + key += f"_ngram_lm_scale_{params.ngram_lm_scale}" + + return {key: hyps} + elif "modified_beam_search" in params.decoding_method: + prefix = f"beam_size_{params.beam_size}" + if params.decoding_method in ( + "modified_beam_search_lm_rescore", + "modified_beam_search_lm_rescore_LODR", + ): + ans = dict() + assert ans_dict is not None + for key, hyps in ans_dict.items(): + hyps = [sp.decode(hyp).split() for hyp in hyps] + ans[f"{prefix}_{key}"] = hyps + return ans + else: + if params.has_contexts: + prefix += f"-context-score-{params.context_score}" + return {prefix: hyps} + else: + return {f"beam_size_{params.beam_size}": hyps} + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + word_table: Optional[k2.SymbolTable] = None, + decoding_graph: Optional[k2.Fsa] = None, + context_graph: Optional[ContextGraph] = None, + LM: Optional[LmScorer] = None, + ngram_lm=None, + ngram_lm_scale: float = 0.0, +) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + word_table: + The word symbol table. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding-method is fast_beam_search, fast_beam_search_nbest, + fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. + Returns: + Return a dict, whose key may be "greedy_search" if greedy search + is used, or it may be "beam_7" if beam size of 7 is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + if params.decoding_method == "greedy_search": + log_interval = 50 + else: + log_interval = 20 + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + + hyps_dict = decode_one_batch( + params=params, + model=model, + sp=sp, + decoding_graph=decoding_graph, + context_graph=context_graph, + word_table=word_table, + batch=batch, + LM=LM, + ngram_lm=ngram_lm, + ngram_lm_scale=ngram_lm_scale, + ) + + for name, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): + ref_words = ref_text.split() + this_batch.append((cut_id, ref_words, hyp_words)) + + results[name].extend(this_batch) + + num_cuts += len(texts) + + if batch_idx % log_interval == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + results = sorted(results) + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_filename, "w") as f: + wer = write_error_stats( + f, f"{test_set_name}-{key}", results, enable_log=True + ) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = ( + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_info, "w") as f: + print("settings\tWER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + LmScorer.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + assert params.decoding_method in ( + "greedy_search", + "beam_search", + "fast_beam_search", + "fast_beam_search_nbest", + "fast_beam_search_nbest_LG", + "fast_beam_search_nbest_oracle", + "modified_beam_search", + "modified_beam_search_LODR", + "modified_beam_search_lm_shallow_fusion", + "modified_beam_search_lm_rescore", + "modified_beam_search_lm_rescore_LODR", + ) + params.res_dir = params.exp_dir / params.decoding_method + + if os.path.exists(params.context_file): + params.has_contexts = True + else: + params.has_contexts = False + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + if params.causal: + assert ( + "," not in params.chunk_size + ), "chunk_size should be one value in decoding." + assert ( + "," not in params.left_context_frames + ), "left_context_frames should be one value in decoding." + params.suffix += f"-chunk-{params.chunk_size}" + params.suffix += f"-left-context-{params.left_context_frames}" + + if "fast_beam_search" in params.decoding_method: + params.suffix += f"-beam-{params.beam}" + params.suffix += f"-max-contexts-{params.max_contexts}" + params.suffix += f"-max-states-{params.max_states}" + if "nbest" in params.decoding_method: + params.suffix += f"-nbest-scale-{params.nbest_scale}" + params.suffix += f"-num-paths-{params.num_paths}" + if "LG" in params.decoding_method: + params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" + elif "beam_search" in params.decoding_method: + params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" + if params.decoding_method in ( + "modified_beam_search", + "modified_beam_search_LODR", + ): + if params.has_contexts: + params.suffix += f"-context-score-{params.context_score}" + else: + params.suffix += f"-context-{params.context_size}" + params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" + + if params.use_shallow_fusion: + params.suffix += f"-{params.lm_type}-lm-scale-{params.lm_scale}" + + if "LODR" in params.decoding_method: + params.suffix += ( + f"-LODR-{params.tokens_ngram}gram-scale-{params.ngram_lm_scale}" + ) + + if params.use_averaged_model: + params.suffix += "-use-averaged-model" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # and are defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to(device) + model.eval() + + # only load the neural network LM if required + if params.use_shallow_fusion or params.decoding_method in ( + "modified_beam_search_lm_rescore", + "modified_beam_search_lm_rescore_LODR", + "modified_beam_search_lm_shallow_fusion", + "modified_beam_search_LODR", + ): + LM = LmScorer( + lm_type=params.lm_type, + params=params, + device=device, + lm_scale=params.lm_scale, + ) + LM.to(device) + LM.eval() + else: + LM = None + + # only load N-gram LM when needed + if params.decoding_method == "modified_beam_search_lm_rescore_LODR": + try: + import kenlm + except ImportError: + print("Please install kenlm first. You can use") + print(" pip install https://github.com/kpu/kenlm/archive/master.zip") + print("to install it") + import sys + + sys.exit(-1) + ngram_file_name = str(params.lang_dir / f"{params.tokens_ngram}gram.arpa") + logging.info(f"lm filename: {ngram_file_name}") + ngram_lm = kenlm.Model(ngram_file_name) + ngram_lm_scale = None # use a list to search + + elif params.decoding_method == "modified_beam_search_LODR": + lm_filename = f"{params.tokens_ngram}gram.fst.txt" + logging.info(f"Loading token level lm: {lm_filename}") + ngram_lm = NgramLm( + str(params.lang_dir / lm_filename), + backoff_id=params.backoff_id, + is_binary=False, + ) + logging.info(f"num states: {ngram_lm.lm.num_states}") + ngram_lm_scale = params.ngram_lm_scale + else: + ngram_lm = None + ngram_lm_scale = None + + if "fast_beam_search" in params.decoding_method: + if params.decoding_method == "fast_beam_search_nbest_LG": + lexicon = Lexicon(params.lang_dir) + word_table = lexicon.word_table + lg_filename = params.lang_dir / "LG.pt" + logging.info(f"Loading {lg_filename}") + decoding_graph = k2.Fsa.from_dict( + torch.load(lg_filename, map_location=device) + ) + decoding_graph.scores *= params.ngram_lm_scale + else: + word_table = None + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + else: + decoding_graph = None + word_table = None + + if "modified_beam_search" in params.decoding_method: + if os.path.exists(params.context_file): + contexts = [] + for line in open(params.context_file).readlines(): + contexts.append(line.strip()) + context_graph = ContextGraph(params.context_score) + context_graph.build(sp.encode(contexts)) + else: + context_graph = None + else: + context_graph = None + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + # we need cut ids to display recognition results. + args.return_cuts = True + librispeech = LibriSpeechAsrDataModule(args) + + test_clean_cuts = librispeech.test_clean_cuts() + test_other_cuts = librispeech.test_other_cuts() + + test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) + test_other_dl = librispeech.test_dataloaders(test_other_cuts) + + test_sets = ["test-clean", "test-other"] + test_dl = [test_clean_dl, test_other_dl] + + for test_set, test_dl in zip(test_sets, test_dl): + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + sp=sp, + word_table=word_table, + decoding_graph=decoding_graph, + context_graph=context_graph, + LM=LM, + ngram_lm=ngram_lm, + ngram_lm_scale=ngram_lm_scale, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/icmcasr/ASR/zipformer/decode_stream.py b/egs/icmcasr/ASR/zipformer/decode_stream.py new file mode 100644 index 000000000..d6918bf32 --- /dev/null +++ b/egs/icmcasr/ASR/zipformer/decode_stream.py @@ -0,0 +1,148 @@ +# Copyright 2022 Xiaomi Corp. (authors: Wei Kang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +from typing import List, Optional, Tuple + +import k2 +import torch +from beam_search import Hypothesis, HypothesisList + +from icefall.utils import AttributeDict + + +class DecodeStream(object): + def __init__( + self, + params: AttributeDict, + cut_id: str, + initial_states: List[torch.Tensor], + decoding_graph: Optional[k2.Fsa] = None, + device: torch.device = torch.device("cpu"), + ) -> None: + """ + Args: + initial_states: + Initial decode states of the model, e.g. the return value of + `get_init_state` in conformer.py + decoding_graph: + Decoding graph used for decoding, may be a TrivialGraph or a HLG. + Used only when decoding_method is fast_beam_search. + device: + The device to run this stream. + """ + if params.decoding_method == "fast_beam_search": + assert decoding_graph is not None + assert device == decoding_graph.device + + self.params = params + self.cut_id = cut_id + self.LOG_EPS = math.log(1e-10) + + self.states = initial_states + + # It contains a 2-D tensors representing the feature frames. + self.features: torch.Tensor = None + + self.num_frames: int = 0 + # how many frames have been processed. (before subsampling). + # we only modify this value in `func:get_feature_frames`. + self.num_processed_frames: int = 0 + + self._done: bool = False + + # The transcript of current utterance. + self.ground_truth: str = "" + + # The decoding result (partial or final) of current utterance. + self.hyp: List = [] + + # how many frames have been processed, at encoder output + self.done_frames: int = 0 + + # The encoder_embed subsample features (T - 7) // 2 + # The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling + self.pad_length = 7 + 2 * 3 + + if params.decoding_method == "greedy_search": + self.hyp = [-1] * (params.context_size - 1) + [params.blank_id] + elif params.decoding_method == "modified_beam_search": + self.hyps = HypothesisList() + self.hyps.add( + Hypothesis( + ys=[-1] * (params.context_size - 1) + [params.blank_id], + log_prob=torch.zeros(1, dtype=torch.float32, device=device), + ) + ) + elif params.decoding_method == "fast_beam_search": + # The rnnt_decoding_stream for fast_beam_search. + self.rnnt_decoding_stream: k2.RnntDecodingStream = k2.RnntDecodingStream( + decoding_graph + ) + else: + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") + + @property + def done(self) -> bool: + """Return True if all the features are processed.""" + return self._done + + @property + def id(self) -> str: + return self.cut_id + + def set_features( + self, + features: torch.Tensor, + tail_pad_len: int = 0, + ) -> None: + """Set features tensor of current utterance.""" + assert features.dim() == 2, features.dim() + self.features = torch.nn.functional.pad( + features, + (0, 0, 0, self.pad_length + tail_pad_len), + mode="constant", + value=self.LOG_EPS, + ) + self.num_frames = self.features.size(0) + + def get_feature_frames(self, chunk_size: int) -> Tuple[torch.Tensor, int]: + """Consume chunk_size frames of features""" + chunk_length = chunk_size + self.pad_length + + ret_length = min(self.num_frames - self.num_processed_frames, chunk_length) + + ret_features = self.features[ + self.num_processed_frames : self.num_processed_frames + ret_length # noqa + ] + + self.num_processed_frames += chunk_size + if self.num_processed_frames >= self.num_frames: + self._done = True + + return ret_features, ret_length + + def decoding_result(self) -> List[int]: + """Obtain current decoding result.""" + if self.params.decoding_method == "greedy_search": + return self.hyp[self.params.context_size :] # noqa + elif self.params.decoding_method == "modified_beam_search": + best_hyp = self.hyps.get_most_probable(length_norm=True) + return best_hyp.ys[self.params.context_size :] # noqa + else: + assert self.params.decoding_method == "fast_beam_search" + return self.hyp diff --git a/egs/icmcasr/ASR/zipformer/decoder.py b/egs/icmcasr/ASR/zipformer/decoder.py new file mode 100644 index 000000000..e77e54118 --- /dev/null +++ b/egs/icmcasr/ASR/zipformer/decoder.py @@ -0,0 +1,130 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from scaling import Balancer + + +class Decoder(nn.Module): + """This class modifies the stateless decoder from the following paper: + + RNN-transducer with stateless prediction network + https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419 + + It removes the recurrent connection from the decoder, i.e., the prediction + network. Different from the above paper, it adds an extra Conv1d + right after the embedding layer. + + TODO: Implement https://arxiv.org/pdf/2109.07513.pdf + """ + + def __init__( + self, + vocab_size: int, + decoder_dim: int, + blank_id: int, + context_size: int, + ): + """ + Args: + vocab_size: + Number of tokens of the modeling unit including blank. + decoder_dim: + Dimension of the input embedding, and of the decoder output. + blank_id: + The ID of the blank symbol. + context_size: + Number of previous words to use to predict the next word. + 1 means bigram; 2 means trigram. n means (n+1)-gram. + """ + super().__init__() + + self.embedding = nn.Embedding( + num_embeddings=vocab_size, + embedding_dim=decoder_dim, + ) + # the balancers are to avoid any drift in the magnitude of the + # embeddings, which would interact badly with parameter averaging. + self.balancer = Balancer( + decoder_dim, + channel_dim=-1, + min_positive=0.0, + max_positive=1.0, + min_abs=0.5, + max_abs=1.0, + prob=0.05, + ) + + self.blank_id = blank_id + + assert context_size >= 1, context_size + self.context_size = context_size + self.vocab_size = vocab_size + + if context_size > 1: + self.conv = nn.Conv1d( + in_channels=decoder_dim, + out_channels=decoder_dim, + kernel_size=context_size, + padding=0, + groups=decoder_dim // 4, # group size == 4 + bias=False, + ) + self.balancer2 = Balancer( + decoder_dim, + channel_dim=-1, + min_positive=0.0, + max_positive=1.0, + min_abs=0.5, + max_abs=1.0, + prob=0.05, + ) + + def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor: + """ + Args: + y: + A 2-D tensor of shape (N, U). + need_pad: + True to left pad the input. Should be True during training. + False to not pad the input. Should be False during inference. + Returns: + Return a tensor of shape (N, U, decoder_dim). + """ + y = y.to(torch.int64) + # this stuff about clamp() is a temporary fix for a mismatch + # at utterance start, we use negative ids in beam_search.py + embedding_out = self.embedding(y.clamp(min=0)) * (y >= 0).unsqueeze(-1) + + embedding_out = self.balancer(embedding_out) + + if self.context_size > 1: + embedding_out = embedding_out.permute(0, 2, 1) + if need_pad is True: + embedding_out = F.pad(embedding_out, pad=(self.context_size - 1, 0)) + else: + # During inference time, there is no need to do extra padding + # as we only need one output + assert embedding_out.size(-1) == self.context_size + embedding_out = self.conv(embedding_out) + embedding_out = embedding_out.permute(0, 2, 1) + embedding_out = F.relu(embedding_out) + embedding_out = self.balancer2(embedding_out) + + return embedding_out diff --git a/egs/icmcasr/ASR/zipformer/encoder_interface.py b/egs/icmcasr/ASR/zipformer/encoder_interface.py new file mode 100644 index 000000000..257facce4 --- /dev/null +++ b/egs/icmcasr/ASR/zipformer/encoder_interface.py @@ -0,0 +1,43 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Tuple + +import torch +import torch.nn as nn + + +class EncoderInterface(nn.Module): + def forward( + self, x: torch.Tensor, x_lens: torch.Tensor + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Args: + x: + A tensor of shape (batch_size, input_seq_len, num_features) + containing the input features. + x_lens: + A tensor of shape (batch_size,) containing the number of frames + in `x` before padding. + Returns: + Return a tuple containing two tensors: + - encoder_out, a tensor of (batch_size, out_seq_len, output_dim) + containing unnormalized probabilities, i.e., the output of a + linear layer. + - encoder_out_lens, a tensor of shape (batch_size,) containing + the number of frames in `encoder_out` before padding. + """ + raise NotImplementedError("Please implement it in a subclass") diff --git a/egs/icmcasr/ASR/zipformer/joiner.py b/egs/icmcasr/ASR/zipformer/joiner.py new file mode 100644 index 000000000..dfb0a0057 --- /dev/null +++ b/egs/icmcasr/ASR/zipformer/joiner.py @@ -0,0 +1,67 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch +import torch.nn as nn +from scaling import ScaledLinear + + +class Joiner(nn.Module): + def __init__( + self, + encoder_dim: int, + decoder_dim: int, + joiner_dim: int, + vocab_size: int, + ): + super().__init__() + + self.encoder_proj = ScaledLinear(encoder_dim, joiner_dim, initial_scale=0.25) + self.decoder_proj = ScaledLinear(decoder_dim, joiner_dim, initial_scale=0.25) + self.output_linear = nn.Linear(joiner_dim, vocab_size) + + def forward( + self, + encoder_out: torch.Tensor, + decoder_out: torch.Tensor, + project_input: bool = True, + ) -> torch.Tensor: + """ + Args: + encoder_out: + Output from the encoder. Its shape is (N, T, s_range, C). + decoder_out: + Output from the decoder. Its shape is (N, T, s_range, C). + project_input: + If true, apply input projections encoder_proj and decoder_proj. + If this is false, it is the user's responsibility to do this + manually. + Returns: + Return a tensor of shape (N, T, s_range, C). + """ + assert encoder_out.ndim == decoder_out.ndim, ( + encoder_out.shape, + decoder_out.shape, + ) + + if project_input: + logit = self.encoder_proj(encoder_out) + self.decoder_proj(decoder_out) + else: + logit = encoder_out + decoder_out + + logit = self.output_linear(torch.tanh(logit)) + + return logit diff --git a/egs/icmcasr/ASR/zipformer/model.py b/egs/icmcasr/ASR/zipformer/model.py new file mode 100644 index 000000000..f2f86af47 --- /dev/null +++ b/egs/icmcasr/ASR/zipformer/model.py @@ -0,0 +1,358 @@ +# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Optional, Tuple + +import k2 +import torch +import torch.nn as nn +from encoder_interface import EncoderInterface + +from icefall.utils import add_sos, make_pad_mask +from scaling import ScaledLinear + + +class AsrModel(nn.Module): + def __init__( + self, + encoder_embed: nn.Module, + encoder: EncoderInterface, + decoder: Optional[nn.Module] = None, + joiner: Optional[nn.Module] = None, + encoder_dim: int = 384, + decoder_dim: int = 512, + vocab_size: int = 500, + use_transducer: bool = True, + use_ctc: bool = False, + ): + """A joint CTC & Transducer ASR model. + + - Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks (http://imagine.enpc.fr/~obozinsg/teaching/mva_gm/papers/ctc.pdf) + - Sequence Transduction with Recurrent Neural Networks (https://arxiv.org/pdf/1211.3711.pdf) + - Pruned RNN-T for fast, memory-efficient ASR training (https://arxiv.org/pdf/2206.13236.pdf) + + Args: + encoder_embed: + It is a Convolutional 2D subsampling module. It converts + an input of shape (N, T, idim) to an output of of shape + (N, T', odim), where T' = (T-3)//2-2 = (T-7)//2. + encoder: + It is the transcription network in the paper. Its accepts + two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,). + It returns two tensors: `logits` of shape (N, T, encoder_dim) and + `logit_lens` of shape (N,). + decoder: + It is the prediction network in the paper. Its input shape + is (N, U) and its output shape is (N, U, decoder_dim). + It should contain one attribute: `blank_id`. + It is used when use_transducer is True. + joiner: + It has two inputs with shapes: (N, T, encoder_dim) and (N, U, decoder_dim). + Its output shape is (N, T, U, vocab_size). Note that its output contains + unnormalized probs, i.e., not processed by log-softmax. + It is used when use_transducer is True. + use_transducer: + Whether use transducer head. Default: True. + use_ctc: + Whether use CTC head. Default: False. + """ + super().__init__() + + assert ( + use_transducer or use_ctc + ), f"At least one of them should be True, but got use_transducer={use_transducer}, use_ctc={use_ctc}" + + assert isinstance(encoder, EncoderInterface), type(encoder) + + self.encoder_embed = encoder_embed + self.encoder = encoder + + self.use_transducer = use_transducer + if use_transducer: + # Modules for Transducer head + assert decoder is not None + assert hasattr(decoder, "blank_id") + assert joiner is not None + + self.decoder = decoder + self.joiner = joiner + + self.simple_am_proj = ScaledLinear( + encoder_dim, vocab_size, initial_scale=0.25 + ) + self.simple_lm_proj = ScaledLinear( + decoder_dim, vocab_size, initial_scale=0.25 + ) + else: + assert decoder is None + assert joiner is None + + self.use_ctc = use_ctc + if use_ctc: + # Modules for CTC head + self.ctc_output = nn.Sequential( + nn.Dropout(p=0.1), + nn.Linear(encoder_dim, vocab_size), + nn.LogSoftmax(dim=-1), + ) + + def forward_encoder( + self, x: torch.Tensor, x_lens: torch.Tensor + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Compute encoder outputs. + Args: + x: + A 3-D tensor of shape (N, T, C). + x_lens: + A 1-D tensor of shape (N,). It contains the number of frames in `x` + before padding. + + Returns: + encoder_out: + Encoder output, of shape (N, T, C). + encoder_out_lens: + Encoder output lengths, of shape (N,). + """ + # logging.info(f"Memory allocated at entry: {torch.cuda.memory_allocated() // 1000000}M") + x, x_lens = self.encoder_embed(x, x_lens) + # logging.info(f"Memory allocated after encoder_embed: {torch.cuda.memory_allocated() // 1000000}M") + + src_key_padding_mask = make_pad_mask(x_lens) + x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) + + encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask) + + encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C) + assert torch.all(encoder_out_lens > 0), (x_lens, encoder_out_lens) + + return encoder_out, encoder_out_lens + + def forward_ctc( + self, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + targets: torch.Tensor, + target_lengths: torch.Tensor, + ) -> torch.Tensor: + """Compute CTC loss. + Args: + encoder_out: + Encoder output, of shape (N, T, C). + encoder_out_lens: + Encoder output lengths, of shape (N,). + targets: + Target Tensor of shape (sum(target_lengths)). The targets are assumed + to be un-padded and concatenated within 1 dimension. + """ + # Compute CTC log-prob + ctc_output = self.ctc_output(encoder_out) # (N, T, C) + + ctc_loss = torch.nn.functional.ctc_loss( + log_probs=ctc_output.permute(1, 0, 2), # (T, N, C) + targets=targets, + input_lengths=encoder_out_lens, + target_lengths=target_lengths, + reduction="sum", + ) + return ctc_loss + + def forward_transducer( + self, + encoder_out: torch.Tensor, + encoder_out_lens: torch.Tensor, + y: k2.RaggedTensor, + y_lens: torch.Tensor, + prune_range: int = 5, + am_scale: float = 0.0, + lm_scale: float = 0.0, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Compute Transducer loss. + Args: + encoder_out: + Encoder output, of shape (N, T, C). + encoder_out_lens: + Encoder output lengths, of shape (N,). + y: + A ragged tensor with 2 axes [utt][label]. It contains labels of each + utterance. + prune_range: + The prune range for rnnt loss, it means how many symbols(context) + we are considering for each frame to compute the loss. + am_scale: + The scale to smooth the loss with am (output of encoder network) + part + lm_scale: + The scale to smooth the loss with lm (output of predictor network) + part + """ + # Now for the decoder, i.e., the prediction network + blank_id = self.decoder.blank_id + sos_y = add_sos(y, sos_id=blank_id) + + # sos_y_padded: [B, S + 1], start with SOS. + sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id) + + # decoder_out: [B, S + 1, decoder_dim] + decoder_out = self.decoder(sos_y_padded) + + # Note: y does not start with SOS + # y_padded : [B, S] + y_padded = y.pad(mode="constant", padding_value=0) + + y_padded = y_padded.to(torch.int64) + boundary = torch.zeros( + (encoder_out.size(0), 4), + dtype=torch.int64, + device=encoder_out.device, + ) + boundary[:, 2] = y_lens + boundary[:, 3] = encoder_out_lens + + lm = self.simple_lm_proj(decoder_out) + am = self.simple_am_proj(encoder_out) + + # if self.training and random.random() < 0.25: + # lm = penalize_abs_values_gt(lm, 100.0, 1.0e-04) + # if self.training and random.random() < 0.25: + # am = penalize_abs_values_gt(am, 30.0, 1.0e-04) + + with torch.cuda.amp.autocast(enabled=False): + simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed( + lm=lm.float(), + am=am.float(), + symbols=y_padded, + termination_symbol=blank_id, + lm_only_scale=lm_scale, + am_only_scale=am_scale, + boundary=boundary, + reduction="sum", + return_grad=True, + ) + + # ranges : [B, T, prune_range] + ranges = k2.get_rnnt_prune_ranges( + px_grad=px_grad, + py_grad=py_grad, + boundary=boundary, + s_range=prune_range, + ) + + # am_pruned : [B, T, prune_range, encoder_dim] + # lm_pruned : [B, T, prune_range, decoder_dim] + am_pruned, lm_pruned = k2.do_rnnt_pruning( + am=self.joiner.encoder_proj(encoder_out), + lm=self.joiner.decoder_proj(decoder_out), + ranges=ranges, + ) + + # logits : [B, T, prune_range, vocab_size] + + # project_input=False since we applied the decoder's input projections + # prior to do_rnnt_pruning (this is an optimization for speed). + logits = self.joiner(am_pruned, lm_pruned, project_input=False) + + with torch.cuda.amp.autocast(enabled=False): + pruned_loss = k2.rnnt_loss_pruned( + logits=logits.float(), + symbols=y_padded, + ranges=ranges, + termination_symbol=blank_id, + boundary=boundary, + reduction="sum", + ) + + return simple_loss, pruned_loss + + def forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + y: k2.RaggedTensor, + prune_range: int = 5, + am_scale: float = 0.0, + lm_scale: float = 0.0, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Args: + x: + A 3-D tensor of shape (N, T, C). + x_lens: + A 1-D tensor of shape (N,). It contains the number of frames in `x` + before padding. + y: + A ragged tensor with 2 axes [utt][label]. It contains labels of each + utterance. + prune_range: + The prune range for rnnt loss, it means how many symbols(context) + we are considering for each frame to compute the loss. + am_scale: + The scale to smooth the loss with am (output of encoder network) + part + lm_scale: + The scale to smooth the loss with lm (output of predictor network) + part + Returns: + Return the transducer losses and CTC loss, + in form of (simple_loss, pruned_loss, ctc_loss) + + Note: + Regarding am_scale & lm_scale, it will make the loss-function one of + the form: + lm_scale * lm_probs + am_scale * am_probs + + (1-lm_scale-am_scale) * combined_probs + """ + assert x.ndim == 3, x.shape + assert x_lens.ndim == 1, x_lens.shape + assert y.num_axes == 2, y.num_axes + + assert x.size(0) == x_lens.size(0) == y.dim0, (x.shape, x_lens.shape, y.dim0) + + # Compute encoder outputs + encoder_out, encoder_out_lens = self.forward_encoder(x, x_lens) + + row_splits = y.shape.row_splits(1) + y_lens = row_splits[1:] - row_splits[:-1] + + if self.use_transducer: + # Compute transducer loss + simple_loss, pruned_loss = self.forward_transducer( + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + y=y.to(x.device), + y_lens=y_lens, + prune_range=prune_range, + am_scale=am_scale, + lm_scale=lm_scale, + ) + else: + simple_loss = torch.empty(0) + pruned_loss = torch.empty(0) + + if self.use_ctc: + # Compute CTC loss + targets = y.values + ctc_loss = self.forward_ctc( + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + targets=targets, + target_lengths=y_lens, + ) + else: + ctc_loss = torch.empty(0) + + return simple_loss, pruned_loss, ctc_loss diff --git a/egs/icmcasr/ASR/zipformer/optim.py b/egs/icmcasr/ASR/zipformer/optim.py new file mode 100644 index 000000000..c9b76526c --- /dev/null +++ b/egs/icmcasr/ASR/zipformer/optim.py @@ -0,0 +1,1169 @@ +# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey) +# +# See ../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import contextlib +import logging +import random +from collections import defaultdict +from typing import Dict, List, Optional, Tuple, Union + +import torch +from lhotse.utils import fix_random_seed +from torch import Tensor +from torch.optim import Optimizer + + +class BatchedOptimizer(Optimizer): + """ + This class adds to class Optimizer the capability to optimize parameters in batches: + it will stack the parameters and their grads for you so the optimizer can work + on tensors with an extra leading dimension. This is intended for speed with GPUs, + as it reduces the number of kernels launched in the optimizer. + + Args: + params: + """ + + def __init__(self, params, defaults): + super(BatchedOptimizer, self).__init__(params, defaults) + + @contextlib.contextmanager + def batched_params(self, param_group, group_params_names): + """ + This function returns (technically, yields) a list of + of tuples (p, state), where + p is a `fake` parameter that is stacked (over axis 0) from real parameters + that share the same shape, and its gradient is also stacked; + `state` is the state corresponding to this batch of parameters + (it will be physically located in the "state" for one of the real + parameters, the last one that has any particular shape and dtype). + + This function is decorated as a context manager so that it can + write parameters back to their "real" locations. + + The idea is, instead of doing: + + for p in group["params"]: + state = self.state[p] + ... + + you can do: + + with self.batched_params(group["params"]) as batches: + for p, state, p_names in batches: + ... + + + Args: + group: a parameter group, which is a list of parameters; should be + one of self.param_groups. + group_params_names: name for each parameter in group, + which is List[str]. + """ + batches = defaultdict( + list + ) # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter + batches_names = defaultdict( + list + ) # `batches` maps from tuple (dtype_as_str,*shape) to list of str + + assert len(param_group) == len(group_params_names) + for p, named_p in zip(param_group, group_params_names): + key = (str(p.dtype), *p.shape) + batches[key].append(p) + batches_names[key].append(named_p) + + batches_names_keys = list(batches_names.keys()) + sorted_idx = sorted( + range(len(batches_names)), key=lambda i: batches_names_keys[i] + ) + batches_names = [batches_names[batches_names_keys[idx]] for idx in sorted_idx] + batches = [batches[batches_names_keys[idx]] for idx in sorted_idx] + + stacked_params_dict = dict() + + # turn batches into a list, in deterministic order. + # tuples will contain tuples of (stacked_param, state, stacked_params_names), + # one for each batch in `batches`. + tuples = [] + + for batch, batch_names in zip(batches, batches_names): + p = batch[0] + # we arbitrarily store the state in the + # state corresponding to the 1st parameter in the + # group. class Optimizer will take care of saving/loading state. + state = self.state[p] + p_stacked = torch.stack(batch) + grad = torch.stack( + [torch.zeros_like(p) if p.grad is None else p.grad for p in batch] + ) + p_stacked.grad = grad + stacked_params_dict[key] = p_stacked + tuples.append((p_stacked, state, batch_names)) + + yield tuples # <-- calling code will do the actual optimization here! + + for (stacked_params, _state, _names), batch in zip(tuples, batches): + for i, p in enumerate(batch): # batch is list of Parameter + p.copy_(stacked_params[i]) + + +class ScaledAdam(BatchedOptimizer): + """ + Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update + proportional to the norm of that parameter; and also learn the scale of the parameter, + in log space, subject to upper and lower limits (as if we had factored each parameter as + param = underlying_param * log_scale.exp()) + + + Args: + params: The parameters or param_groups to optimize (like other Optimizer subclasses) + Unlike common optimizers, which accept model.parameters() or groups of parameters(), + this optimizer could accept model.named_parameters() or groups of named_parameters(). + See comments of function _get_names_of_parameters for its 4 possible cases. + lr: The learning rate. We will typically use a learning rate schedule that starts + at 0.03 and decreases over time, i.e. much higher than other common + optimizers. + clipping_scale: (e.g. 2.0) + A scale for gradient-clipping: if specified, the normalized gradients + over the whole model will be clipped to have 2-norm equal to + `clipping_scale` times the median 2-norm over the most recent period + of `clipping_update_period` minibatches. By "normalized gradients", + we mean after multiplying by the rms parameter value for this tensor + [for non-scalars]; this is appropriate because our update is scaled + by this quantity. + betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad. + Must satisfy 0 < beta <= beta2 < 1. + scalar_lr_scale: A scaling factor on the learning rate, that we use to update the + scale of each parameter tensor and scalar parameters of the mode.. + If each parameter were decomposed + as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale + would be a the scaling factor on the learning rate of p_scale. + eps: A general-purpose epsilon to prevent division by zero + param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of + learning the scale on the parameters (we'll constrain the rms of each non-scalar + parameter tensor to be >= this value) + param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of + learning the scale on the parameters (we'll constrain the rms of each non-scalar + parameter tensor to be <= this value) + scalar_max: Maximum absolute value for scalar parameters (applicable if your + model has any parameters with numel() == 1). + size_update_period: The periodicity, in steps, with which we update the size (scale) + of the parameter tensor. This is provided to save a little time + in the update. + clipping_update_period: if clipping_scale is specified, this is the period + """ + + def __init__( + self, + params, + lr=3e-02, + clipping_scale=None, + betas=(0.9, 0.98), + scalar_lr_scale=0.1, + eps=1.0e-08, + param_min_rms=1.0e-05, + param_max_rms=3.0, + scalar_max=10.0, + size_update_period=4, + clipping_update_period=100, + ): + defaults = dict( + lr=lr, + clipping_scale=clipping_scale, + betas=betas, + scalar_lr_scale=scalar_lr_scale, + eps=eps, + param_min_rms=param_min_rms, + param_max_rms=param_max_rms, + scalar_max=scalar_max, + size_update_period=size_update_period, + clipping_update_period=clipping_update_period, + ) + + # If params only contains parameters or group of parameters, + # i.e when parameter names are not given, + # this flag will be set to False in funciton _get_names_of_parameters. + self.show_dominant_parameters = True + param_groups, parameters_names = self._get_names_of_parameters(params) + super(ScaledAdam, self).__init__(param_groups, defaults) + assert len(self.param_groups) == len(parameters_names) + self.parameters_names = parameters_names + + def _get_names_of_parameters( + self, params_or_named_params + ) -> Tuple[List[Dict], List[List[str]]]: + """ + Args: + params_or_named_params: according to the way ScaledAdam is initialized in train.py, + this argument could be one of following 4 cases, + case 1, a generator of parameter, e.g.: + optimizer = ScaledAdam(model.parameters(), lr=params.base_lr, clipping_scale=3.0) + + case 2, a list of parameter groups with different config, e.g.: + model_param_groups = [ + {'params': model.encoder.parameters(), 'lr': 0.05}, + {'params': model.decoder.parameters(), 'lr': 0.01}, + {'params': model.joiner.parameters(), 'lr': 0.03}, + ] + optimizer = ScaledAdam(model_param_groups, lr=params.base_lr, clipping_scale=3.0) + + case 3, a generator of named_parameter, e.g.: + optimizer = ScaledAdam(model.named_parameters(), lr=params.base_lr, clipping_scale=3.0) + + case 4, a list of named_parameter groups with different config, e.g.: + model_named_param_groups = [ + {'named_params': model.encoder.named_parameters(), 'lr': 0.05}, + {'named_params': model.decoder.named_parameters(), 'lr': 0.01}, + {'named_params': model.joiner.named_parameters(), 'lr': 0.03}, + ] + optimizer = ScaledAdam(model_named_param_groups, lr=params.base_lr, clipping_scale=3.0) + + For case 1 and case 2, input params is used to initialize the underlying torch.optimizer. + For case 3 and case 4, firstly, names and params are extracted from input named_params, + then, these extracted params are used to initialize the underlying torch.optimizer, + and these extracted names are mainly used by function + `_show_gradient_dominating_parameter` + + Returns: + Returns a tuple containing 2 elements: + - `param_groups` with type List[Dict], each Dict element is a parameter group. + An example of `param_groups` could be: + [ + {'params': `one iterable of Parameter`, 'lr': 0.05}, + {'params': `another iterable of Parameter`, 'lr': 0.08}, + {'params': `a third iterable of Parameter`, 'lr': 0.1}, + ] + - `param_gruops_names` with type List[List[str]], + each `List[str]` is for a group['params'] in param_groups, + and each `str` is the name of a parameter. + A dummy name "foo" is related to each parameter, + if input are params without names, i.e. case 1 or case 2. + """ + # variable naming convention in this function: + # p is short for param. + # np is short for named_param. + # p_or_np is short for param_or_named_param. + # cur is short for current. + # group is a dict, e.g. {'params': iterable of parameter, 'lr': 0.05, other fields}. + # groups is a List[group] + + iterable_or_groups = list(params_or_named_params) + if len(iterable_or_groups) == 0: + raise ValueError("optimizer got an empty parameter list") + + # The first value of returned tuple. A list of dicts containing at + # least 'params' as a key. + param_groups = [] + + # The second value of returned tuple, + # a List[List[str]], each sub-List is for a group. + param_groups_names = [] + + if not isinstance(iterable_or_groups[0], dict): + # case 1 or case 3, + # the input is an iterable of parameter or named parameter. + param_iterable_cur_group = [] + param_names_cur_group = [] + for p_or_np in iterable_or_groups: + if isinstance(p_or_np, tuple): + # case 3 + name, param = p_or_np + else: + # case 1 + assert isinstance(p_or_np, torch.Tensor) + param = p_or_np + # Assign a dummy name as a placeholder + name = "foo" + self.show_dominant_parameters = False + param_iterable_cur_group.append(param) + param_names_cur_group.append(name) + param_groups.append({"params": param_iterable_cur_group}) + param_groups_names.append(param_names_cur_group) + else: + # case 2 or case 4 + # the input is groups of parameter or named parameter. + for cur_group in iterable_or_groups: + assert "named_params" in cur_group + name_list = [x[0] for x in cur_group["named_params"]] + p_list = [x[1] for x in cur_group["named_params"]] + del cur_group["named_params"] + cur_group["params"] = p_list + param_groups.append(cur_group) + param_groups_names.append(name_list) + + return param_groups, param_groups_names + + def __setstate__(self, state): + super(ScaledAdam, self).__setstate__(state) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + batch = True + + for group, group_params_names in zip(self.param_groups, self.parameters_names): + with self.batched_params(group["params"], group_params_names) as batches: + # batches is list of pairs (stacked_param, state). stacked_param is like + # a regular parameter, and will have a .grad, but the 1st dim corresponds to + # a stacking dim, it is not a real dim. + + if ( + len(batches[0][1]) == 0 + ): # if len(first state) == 0: not yet initialized + clipping_scale = 1 + else: + clipping_scale = self._get_clipping_scale(group, batches) + + for p, state, _ in batches: + # Perform optimization step. + # grad is not going to be None, we handled that when creating the batches. + grad = p.grad + if grad.is_sparse: + raise RuntimeError( + "ScaledAdam optimizer does not support sparse gradients" + ) + # State initialization + if len(state) == 0: + self._init_state(group, p, state) + + self._step_one_batch(group, p, state, clipping_scale) + + return loss + + def _init_state(self, group: dict, p: Tensor, state: dict): + """ + Initializes state dict for parameter 'p'. Assumes that dim 0 of tensor p + is actually the batch dimension, corresponding to batched-together + parameters of a given shape. + + + Args: + group: Dict to look up configuration values. + p: The parameter that we are initializing the state for + state: Dict from string to whatever state we are initializing + """ + size_update_period = group["size_update_period"] + + state["step"] = 0 + + kwargs = {"device": p.device, "dtype": p.dtype} + + # 'delta' implements conventional momentum. There are + # several different kinds of update going on, so rather than + # compute "exp_avg" like in Adam, we store and decay a + # parameter-change "delta", which combines all forms of + # update. this is equivalent to how it's done in Adam, + # except for the first few steps. + state["delta"] = torch.zeros_like(p, memory_format=torch.preserve_format) + + batch_size = p.shape[0] + numel = p.numel() // batch_size + + if numel > 1: + # "param_rms" just periodically records the scalar root-mean-square value of + # the parameter tensor. + # it has a shape like (batch_size, 1, 1, 1, 1) + param_rms = (p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt() + state["param_rms"] = param_rms + + state["scale_exp_avg_sq"] = torch.zeros_like(param_rms) + state["scale_grads"] = torch.zeros( + size_update_period, *param_rms.shape, **kwargs + ) + + # exp_avg_sq is the weighted sum of scaled gradients. as in Adam. + state["exp_avg_sq"] = torch.zeros_like(p, memory_format=torch.preserve_format) + + def _get_clipping_scale( + self, group: dict, tuples: List[Tuple[Tensor, dict, List[str]]] + ) -> float: + """ + Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients + by this amount before applying the rest of the update. + + Args: + group: the parameter group, an item in self.param_groups + tuples: a list of tuples of (param, state, param_names) + where param is a batched set of parameters, + with a .grad (1st dim is batch dim) + and state is the state-dict where optimization parameters are kept. + param_names is a List[str] while each str is name for a parameter + in batched set of parameters "param". + """ + assert len(tuples) >= 1 + clipping_scale = group["clipping_scale"] + (first_p, first_state, _) = tuples[0] + step = first_state["step"] + if clipping_scale is None or step == 0: + # no clipping. return early on step == 0 because the other + # parameters' state won't have been initialized yet. + return 1.0 + clipping_update_period = group["clipping_update_period"] + + tot_sumsq = torch.tensor(0.0, device=first_p.device) + for p, state, param_names in tuples: + grad = p.grad + if grad.is_sparse: + raise RuntimeError( + "ScaledAdam optimizer does not support sparse gradients" + ) + if p.numel() == p.shape[0]: # a batch of scalars + tot_sumsq += (grad**2).sum() # sum() to change shape [1] to [] + else: + tot_sumsq += ((grad * state["param_rms"]) ** 2).sum() + + tot_norm = tot_sumsq.sqrt() + if "model_norms" not in first_state: + first_state["model_norms"] = torch.zeros( + clipping_update_period, device=p.device + ) + first_state["model_norms"][step % clipping_update_period] = tot_norm + + if step % clipping_update_period == 0: + # Print some stats. + # We don't reach here if step == 0 because we would have returned + # above. + sorted_norms = first_state["model_norms"].sort()[0].to("cpu") + quartiles = [] + for n in range(0, 5): + index = min( + clipping_update_period - 1, (clipping_update_period // 4) * n + ) + quartiles.append(sorted_norms[index].item()) + + median = quartiles[2] + threshold = clipping_scale * median + first_state["model_norm_threshold"] = threshold + percent_clipped = ( + first_state["num_clipped"] * 100.0 / clipping_update_period + if "num_clipped" in first_state + else 0.0 + ) + first_state["num_clipped"] = 0 + quartiles = " ".join(["%.3e" % x for x in quartiles]) + logging.info( + f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, " + f"threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}" + ) + + if step < clipping_update_period: + return 1.0 # We have not yet estimated a norm to clip to. + else: + try: + model_norm_threshold = first_state["model_norm_threshold"] + except KeyError: + logging.info( + "Warning: model_norm_threshold not in state: possibly " + "you changed config when restarting, adding clipping_scale option?" + ) + return 1.0 + ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item()) + if ans < 1.0: + first_state["num_clipped"] += 1 + if ans < 0.1: + logging.warn( + f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}" + ) + if self.show_dominant_parameters: + assert p.shape[0] == len(param_names) + self._show_gradient_dominating_parameter(tuples, tot_sumsq) + return ans + + def _show_gradient_dominating_parameter( + self, tuples: List[Tuple[Tensor, dict, List[str]]], tot_sumsq: Tensor + ): + """ + Show information of parameter which dominates tot_sumsq. + + Args: + tuples: a list of tuples of (param, state, param_names) + where param is a batched set of parameters, + with a .grad (1st dim is batch dim) + and state is the state-dict where optimization parameters are kept. + param_names is a List[str] while each str is name for a parameter + in batched set of parameters "param". + tot_sumsq: sumsq of all parameters. Though it's could be calculated + from tuples, we still pass it to save some time. + """ + all_sumsq_orig = {} + for p, state, batch_param_names in tuples: + # p is a stacked batch parameters. + batch_grad = p.grad + if p.numel() == p.shape[0]: # a batch of scalars + batch_sumsq_orig = batch_grad**2 + # Dummy values used by following `zip` statement. + batch_rms_orig = torch.ones(p.shape[0]) + else: + batch_rms_orig = state["param_rms"] + batch_sumsq_orig = ((batch_grad * batch_rms_orig) ** 2).sum( + dim=list(range(1, batch_grad.ndim)) + ) + + for name, sumsq_orig, rms, grad in zip( + batch_param_names, batch_sumsq_orig, batch_rms_orig, batch_grad + ): + proportion_orig = sumsq_orig / tot_sumsq + all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad) + + assert torch.isclose( + sum([value[0] for value in all_sumsq_orig.values()]).cpu(), + torch.tensor(1.0), + ) + sorted_by_proportion = { + k: v + for k, v in sorted( + all_sumsq_orig.items(), key=lambda item: item[1][0], reverse=True + ) + } + dominant_param_name = next(iter(sorted_by_proportion)) + ( + dominant_proportion, + dominant_sumsq, + dominant_rms, + dominant_grad, + ) = sorted_by_proportion[dominant_param_name] + logging.info( + f"Parameter dominating tot_sumsq {dominant_param_name}" + f" with proportion {dominant_proportion:.2f}," + f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)" + f"={dominant_sumsq:.3e}," + f" grad_sumsq={(dominant_grad**2).sum():.3e}," + f" orig_rms_sq={(dominant_rms**2).item():.3e}" + ) + + def _step_one_batch( + self, group: dict, p: Tensor, state: dict, clipping_scale: float + ): + """ + Do the step for one parameter, which is actually going to be a batch of + `real` parameters, with dim 0 as the batch dim. + Args: + group: dict to look up configuration values + p: parameter to update (actually multiple parameters stacked together + as a batch) + state: state-dict for p, to look up the optimizer state + """ + lr = group["lr"] + size_update_period = group["size_update_period"] + beta1 = group["betas"][0] + + grad = p.grad + if clipping_scale != 1.0: + grad = grad * clipping_scale + step = state["step"] + delta = state["delta"] + + delta.mul_(beta1) + batch_size = p.shape[0] + numel = p.numel() // batch_size + if numel > 1: + # Update the size/scale of p, and set param_rms + scale_grads = state["scale_grads"] + scale_grads[step % size_update_period] = (p * grad).sum( + dim=list(range(1, p.ndim)), keepdim=True + ) + if step % size_update_period == size_update_period - 1: + param_rms = state["param_rms"] # shape: (batch_size, 1, 1, ..) + param_rms.copy_( + (p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt() + ) + if step > 0: + # self._size_update() learns the overall scale on the + # parameter, by shrinking or expanding it. + self._size_update(group, scale_grads, p, state) + + if numel == 1: + # For parameters with 1 element we just use regular Adam. + # Updates delta. + self._step_scalar(group, p, state) + else: + self._step(group, p, state) + + state["step"] = step + 1 + + def _size_update( + self, group: dict, scale_grads: Tensor, p: Tensor, state: dict + ) -> None: + """ + Called only where p.numel() > 1, this updates the scale of the parameter. + If we imagine: p = underlying_param * scale.exp(), and we are doing + gradient descent on underlying param and on scale, this function does the update + on `scale`. + + Args: + group: dict to look up configuration values + scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing + grads w.r.t. the scales. + p: The parameter to update + state: The state-dict of p + """ + + param_rms = state["param_rms"] + beta1, beta2 = group["betas"] + size_lr = group["lr"] * group["scalar_lr_scale"] + param_min_rms = group["param_min_rms"] + param_max_rms = group["param_max_rms"] + eps = group["eps"] + step = state["step"] + batch_size = p.shape[0] + + size_update_period = scale_grads.shape[0] + # correct beta2 for the size update period: we will have + # faster decay at this level. + beta2_corr = beta2**size_update_period + + scale_exp_avg_sq = state["scale_exp_avg_sq"] # shape: (batch_size, 1, 1, ..) + scale_exp_avg_sq.mul_(beta2_corr).add_( + (scale_grads**2).mean(dim=0), # mean over dim `size_update_period` + alpha=1 - beta2_corr, + ) # shape is (batch_size, 1, 1, ...) + + # The 1st time we reach here is when size_step == 1. + size_step = (step + 1) // size_update_period + bias_correction2 = 1 - beta2_corr**size_step + # we don't bother with bias_correction1; this will help prevent divergence + # at the start of training. + + denom = scale_exp_avg_sq.sqrt() + eps + + scale_step = ( + -size_lr * (bias_correction2**0.5) * scale_grads.sum(dim=0) / denom + ) + + is_too_small = param_rms < param_min_rms + + # when the param gets too small, just don't shrink it any further. + scale_step.masked_fill_(is_too_small, 0.0) + + # and ensure the parameter rms after update never exceeds param_max_rms. + # We have to look at the trained model for parameters at or around the + # param_max_rms, because sometimes they can indicate a problem with the + # topology or settings. + scale_step = torch.minimum(scale_step, (param_max_rms - param_rms) / param_rms) + + delta = state["delta"] + # the factor of (1-beta1) relates to momentum. + delta.add_(p * scale_step, alpha=(1 - beta1)) + + def _step(self, group: dict, p: Tensor, state: dict): + """ + This function does the core update of self.step(), in the case where the members of + the batch have more than 1 element. + + Args: + group: A dict which will be used to look up configuration values + p: The parameter to be updated + grad: The grad of p + state: The state-dict corresponding to parameter p + + This function modifies p. + """ + grad = p.grad + lr = group["lr"] + beta1, beta2 = group["betas"] + eps = group["eps"] + param_min_rms = group["param_min_rms"] + step = state["step"] + + exp_avg_sq = state["exp_avg_sq"] + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2)) + + this_step = state["step"] - (state["zero_step"] if "zero_step" in state else 0) + bias_correction2 = 1 - beta2 ** (this_step + 1) + if bias_correction2 < 0.99: + # note: not in-place. + exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2) + + denom = exp_avg_sq.sqrt() + denom += eps + grad = grad / denom + + alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms) + + delta = state["delta"] + delta.add_(grad * alpha) + p.add_(delta) + + def _step_scalar(self, group: dict, p: Tensor, state: dict): + """ + A simplified form of the core update for scalar tensors, where we cannot get a good + estimate of the parameter rms. + """ + beta1, beta2 = group["betas"] + scalar_max = group["scalar_max"] + eps = group["eps"] + lr = group["lr"] * group["scalar_lr_scale"] + grad = p.grad + + exp_avg_sq = state["exp_avg_sq"] # shape: (batch_size,) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + + # bias_correction2 is like in Adam. Don't bother with bias_correction1; + # slower update at the start will help stability anyway. + bias_correction2 = 1 - beta2 ** (state["step"] + 1) + denom = (exp_avg_sq / bias_correction2).sqrt() + eps + + delta = state["delta"] + delta.add_(grad / denom, alpha=-lr * (1 - beta1)) + p.clamp_(min=-scalar_max, max=scalar_max) + p.add_(delta) + + +class LRScheduler(object): + """ + Base-class for learning rate schedulers where the learning-rate depends on both the + batch and the epoch. + """ + + def __init__(self, optimizer: Optimizer, verbose: bool = False): + # Attach optimizer + if not isinstance(optimizer, Optimizer): + raise TypeError("{} is not an Optimizer".format(type(optimizer).__name__)) + self.optimizer = optimizer + self.verbose = verbose + + for group in optimizer.param_groups: + group.setdefault("base_lr", group["lr"]) + + self.base_lrs = [group["base_lr"] for group in optimizer.param_groups] + + self.epoch = 0 + self.batch = 0 + + def state_dict(self): + """Returns the state of the scheduler as a :class:`dict`. + + It contains an entry for every variable in self.__dict__ which + is not the optimizer. + """ + return { + "base_lrs": self.base_lrs, + "epoch": self.epoch, + "batch": self.batch, + } + + def load_state_dict(self, state_dict): + """Loads the schedulers state. + + Args: + state_dict (dict): scheduler state. Should be an object returned + from a call to :meth:`state_dict`. + """ + self.__dict__.update(state_dict) + + def get_last_lr(self) -> List[float]: + """Return last computed learning rate by current scheduler. Will be a list of float.""" + return self._last_lr + + def get_lr(self): + # Compute list of learning rates from self.epoch and self.batch and + # self.base_lrs; this must be overloaded by the user. + # e.g. return [some_formula(self.batch, self.epoch, base_lr) for base_lr in self.base_lrs ] + raise NotImplementedError + + def step_batch(self, batch: Optional[int] = None) -> None: + # Step the batch index, or just set it. If `batch` is specified, it + # must be the batch index from the start of training, i.e. summed over + # all epochs. + # You can call this in any order; if you don't provide 'batch', it should + # of course be called once per batch. + if batch is not None: + self.batch = batch + else: + self.batch = self.batch + 1 + self._set_lrs() + + def step_epoch(self, epoch: Optional[int] = None): + # Step the epoch index, or just set it. If you provide the 'epoch' arg, + # you should call this at the start of the epoch; if you don't provide the 'epoch' + # arg, you should call it at the end of the epoch. + if epoch is not None: + self.epoch = epoch + else: + self.epoch = self.epoch + 1 + self._set_lrs() + + def _set_lrs(self): + values = self.get_lr() + assert len(values) == len(self.optimizer.param_groups) + + for i, data in enumerate(zip(self.optimizer.param_groups, values)): + param_group, lr = data + param_group["lr"] = lr + self.print_lr(self.verbose, i, lr) + self._last_lr = [group["lr"] for group in self.optimizer.param_groups] + + def print_lr(self, is_verbose, group, lr): + """Display the current learning rate.""" + if is_verbose: + logging.info( + f"Epoch={self.epoch}, batch={self.batch}: adjusting learning rate" + f" of group {group} to {lr:.4e}." + ) + + +class Eden(LRScheduler): + """ + Eden scheduler. + The basic formula (before warmup) is: + lr = base_lr * (((batch**2 + lr_batches**2) / lr_batches**2) ** -0.25 * + (((epoch**2 + lr_epochs**2) / lr_epochs**2) ** -0.25)) * warmup + where `warmup` increases from linearly 0.5 to 1 over `warmup_batches` batches + and then stays constant at 1. + + + E.g. suggest base_lr = 0.04 (passed to optimizer) if used with ScaledAdam + + Args: + optimizer: the optimizer to change the learning rates on + lr_batches: the number of batches after which we start significantly + decreasing the learning rate, suggest 5000. + lr_epochs: the number of epochs after which we start significantly + decreasing the learning rate, suggest 6 if you plan to do e.g. + 20 to 40 epochs, but may need smaller number if dataset is huge + and you will do few epochs. + """ + + def __init__( + self, + optimizer: Optimizer, + lr_batches: Union[int, float], + lr_epochs: Union[int, float], + warmup_batches: Union[int, float] = 500.0, + warmup_start: float = 0.5, + verbose: bool = False, + ): + super(Eden, self).__init__(optimizer, verbose) + self.lr_batches = lr_batches + self.lr_epochs = lr_epochs + self.warmup_batches = warmup_batches + + assert 0.0 <= warmup_start <= 1.0, warmup_start + self.warmup_start = warmup_start + + def get_lr(self): + factor = ( + (self.batch**2 + self.lr_batches**2) / self.lr_batches**2 + ) ** -0.25 * ( + ((self.epoch**2 + self.lr_epochs**2) / self.lr_epochs**2) ** -0.25 + ) + warmup_factor = ( + 1.0 + if self.batch >= self.warmup_batches + else self.warmup_start + + (1.0 - self.warmup_start) * (self.batch / self.warmup_batches) + # else 0.5 + 0.5 * (self.batch / self.warmup_batches) + ) + + return [x * factor * warmup_factor for x in self.base_lrs] + + +def _test_eden(): + m = torch.nn.Linear(100, 100) + optim = ScaledAdam(m.parameters(), lr=0.03) + + scheduler = Eden(optim, lr_batches=100, lr_epochs=2, verbose=True) + + for epoch in range(10): + scheduler.step_epoch(epoch) # sets epoch to `epoch` + + for step in range(20): + x = torch.randn(200, 100).detach() + x.requires_grad = True + y = m(x) + dy = torch.randn(200, 100).detach() + f = (y * dy).sum() + f.backward() + + optim.step() + scheduler.step_batch() + optim.zero_grad() + + logging.info(f"last lr = {scheduler.get_last_lr()}") + logging.info(f"state dict = {scheduler.state_dict()}") + + +# This is included mostly as a baseline for ScaledAdam. +class Eve(Optimizer): + """ + Implements Eve algorithm. This is a modified version of AdamW with a special + way of setting the weight-decay / shrinkage-factor, which is designed to make the + rms of the parameters approach a particular target_rms (default: 0.1). This is + for use with networks with 'scaled' versions of modules (see scaling.py), which + will be close to invariant to the absolute scale on the parameter matrix. + + The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_. + The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_. + Eve is unpublished so far. + + Arguments: + params (iterable): iterable of parameters to optimize or dicts defining + parameter groups + lr (float, optional): learning rate (default: 1e-3) + betas (Tuple[float, float], optional): coefficients used for computing + running averages of gradient and its square (default: (0.9, 0.999)) + eps (float, optional): term added to the denominator to improve + numerical stability (default: 1e-8) + weight_decay (float, optional): weight decay coefficient (default: 3e-4; + this value means that the weight would decay significantly after + about 3k minibatches. Is not multiplied by learning rate, but + is conditional on RMS-value of parameter being > target_rms. + target_rms (float, optional): target root-mean-square value of + parameters, if they fall below this we will stop applying weight decay. + + + .. _Adam: A Method for Stochastic Optimization: + https://arxiv.org/abs/1412.6980 + .. _Decoupled Weight Decay Regularization: + https://arxiv.org/abs/1711.05101 + .. _On the Convergence of Adam and Beyond: + https://openreview.net/forum?id=ryQu7f-RZ + """ + + def __init__( + self, + params, + lr=1e-3, + betas=(0.9, 0.98), + eps=1e-8, + weight_decay=1e-3, + target_rms=0.1, + ): + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + if not 0 <= weight_decay <= 0.1: + raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) + if not 0 < target_rms <= 10.0: + raise ValueError("Invalid target_rms value: {}".format(target_rms)) + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + target_rms=target_rms, + ) + super(Eve, self).__init__(params, defaults) + + def __setstate__(self, state): + super(Eve, self).__setstate__(state) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + for p in group["params"]: + if p.grad is None: + continue + + # Perform optimization step + grad = p.grad + if grad.is_sparse: + raise RuntimeError("AdamW does not support sparse gradients") + + state = self.state[p] + + # State initialization + if len(state) == 0: + state["step"] = 0 + # Exponential moving average of gradient values + state["exp_avg"] = torch.zeros_like( + p, memory_format=torch.preserve_format + ) + # Exponential moving average of squared gradient values + state["exp_avg_sq"] = torch.zeros_like( + p, memory_format=torch.preserve_format + ) + + exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] + + beta1, beta2 = group["betas"] + + state["step"] += 1 + bias_correction1 = 1 - beta1 ** state["step"] + bias_correction2 = 1 - beta2 ** state["step"] + + # Decay the first and second moment running average coefficient + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + denom = (exp_avg_sq.sqrt() * (bias_correction2**-0.5)).add_( + group["eps"] + ) + + step_size = group["lr"] / bias_correction1 + target_rms = group["target_rms"] + weight_decay = group["weight_decay"] + + if p.numel() > 1: + # avoid applying this weight-decay on "scaling factors" + # (which are scalar). + is_above_target_rms = p.norm() > (target_rms * (p.numel() ** 0.5)) + p.mul_(1 - (weight_decay * is_above_target_rms)) + + p.addcdiv_(exp_avg, denom, value=-step_size) + + if random.random() < 0.0005: + step = (exp_avg / denom) * step_size + logging.info( + f"Delta rms = {(step**2).mean().item()}, shape = {step.shape}" + ) + + return loss + + +def _test_scaled_adam(hidden_dim: int): + import timeit + + from scaling import ScaledLinear + + E = 100 + B = 4 + T = 2 + logging.info("in test_eve_cain") + # device = torch.device('cuda') + device = torch.device("cpu") + dtype = torch.float32 + + fix_random_seed(42) + # these input_magnitudes and output_magnitudes are to test that + # Abel is working as we expect and is able to adjust scales of + # different dims differently. + input_magnitudes = (1.0 * torch.randn(E, dtype=dtype, device=device)).exp() + output_magnitudes = (1.0 * torch.randn(E, dtype=dtype, device=device)).exp() + + for iter in [1, 0]: + fix_random_seed(42) + Linear = torch.nn.Linear if iter == 0 else ScaledLinear + + m = torch.nn.Sequential( + Linear(E, hidden_dim), + torch.nn.PReLU(), + Linear(hidden_dim, hidden_dim), + torch.nn.PReLU(), + Linear(hidden_dim, E), + ).to(device) + + train_pairs = [ + ( + 100.0 + * torch.randn(B, T, E, device=device, dtype=dtype) + * input_magnitudes, + torch.randn(B, T, E, device=device, dtype=dtype) * output_magnitudes, + ) + for _ in range(20) + ] + + if iter == 0: + optim = Eve(m.parameters(), lr=0.003) + elif iter == 1: + optim = ScaledAdam(m.parameters(), lr=0.03, clipping_scale=2.0) + scheduler = Eden(optim, lr_batches=200, lr_epochs=5, verbose=False) + + start = timeit.default_timer() + avg_loss = 0.0 + for epoch in range(180): + scheduler.step_epoch() + # if epoch == 100 and iter in [2,3]: + # optim.reset_speedup() # check it doesn't crash. + + # if epoch == 130: + # opts = diagnostics.TensorDiagnosticOptions( + # 512 + # ) # allow 4 megabytes per sub-module + # diagnostic = diagnostics.attach_diagnostics(m, opts) + + for n, (x, y) in enumerate(train_pairs): + y_out = m(x) + loss = ((y_out - y) ** 2).mean() * 100.0 + if epoch == 0 and n == 0: + avg_loss = loss.item() + else: + avg_loss = 0.98 * avg_loss + 0.02 * loss.item() + if n == 0 and epoch % 5 == 0: + # norm1 = '%.2e' % (m[0].weight**2).mean().sqrt().item() + # norm1b = '%.2e' % (m[0].bias**2).mean().sqrt().item() + # norm2 = '%.2e' % (m[2].weight**2).mean().sqrt().item() + # norm2b = '%.2e' % (m[2].bias**2).mean().sqrt().item() + # scale1 = '%.2e' % (m[0].weight_scale.exp().item()) + # scale1b = '%.2e' % (m[0].bias_scale.exp().item()) + # scale2 = '%.2e' % (m[2].weight_scale.exp().item()) + # scale2b = '%.2e' % (m[2].bias_scale.exp().item()) + lr = scheduler.get_last_lr()[0] + logging.info( + f"Iter {iter}, epoch {epoch}, batch {n}, avg_loss {avg_loss:.4g}, lr={lr:.4e}" + ) # , norms={norm1,norm1b,norm2,norm2b}") # scales={scale1,scale1b,scale2,scale2b} + loss.log().backward() + optim.step() + optim.zero_grad() + scheduler.step_batch() + + # diagnostic.print_diagnostics() + + stop = timeit.default_timer() + logging.info(f"Iter={iter}, Time taken: {stop - start}") + + logging.info(f"last lr = {scheduler.get_last_lr()}") + # logging.info("state dict = ", scheduler.state_dict()) + # logging.info("optim state_dict = ", optim.state_dict()) + logging.info(f"input_magnitudes = {input_magnitudes}") + logging.info(f"output_magnitudes = {output_magnitudes}") + + +if __name__ == "__main__": + torch.set_num_threads(1) + torch.set_num_interop_threads(1) + logging.getLogger().setLevel(logging.INFO) + import subprocess + + s = subprocess.check_output( + "git status -uno .; git log -1; git diff HEAD .", shell=True + ) + logging.info(s) + import sys + + if len(sys.argv) > 1: + hidden_dim = int(sys.argv[1]) + else: + hidden_dim = 200 + + _test_scaled_adam(hidden_dim) + _test_eden() diff --git a/egs/icmcasr/ASR/zipformer/scaling.py b/egs/icmcasr/ASR/zipformer/scaling.py new file mode 100644 index 000000000..c0f1e3087 --- /dev/null +++ b/egs/icmcasr/ASR/zipformer/scaling.py @@ -0,0 +1,1907 @@ +# Copyright 2022-2023 Xiaomi Corp. (authors: Daniel Povey) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import Optional, Tuple, Union +import logging +import k2 +from torch.cuda.amp import custom_fwd, custom_bwd +import random +import torch +import math +import torch.nn as nn +from torch import Tensor + + +def logaddexp_onnx(x: Tensor, y: Tensor) -> Tensor: + max_value = torch.max(x, y) + diff = torch.abs(x - y) + return max_value + torch.log1p(torch.exp(-diff)) + + +# RuntimeError: Exporting the operator logaddexp to ONNX opset version +# 14 is not supported. Please feel free to request support or submit +# a pull request on PyTorch GitHub. +# +# The following function is to solve the above error when exporting +# models to ONNX via torch.jit.trace() +def logaddexp(x: Tensor, y: Tensor) -> Tensor: + # Caution(fangjun): Put torch.jit.is_scripting() before + # torch.onnx.is_in_onnx_export(); + # otherwise, it will cause errors for torch.jit.script(). + # + # torch.logaddexp() works for both torch.jit.script() and + # torch.jit.trace() but it causes errors for ONNX export. + # + if torch.jit.is_scripting(): + # Note: We cannot use torch.jit.is_tracing() here as it also + # matches torch.onnx.export(). + return torch.logaddexp(x, y) + elif torch.onnx.is_in_onnx_export(): + return logaddexp_onnx(x, y) + else: + # for torch.jit.trace() + return torch.logaddexp(x, y) + + +class PiecewiseLinear(object): + """ + Piecewise linear function, from float to float, specified as nonempty list of (x,y) pairs with + the x values in order. x values <[initial x] or >[final x] are map to [initial y], [final y] + respectively. + """ + + def __init__(self, *args): + assert len(args) >= 1, len(args) + if len(args) == 1 and isinstance(args[0], PiecewiseLinear): + self.pairs = list(args[0].pairs) + else: + self.pairs = [(float(x), float(y)) for x, y in args] + for x, y in self.pairs: + assert isinstance(x, (float, int)), type(x) + assert isinstance(y, (float, int)), type(y) + + for i in range(len(self.pairs) - 1): + assert self.pairs[i + 1][0] > self.pairs[i][0], ( + i, + self.pairs[i], + self.pairs[i + 1], + ) + + def __str__(self): + # e.g. 'PiecewiseLinear((0., 10.), (100., 0.))' + return f"PiecewiseLinear({str(self.pairs)[1:-1]})" + + def __call__(self, x): + if x <= self.pairs[0][0]: + return self.pairs[0][1] + elif x >= self.pairs[-1][0]: + return self.pairs[-1][1] + else: + cur_x, cur_y = self.pairs[0] + for i in range(1, len(self.pairs)): + next_x, next_y = self.pairs[i] + if x >= cur_x and x <= next_x: + return cur_y + (next_y - cur_y) * (x - cur_x) / (next_x - cur_x) + cur_x, cur_y = next_x, next_y + assert False + + def __mul__(self, alpha): + return PiecewiseLinear(*[(x, y * alpha) for x, y in self.pairs]) + + def __add__(self, x): + if isinstance(x, (float, int)): + return PiecewiseLinear(*[(p[0], p[1] + x) for p in self.pairs]) + s, x = self.get_common_basis(x) + return PiecewiseLinear( + *[(sp[0], sp[1] + xp[1]) for sp, xp in zip(s.pairs, x.pairs)] + ) + + def max(self, x): + if isinstance(x, (float, int)): + x = PiecewiseLinear((0, x)) + s, x = self.get_common_basis(x, include_crossings=True) + return PiecewiseLinear( + *[(sp[0], max(sp[1], xp[1])) for sp, xp in zip(s.pairs, x.pairs)] + ) + + def min(self, x): + if isinstance(x, float) or isinstance(x, int): + x = PiecewiseLinear((0, x)) + s, x = self.get_common_basis(x, include_crossings=True) + return PiecewiseLinear( + *[(sp[0], min(sp[1], xp[1])) for sp, xp in zip(s.pairs, x.pairs)] + ) + + def __eq__(self, other): + return self.pairs == other.pairs + + def get_common_basis(self, p: "PiecewiseLinear", include_crossings: bool = False): + """ + Returns (self_mod, p_mod) which are equivalent piecewise linear + functions to self and p, but with the same x values. + + p: the other piecewise linear function + include_crossings: if true, include in the x values positions + where the functions indicate by this and p crosss. + """ + assert isinstance(p, PiecewiseLinear), type(p) + + # get sorted x-values without repetition. + x_vals = sorted(set([x for x, _ in self.pairs] + [x for x, _ in p.pairs])) + y_vals1 = [self(x) for x in x_vals] + y_vals2 = [p(x) for x in x_vals] + + if include_crossings: + extra_x_vals = [] + for i in range(len(x_vals) - 1): + if (y_vals1[i] > y_vals2[i]) != (y_vals1[i + 1] > y_vals2[i + 1]): + # if the two lines in this subsegment potentially cross each other.. + diff_cur = abs(y_vals1[i] - y_vals2[i]) + diff_next = abs(y_vals1[i + 1] - y_vals2[i + 1]) + # `pos`, between 0 and 1, gives the relative x position, + # with 0 being x_vals[i] and 1 being x_vals[i+1]. + pos = diff_cur / (diff_cur + diff_next) + extra_x_val = x_vals[i] + pos * (x_vals[i + 1] - x_vals[i]) + extra_x_vals.append(extra_x_val) + if len(extra_x_vals) > 0: + x_vals = sorted(set(x_vals + extra_x_vals)) + y_vals1 = [self(x) for x in x_vals] + y_vals2 = [p(x) for x in x_vals] + return ( + PiecewiseLinear(*zip(x_vals, y_vals1)), + PiecewiseLinear(*zip(x_vals, y_vals2)), + ) + + +class ScheduledFloat(torch.nn.Module): + """ + This object is a torch.nn.Module only because we want it to show up in [top_level module].modules(); + it does not have a working forward() function. You are supposed to cast it to float, as + in, float(parent_module.whatever), and use it as something like a dropout prob. + + It is a floating point value whose value changes depending on the batch count of the + training loop. It is a piecewise linear function where you specify the (x,y) pairs + in sorted order on x; x corresponds to the batch index. For batch-index values before the + first x or after the last x, we just use the first or last y value. + + Example: + self.dropout = ScheduledFloat((0.0, 0.2), (4000.0, 0.0), default=0.0) + + `default` is used when self.batch_count is not set or not in training mode or in + torch.jit scripting mode. + """ + + def __init__(self, *args, default: float = 0.0): + super().__init__() + # self.batch_count and self.name will be written to in the training loop. + self.batch_count = None + self.name = None + self.default = default + self.schedule = PiecewiseLinear(*args) + + def extra_repr(self) -> str: + return ( + f"batch_count={self.batch_count}, schedule={str(self.schedule.pairs[1:-1])}" + ) + + def __float__(self): + batch_count = self.batch_count + if ( + batch_count is None + or not self.training + or torch.jit.is_scripting() + or torch.jit.is_tracing() + ): + return float(self.default) + else: + ans = self.schedule(self.batch_count) + if random.random() < 0.0002: + logging.info( + f"ScheduledFloat: name={self.name}, batch_count={self.batch_count}, ans={ans}" + ) + return ans + + def __add__(self, x): + if isinstance(x, float) or isinstance(x, int): + return ScheduledFloat(self.schedule + x, default=self.default) + else: + return ScheduledFloat( + self.schedule + x.schedule, default=self.default + x.default + ) + + def max(self, x): + if isinstance(x, float) or isinstance(x, int): + return ScheduledFloat(self.schedule.max(x), default=self.default) + else: + return ScheduledFloat( + self.schedule.max(x.schedule), default=max(self.default, x.default) + ) + + +FloatLike = Union[float, ScheduledFloat] + + +def random_cast_to_half(x: Tensor, min_abs: float = 5.0e-06) -> Tensor: + """ + A randomized way of casting a floating point value to half precision. + """ + if x.dtype == torch.float16: + return x + x_abs = x.abs() + is_too_small = x_abs < min_abs + # for elements where is_too_small is true, random_val will contain +-min_abs with + # probability (x.abs() / min_abs), and 0.0 otherwise. [so this preserves expectations, + # for those elements]. + random_val = min_abs * x.sign() * (torch.rand_like(x) * min_abs < x_abs) + return torch.where(is_too_small, random_val, x).to(torch.float16) + + +class CutoffEstimator: + """ + Estimates cutoffs of an arbitrary numerical quantity such that a specified + proportion of items will be above the cutoff on average. + + p is the proportion of items that should be above the cutoff. + """ + + def __init__(self, p: float): + self.p = p + # total count of items + self.count = 0 + # total count of items that were above the cutoff + self.count_above = 0 + # initial cutoff value + self.cutoff = 0 + + def __call__(self, x: float) -> bool: + """ + Returns true if x is above the cutoff. + """ + ans = x > self.cutoff + self.count += 1 + if ans: + self.count_above += 1 + cur_p = self.count_above / self.count + delta_p = cur_p - self.p + if (delta_p > 0) == ans: + q = abs(delta_p) + self.cutoff = x * q + self.cutoff * (1 - q) + return ans + + +class SoftmaxFunction(torch.autograd.Function): + """ + Tries to handle half-precision derivatives in a randomized way that should + be more accurate for training than the default behavior. + """ + + @staticmethod + def forward(ctx, x: Tensor, dim: int): + ans = x.softmax(dim=dim) + # if x dtype is float16, x.softmax() returns a float32 because + # (presumably) that op does not support float16, and autocast + # is enabled. + if torch.is_autocast_enabled(): + ans = ans.to(torch.float16) + ctx.save_for_backward(ans) + ctx.x_dtype = x.dtype + ctx.dim = dim + return ans + + @staticmethod + def backward(ctx, ans_grad: Tensor): + (ans,) = ctx.saved_tensors + with torch.cuda.amp.autocast(enabled=False): + ans_grad = ans_grad.to(torch.float32) + ans = ans.to(torch.float32) + x_grad = ans_grad * ans + x_grad = x_grad - ans * x_grad.sum(dim=ctx.dim, keepdim=True) + return x_grad, None + + +def softmax(x: Tensor, dim: int): + if not x.requires_grad or torch.jit.is_scripting() or torch.jit.is_tracing(): + return x.softmax(dim=dim) + + return SoftmaxFunction.apply(x, dim) + + +class MaxEigLimiterFunction(torch.autograd.Function): + @staticmethod + def forward( + ctx, + x: Tensor, + coeffs: Tensor, + direction: Tensor, + channel_dim: int, + grad_scale: float, + ) -> Tensor: + ctx.channel_dim = channel_dim + ctx.grad_scale = grad_scale + ctx.save_for_backward(x.detach(), coeffs.detach(), direction.detach()) + return x + + @staticmethod + def backward(ctx, x_grad, *args): + with torch.enable_grad(): + (x_orig, coeffs, new_direction) = ctx.saved_tensors + x_orig.requires_grad = True + num_channels = x_orig.shape[ctx.channel_dim] + x = x_orig.transpose(ctx.channel_dim, -1).reshape(-1, num_channels) + new_direction.requires_grad = False + x = x - x.mean(dim=0) + x_var = (x**2).mean() + x_residual = x - coeffs * new_direction + x_residual_var = (x_residual**2).mean() + # `variance_proportion` is the proportion of the variance accounted for + # by the top eigen-direction. This is to be minimized. + variance_proportion = (x_var - x_residual_var) / (x_var + 1.0e-20) + variance_proportion.backward() + x_orig_grad = x_orig.grad + x_extra_grad = ( + x_orig.grad + * ctx.grad_scale + * x_grad.norm() + / (x_orig_grad.norm() + 1.0e-20) + ) + return x_grad + x_extra_grad.detach(), None, None, None, None + + +class BiasNormFunction(torch.autograd.Function): + # This computes: + # scales = (torch.mean((x - bias) ** 2, keepdim=True)) ** -0.5 * log_scale.exp() + # return x * scales + # (after unsqueezing the bias), but it does it in a memory-efficient way so that + # it can just store the returned value (chances are, this will also be needed for + # some other reason, related to the next operation, so we can save memory). + @staticmethod + def forward( + ctx, + x: Tensor, + bias: Tensor, + log_scale: Tensor, + channel_dim: int, + store_output_for_backprop: bool, + ) -> Tensor: + assert bias.ndim == 1 + if channel_dim < 0: + channel_dim = channel_dim + x.ndim + ctx.store_output_for_backprop = store_output_for_backprop + ctx.channel_dim = channel_dim + for _ in range(channel_dim + 1, x.ndim): + bias = bias.unsqueeze(-1) + scales = ( + torch.mean((x - bias) ** 2, dim=channel_dim, keepdim=True) ** -0.5 + ) * log_scale.exp() + ans = x * scales + ctx.save_for_backward( + ans.detach() if store_output_for_backprop else x, + scales.detach(), + bias.detach(), + log_scale.detach(), + ) + return ans + + @staticmethod + def backward(ctx, ans_grad: Tensor) -> Tensor: + ans_or_x, scales, bias, log_scale = ctx.saved_tensors + if ctx.store_output_for_backprop: + x = ans_or_x / scales + else: + x = ans_or_x + x = x.detach() + x.requires_grad = True + bias.requires_grad = True + log_scale.requires_grad = True + with torch.enable_grad(): + # recompute scales from x, bias and log_scale. + scales = ( + torch.mean((x - bias) ** 2, dim=ctx.channel_dim, keepdim=True) ** -0.5 + ) * log_scale.exp() + ans = x * scales + ans.backward(gradient=ans_grad) + return x.grad, bias.grad.flatten(), log_scale.grad, None, None + + +class BiasNorm(torch.nn.Module): + """ + This is intended to be a simpler, and hopefully cheaper, replacement for + LayerNorm. The observation this is based on, is that Transformer-type + networks, especially with pre-norm, sometimes seem to set one of the + feature dimensions to a large constant value (e.g. 50), which "defeats" + the LayerNorm because the output magnitude is then not strongly dependent + on the other (useful) features. Presumably the weight and bias of the + LayerNorm are required to allow it to do this. + + Instead, we give the BiasNorm a trainable bias that it can use when + computing the scale for normalization. We also give it a (scalar) + trainable scale on the output. + + + Args: + num_channels: the number of channels, e.g. 512. + channel_dim: the axis/dimension corresponding to the channel, + interpreted as an offset from the input's ndim if negative. + This is NOT the num_channels; it should typically be one of + {-2, -1, 0, 1, 2, 3}. + log_scale: the initial log-scale that we multiply the output by; this + is learnable. + log_scale_min: FloatLike, minimum allowed value of log_scale + log_scale_max: FloatLike, maximum allowed value of log_scale + store_output_for_backprop: only possibly affects memory use; recommend + to set to True if you think the output of this module is more likely + than the input of this module to be required to be stored for the + backprop. + """ + + def __init__( + self, + num_channels: int, + channel_dim: int = -1, # CAUTION: see documentation. + log_scale: float = 1.0, + log_scale_min: float = -1.5, + log_scale_max: float = 1.5, + store_output_for_backprop: bool = False, + ) -> None: + super(BiasNorm, self).__init__() + self.num_channels = num_channels + self.channel_dim = channel_dim + self.log_scale = nn.Parameter(torch.tensor(log_scale)) + self.bias = nn.Parameter(torch.zeros(num_channels)) + + self.log_scale_min = log_scale_min + self.log_scale_max = log_scale_max + + self.store_output_for_backprop = store_output_for_backprop + + def forward(self, x: Tensor) -> Tensor: + assert x.shape[self.channel_dim] == self.num_channels + + if torch.jit.is_scripting() or torch.jit.is_tracing(): + channel_dim = self.channel_dim + if channel_dim < 0: + channel_dim += x.ndim + bias = self.bias + for _ in range(channel_dim + 1, x.ndim): + bias = bias.unsqueeze(-1) + scales = ( + torch.mean((x - bias) ** 2, dim=channel_dim, keepdim=True) ** -0.5 + ) * self.log_scale.exp() + return x * scales + + log_scale = limit_param_value( + self.log_scale, + min=float(self.log_scale_min), + max=float(self.log_scale_max), + training=self.training, + ) + + return BiasNormFunction.apply( + x, self.bias, log_scale, self.channel_dim, self.store_output_for_backprop + ) + + +def ScaledLinear(*args, initial_scale: float = 1.0, **kwargs) -> nn.Linear: + """ + Behaves like a constructor of a modified version of nn.Linear + that gives an easy way to set the default initial parameter scale. + + Args: + Accepts the standard args and kwargs that nn.Linear accepts + e.g. in_features, out_features, bias=False. + + initial_scale: you can override this if you want to increase + or decrease the initial magnitude of the module's output + (affects the initialization of weight_scale and bias_scale). + Another option, if you want to do something like this, is + to re-initialize the parameters. + """ + ans = nn.Linear(*args, **kwargs) + with torch.no_grad(): + ans.weight[:] *= initial_scale + if ans.bias is not None: + torch.nn.init.uniform_(ans.bias, -0.1 * initial_scale, 0.1 * initial_scale) + return ans + + +def ScaledConv1d(*args, initial_scale: float = 1.0, **kwargs) -> nn.Conv1d: + """ + Behaves like a constructor of a modified version of nn.Conv1d + that gives an easy way to set the default initial parameter scale. + + Args: + Accepts the standard args and kwargs that nn.Linear accepts + e.g. in_features, out_features, bias=False. + + initial_scale: you can override this if you want to increase + or decrease the initial magnitude of the module's output + (affects the initialization of weight_scale and bias_scale). + Another option, if you want to do something like this, is + to re-initialize the parameters. + """ + ans = nn.Conv1d(*args, **kwargs) + with torch.no_grad(): + ans.weight[:] *= initial_scale + if ans.bias is not None: + torch.nn.init.uniform_(ans.bias, -0.1 * initial_scale, 0.1 * initial_scale) + return ans + + +def ScaledConv2d(*args, initial_scale: float = 1.0, **kwargs) -> nn.Conv2d: + """ + Behaves like a constructor of a modified version of nn.Conv2d + that gives an easy way to set the default initial parameter scale. + + Args: + Accepts the standard args and kwargs that nn.Linear accepts + e.g. in_features, out_features, bias=False, but: + NO PADDING-RELATED ARGS. + + initial_scale: you can override this if you want to increase + or decrease the initial magnitude of the module's output + (affects the initialization of weight_scale and bias_scale). + Another option, if you want to do something like this, is + to re-initialize the parameters. + """ + ans = nn.Conv2d(*args, **kwargs) + with torch.no_grad(): + ans.weight[:] *= initial_scale + if ans.bias is not None: + torch.nn.init.uniform_(ans.bias, -0.1 * initial_scale, 0.1 * initial_scale) + return ans + + +class ChunkCausalDepthwiseConv1d(torch.nn.Module): + """ + Behaves like a depthwise 1d convolution, except that it is causal in + a chunkwise way, as if we had a block-triangular attention mask. + The chunk size is provided at test time (it should probably be + kept in sync with the attention mask). + + This has a little more than twice the parameters of a conventional + depthwise conv1d module: we implement it by having one + depthwise convolution, of half the width, that is causal (via + right-padding); and one depthwise convolution that is applied only + within chunks, that we multiply by a scaling factor which depends + on the position within the chunk. + + Args: + Accepts the standard args and kwargs that nn.Linear accepts + e.g. in_features, out_features, bias=False. + + initial_scale: you can override this if you want to increase + or decrease the initial magnitude of the module's output + (affects the initialization of weight_scale and bias_scale). + Another option, if you want to do something like this, is + to re-initialize the parameters. + """ + + def __init__( + self, + channels: int, + kernel_size: int, + initial_scale: float = 1.0, + bias: bool = True, + ): + super().__init__() + assert kernel_size % 2 == 1 + + half_kernel_size = (kernel_size + 1) // 2 + # will pad manually, on one side. + self.causal_conv = nn.Conv1d( + in_channels=channels, + out_channels=channels, + groups=channels, + kernel_size=half_kernel_size, + padding=0, + bias=True, + ) + + self.chunkwise_conv = nn.Conv1d( + in_channels=channels, + out_channels=channels, + groups=channels, + kernel_size=kernel_size, + padding=kernel_size // 2, + bias=bias, + ) + + # first row is correction factors added to the scale near the left edge of the chunk, + # second row is correction factors added to the scale near the right edge of the chunk, + # both of these are added to a default scale of 1.0. + self.chunkwise_conv_scale = nn.Parameter(torch.zeros(2, channels, kernel_size)) + self.kernel_size = kernel_size + + with torch.no_grad(): + self.causal_conv.weight[:] *= initial_scale + self.chunkwise_conv.weight[:] *= initial_scale + if bias: + torch.nn.init.uniform_( + self.causal_conv.bias, -0.1 * initial_scale, 0.1 * initial_scale + ) + + def forward(self, x: Tensor, chunk_size: int = -1) -> Tensor: + """ + Forward function. Args: + x: a Tensor of shape (batch_size, channels, seq_len) + chunk_size: the chunk size, in frames; does not have to divide seq_len exactly. + """ + (batch_size, num_channels, seq_len) = x.shape + + # half_kernel_size = self.kernel_size + 1 // 2 + # left_pad is half_kernel_size - 1 where half_kernel_size is the size used + # in the causal conv. It's the amount by which we must pad on the left, + # to make the convolution causal. + left_pad = self.kernel_size // 2 + + if chunk_size < 0 or chunk_size > seq_len: + chunk_size = seq_len + right_pad = -seq_len % chunk_size + + x = torch.nn.functional.pad(x, (left_pad, right_pad)) + + x_causal = self.causal_conv(x[..., : left_pad + seq_len]) + assert x_causal.shape == (batch_size, num_channels, seq_len) + + x_chunk = x[..., left_pad:] + num_chunks = x_chunk.shape[2] // chunk_size + x_chunk = x_chunk.reshape(batch_size, num_channels, num_chunks, chunk_size) + x_chunk = x_chunk.permute(0, 2, 1, 3).reshape( + batch_size * num_chunks, num_channels, chunk_size + ) + x_chunk = self.chunkwise_conv(x_chunk) # does not change shape + + chunk_scale = self._get_chunk_scale(chunk_size) + + x_chunk = x_chunk * chunk_scale + x_chunk = x_chunk.reshape( + batch_size, num_chunks, num_channels, chunk_size + ).permute(0, 2, 1, 3) + x_chunk = x_chunk.reshape(batch_size, num_channels, num_chunks * chunk_size)[ + ..., :seq_len + ] + + return x_chunk + x_causal + + def _get_chunk_scale(self, chunk_size: int): + """Returns tensor of shape (num_channels, chunk_size) that will be used to + scale the output of self.chunkwise_conv.""" + left_edge = self.chunkwise_conv_scale[0] + right_edge = self.chunkwise_conv_scale[1] + if chunk_size < self.kernel_size: + left_edge = left_edge[:, :chunk_size] + right_edge = right_edge[:, -chunk_size:] + else: + t = chunk_size - self.kernel_size + channels = left_edge.shape[0] + pad = torch.zeros( + channels, t, device=left_edge.device, dtype=left_edge.dtype + ) + left_edge = torch.cat((left_edge, pad), dim=-1) + right_edge = torch.cat((pad, right_edge), dim=-1) + return 1.0 + (left_edge + right_edge) + + def streaming_forward( + self, + x: Tensor, + cache: Tensor, + ) -> Tuple[Tensor, Tensor]: + """Streaming Forward function. + + Args: + x: a Tensor of shape (batch_size, channels, seq_len) + cache: cached left context of shape (batch_size, channels, left_pad) + """ + (batch_size, num_channels, seq_len) = x.shape + + # left_pad is half_kernel_size - 1 where half_kernel_size is the size used + # in the causal conv. It's the amount by which we must pad on the left, + # to make the convolution causal. + left_pad = self.kernel_size // 2 + + # Pad cache + assert cache.shape[-1] == left_pad, (cache.shape[-1], left_pad) + x = torch.cat([cache, x], dim=2) + # Update cache + cache = x[..., -left_pad:] + + x_causal = self.causal_conv(x) + assert x_causal.shape == (batch_size, num_channels, seq_len) + + x_chunk = x[..., left_pad:] + x_chunk = self.chunkwise_conv(x_chunk) # does not change shape + + chunk_scale = self._get_chunk_scale(chunk_size=seq_len) + x_chunk = x_chunk * chunk_scale + + return x_chunk + x_causal, cache + + +class BalancerFunction(torch.autograd.Function): + @staticmethod + def forward( + ctx, + x: Tensor, + min_mean: float, + max_mean: float, + min_rms: float, + max_rms: float, + grad_scale: float, + channel_dim: int, + ) -> Tensor: + if channel_dim < 0: + channel_dim += x.ndim + ctx.channel_dim = channel_dim + ctx.save_for_backward(x) + ctx.config = (min_mean, max_mean, min_rms, max_rms, grad_scale, channel_dim) + return x + + @staticmethod + def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None, None, None]: + (x,) = ctx.saved_tensors + (min_mean, max_mean, min_rms, max_rms, grad_scale, channel_dim) = ctx.config + + try: + with torch.enable_grad(): + with torch.cuda.amp.autocast(enabled=False): + x = x.to(torch.float32) + x = x.detach() + x.requires_grad = True + mean_dims = [i for i in range(x.ndim) if i != channel_dim] + uncentered_var = (x**2).mean(dim=mean_dims, keepdim=True) + mean = x.mean(dim=mean_dims, keepdim=True) + stddev = (uncentered_var - (mean * mean)).clamp(min=1.0e-20).sqrt() + rms = uncentered_var.clamp(min=1.0e-20).sqrt() + + m = mean / stddev + # part of loss that relates to mean / stddev + m_loss = (m - m.clamp(min=min_mean, max=max_mean)).abs() + + # put a much larger scale on the RMS-max-limit loss, so that if both it and the + # m_loss are violated we fix the RMS loss first. + rms_clamped = rms.clamp(min=min_rms, max=max_rms) + r_loss = (rms_clamped / rms).log().abs() + + loss = m_loss + r_loss + + loss.backward(gradient=torch.ones_like(loss)) + loss_grad = x.grad + loss_grad_rms = ( + (loss_grad**2) + .mean(dim=mean_dims, keepdim=True) + .sqrt() + .clamp(min=1.0e-20) + ) + + loss_grad = loss_grad * (grad_scale / loss_grad_rms) + + x_grad_float = x_grad.to(torch.float32) + # scale each element of loss_grad by the absolute value of the corresponding + # element of x_grad, which we view as a noisy estimate of its magnitude for that + # (frame and dimension). later we can consider factored versions. + x_grad_mod = x_grad_float + (x_grad_float.abs() * loss_grad) + x_grad = x_grad_mod.to(x_grad.dtype) + except Exception as e: + logging.info( + f"Caught exception in Balancer backward: {e}, size={list(x_grad.shape)}, will continue." + ) + + return x_grad, None, None, None, None, None, None + + +class Balancer(torch.nn.Module): + """ + Modifies the backpropped derivatives of a function to try to encourage, for + each channel, that it is positive at least a proportion `threshold` of the + time. It does this by multiplying negative derivative values by up to + (1+max_factor), and positive derivative values by up to (1-max_factor), + interpolated from 1 at the threshold to those extremal values when none + of the inputs are positive. + + Args: + num_channels: the number of channels + channel_dim: the dimension/axis corresponding to the channel, e.g. + -1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative. + min_positive: the minimum, per channel, of the proportion of the time + that (x > 0), below which we start to modify the derivatives. + max_positive: the maximum, per channel, of the proportion of the time + that (x > 0), above which we start to modify the derivatives. + scale_gain_factor: determines the 'gain' with which we increase the + change in gradient once the constraints on min_abs and max_abs + are violated. + min_abs: the minimum average-absolute-value difference from the mean + value per channel, which we allow, before we start to modify + the derivatives to prevent this. + max_abs: the maximum average-absolute-value difference from the mean + value per channel, which we allow, before we start to modify + the derivatives to prevent this. + prob: determines the minimum probability with which we modify the + gradients for the {min,max}_positive and {min,max}_abs constraints, + on each forward(). This is done randomly to prevent all layers + from doing it at the same time. + """ + + def __init__( + self, + num_channels: int, + channel_dim: int, + min_positive: FloatLike = 0.05, + max_positive: FloatLike = 0.95, + min_abs: FloatLike = 0.2, + max_abs: FloatLike = 100.0, + grad_scale: FloatLike = 0.04, + prob: Optional[FloatLike] = None, + ): + super().__init__() + + if prob is None: + prob = ScheduledFloat((0.0, 0.5), (8000.0, 0.125), default=0.4) + self.prob = prob + # 5% of the time we will return and do nothing because memory usage is + # too high. + self.mem_cutoff = CutoffEstimator(0.05) + + # actually self.num_channels is no longer needed except for an assertion. + self.num_channels = num_channels + self.channel_dim = channel_dim + self.min_positive = min_positive + self.max_positive = max_positive + self.min_abs = min_abs + self.max_abs = max_abs + self.grad_scale = grad_scale + + def forward(self, x: Tensor) -> Tensor: + if ( + torch.jit.is_scripting() + or not x.requires_grad + or (x.is_cuda and self.mem_cutoff(torch.cuda.memory_allocated())) + ): + return _no_op(x) + + prob = float(self.prob) + if random.random() < prob: + # The following inner-functions convert from the way we historically specified + # these limitations, as limits on the absolute value and the proportion of positive + # values, to limits on the RMS value and the (mean / stddev). + def _abs_to_rms(x): + # for normally distributed data, if the expected absolute value is x, the + # expected rms value will be sqrt(pi/2) * x. + return 1.25331413732 * x + + def _proportion_positive_to_mean(x): + def _atanh(x): + eps = 1.0e-10 + # eps is to prevent crashes if x is exactly 0 or 1. + # we'll just end up returning a fairly large value. + return (math.log(1 + x + eps) - math.log(1 - x + eps)) / 2.0 + + def _approx_inverse_erf(x): + # 1 / (sqrt(pi) * ln(2)), + # see https://math.stackexchange.com/questions/321569/approximating-the-error-function-erf-by-analytical-functions + # this approximation is extremely crude and gets progressively worse for + # x very close to -1 or +1, but we mostly care about the "middle" region + # e.g. _approx_inverse_erf(0.05) = 0.0407316414078772, + # and math.erf(0.0407316414078772) = 0.045935330944660666, + # which is pretty close to 0.05. + return 0.8139535143 * _atanh(x) + + # first convert x from the range 0..1 to the range -1..1 which the error + # function returns + x = -1 + (2 * x) + return _approx_inverse_erf(x) + + min_mean = _proportion_positive_to_mean(float(self.min_positive)) + max_mean = _proportion_positive_to_mean(float(self.max_positive)) + min_rms = _abs_to_rms(float(self.min_abs)) + max_rms = _abs_to_rms(float(self.max_abs)) + grad_scale = float(self.grad_scale) + + assert x.shape[self.channel_dim] == self.num_channels + + return BalancerFunction.apply( + x, min_mean, max_mean, min_rms, max_rms, grad_scale, self.channel_dim + ) + else: + return _no_op(x) + + +def penalize_abs_values_gt( + x: Tensor, limit: float, penalty: float, name: str = None +) -> Tensor: + """ + Returns x unmodified, but in backprop will put a penalty for the excess of + the absolute values of elements of x over the limit "limit". E.g. if + limit == 10.0, then if x has any values over 10 it will get a penalty. + + Caution: the value of this penalty will be affected by grad scaling used + in automatic mixed precision training. For this reasons we use this, + it shouldn't really matter, or may even be helpful; we just use this + to disallow really implausible values of scores to be given to softmax. + + The name is for randomly printed debug info. + """ + x_sign = x.sign() + over_limit = (x.abs() - limit) > 0 + # The following is a memory efficient way to penalize the absolute values of + # x that's over the limit. (The memory efficiency comes when you think + # about which items torch needs to cache for the autograd, and which ones it + # can throw away). The numerical value of aux_loss as computed here will + # actually be larger than it should be, by limit * over_limit.sum(), but it + # has the same derivative as the real aux_loss which is penalty * (x.abs() - + # limit).relu(). + aux_loss = penalty * ((x_sign * over_limit).to(torch.int8) * x) + # note: we don't do sum() here on aux)_loss, but it's as if we had done + # sum() due to how with_loss() works. + x = with_loss(x, aux_loss, name) + # you must use x for something, or this will be ineffective. + return x + + +def _diag(x: Tensor): # like .diag(), but works for tensors with 3 dims. + if x.ndim == 2: + return x.diag() + else: + (batch, dim, dim) = x.shape + x = x.reshape(batch, dim * dim) + x = x[:, :: dim + 1] + assert x.shape == (batch, dim) + return x + + +def _whitening_metric(x: Tensor, num_groups: int): + """ + Computes the "whitening metric", a value which will be 1.0 if all the eigenvalues of + of the centered feature covariance are the same within each group's covariance matrix + and also between groups. + Args: + x: a Tensor of shape (*, num_channels) + num_groups: the number of groups of channels, a number >=1 that divides num_channels + Returns: + Returns a scalar Tensor that will be 1.0 if the data is "perfectly white" and + greater than 1.0 otherwise. + """ + assert x.dtype != torch.float16 + x = x.reshape(-1, x.shape[-1]) + (num_frames, num_channels) = x.shape + assert num_channels % num_groups == 0 + channels_per_group = num_channels // num_groups + x = x.reshape(num_frames, num_groups, channels_per_group).transpose(0, 1) + # x now has shape (num_groups, num_frames, channels_per_group) + # subtract the mean so we use the centered, not uncentered, covariance. + # My experience has been that when we "mess with the gradients" like this, + # it's better not do anything that tries to move the mean around, because + # that can easily cause instability. + x = x - x.mean(dim=1, keepdim=True) + # x_covar: (num_groups, channels_per_group, channels_per_group) + x_covar = torch.matmul(x.transpose(1, 2), x) + x_covar_mean_diag = _diag(x_covar).mean() + # the following expression is what we'd get if we took the matrix product + # of each covariance and measured the mean of its trace, i.e. + # the same as _diag(torch.matmul(x_covar, x_covar)).mean(). + x_covarsq_mean_diag = (x_covar**2).sum() / (num_groups * channels_per_group) + # this metric will be >= 1.0; the larger it is, the less 'white' the data was. + metric = x_covarsq_mean_diag / (x_covar_mean_diag**2 + 1.0e-20) + return metric + + +class WhiteningPenaltyFunction(torch.autograd.Function): + @staticmethod + def forward(ctx, x: Tensor, module: nn.Module) -> Tensor: + ctx.save_for_backward(x) + ctx.module = module + return x + + @staticmethod + def backward(ctx, x_grad: Tensor): + (x_orig,) = ctx.saved_tensors + w = ctx.module + + try: + with torch.enable_grad(): + with torch.cuda.amp.autocast(enabled=False): + x_detached = x_orig.to(torch.float32).detach() + x_detached.requires_grad = True + + metric = _whitening_metric(x_detached, w.num_groups) + + if random.random() < 0.005 or __name__ == "__main__": + logging.info( + f"Whitening: name={w.name}, num_groups={w.num_groups}, num_channels={x_orig.shape[-1]}, " + f"metric={metric.item():.2f} vs. limit={float(w.whitening_limit)}" + ) + + if metric < float(w.whitening_limit): + w.prob = w.min_prob + return x_grad, None + else: + w.prob = w.max_prob + metric.backward() + penalty_grad = x_detached.grad + scale = w.grad_scale * ( + x_grad.to(torch.float32).norm() + / (penalty_grad.norm() + 1.0e-20) + ) + penalty_grad = penalty_grad * scale + return x_grad + penalty_grad.to(x_grad.dtype), None + except Exception as e: + logging.info( + f"Caught exception in Whiten backward: {e}, size={list(x_grad.shape)}, will continue." + ) + return x_grad, None + + +class Whiten(nn.Module): + def __init__( + self, + num_groups: int, + whitening_limit: FloatLike, + prob: Union[float, Tuple[float, float]], + grad_scale: FloatLike, + ): + """ + Args: + num_groups: the number of groups to divide the channel dim into before + whitening. We will attempt to make the feature covariance + within each group, after mean subtraction, as "white" as possible, + while having the same trace across all groups. + whitening_limit: a value greater than 1.0, that dictates how much + freedom we have to violate the constraints. 1.0 would mean perfectly + white, with exactly the same trace across groups; larger values + give more freedom. E.g. 2.0. + prob: the probability with which we apply the gradient modification + (also affects the grad scale). May be supplied as a float, + or as a pair (min_prob, max_prob) + + grad_scale: determines the scale on the gradient term from this object, + relative to the rest of the gradient on the attention weights. + E.g. 0.02 (you may want to use smaller values than this if prob is large) + """ + super(Whiten, self).__init__() + assert num_groups >= 1 + assert float(whitening_limit) >= 1 + assert grad_scale >= 0 + self.num_groups = num_groups + self.whitening_limit = whitening_limit + self.grad_scale = grad_scale + + if isinstance(prob, float): + prob = (prob, prob) + (self.min_prob, self.max_prob) = prob + assert 0 < self.min_prob <= self.max_prob <= 1 + self.prob = self.max_prob + self.name = None # will be set in training loop + + def forward(self, x: Tensor) -> Tensor: + """ + In the forward pass, this function just returns the input unmodified. + In the backward pass, it will modify the gradients to ensure that the + distribution in each group has close to (lambda times I) as the covariance + after mean subtraction, with the same lambda across groups. + For whitening_limit > 1, there will be more freedom to violate this + constraint. + + Args: + x: the input of shape (*, num_channels) + + Returns: + x, unmodified. You should make sure + you use the returned value, or the graph will be freed + and nothing will happen in backprop. + """ + grad_scale = float(self.grad_scale) + if not x.requires_grad or random.random() > self.prob or grad_scale == 0: + return _no_op(x) + else: + return WhiteningPenaltyFunction.apply(x, self) + + +class WithLoss(torch.autograd.Function): + @staticmethod + def forward(ctx, x: Tensor, y: Tensor, name: str): + ctx.y_shape = y.shape + if random.random() < 0.002 and name is not None: + loss_sum = y.sum().item() + logging.info(f"WithLoss: name={name}, loss-sum={loss_sum:.3e}") + return x + + @staticmethod + def backward(ctx, ans_grad: Tensor): + return ( + ans_grad, + torch.ones(ctx.y_shape, dtype=ans_grad.dtype, device=ans_grad.device), + None, + ) + + +def with_loss(x, y, name): + # returns x but adds y.sum() to the loss function. + return WithLoss.apply(x, y, name) + + +class ScaleGradFunction(torch.autograd.Function): + @staticmethod + def forward(ctx, x: Tensor, alpha: float) -> Tensor: + ctx.alpha = alpha + return x + + @staticmethod + def backward(ctx, grad: Tensor): + return grad * ctx.alpha, None + + +def scale_grad(x: Tensor, alpha: float): + return ScaleGradFunction.apply(x, alpha) + + +class ScaleGrad(nn.Module): + def __init__(self, alpha: float): + super().__init__() + self.alpha = alpha + + def forward(self, x: Tensor) -> Tensor: + if torch.jit.is_scripting() or torch.jit.is_tracing() or not self.training: + return x + return scale_grad(x, self.alpha) + + +class LimitParamValue(torch.autograd.Function): + @staticmethod + def forward(ctx, x: Tensor, min: float, max: float): + ctx.save_for_backward(x) + assert max >= min + ctx.min = min + ctx.max = max + return x + + @staticmethod + def backward(ctx, x_grad: Tensor): + (x,) = ctx.saved_tensors + # where x < ctx.min, ensure all grads are negative (this will tend to make + # x more positive). + x_grad = x_grad * torch.where( + torch.logical_and(x_grad > 0, x < ctx.min), -1.0, 1.0 + ) + # where x > ctx.max, ensure all grads are positive (this will tend to make + # x more negative). + x_grad *= torch.where(torch.logical_and(x_grad < 0, x > ctx.max), -1.0, 1.0) + return x_grad, None, None + + +def limit_param_value( + x: Tensor, min: float, max: float, prob: float = 0.6, training: bool = True +): + # You apply this to (typically) an nn.Parameter during training to ensure that its + # (elements mostly) stays within a supplied range. This is done by modifying the + # gradients in backprop. + # It's not necessary to do this on every batch: do it only some of the time, + # to save a little time. + if training and random.random() < prob: + return LimitParamValue.apply(x, min, max) + else: + return x + + +def _no_op(x: Tensor) -> Tensor: + if torch.jit.is_scripting() or torch.jit.is_tracing(): + return x + else: + # a no-op function that will have a node in the autograd graph, + # to avoid certain bugs relating to backward hooks + return x.chunk(1, dim=-1)[0] + + +class Identity(torch.nn.Module): + def __init__(self): + super(Identity, self).__init__() + + def forward(self, x): + return _no_op(x) + + +class DoubleSwishFunction(torch.autograd.Function): + """ + double_swish(x) = x * torch.sigmoid(x-1) + + This is a definition, originally motivated by its close numerical + similarity to swish(swish(x)), where swish(x) = x * sigmoid(x). + + Memory-efficient derivative computation: + double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1) + double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x). + Now, s'(x) = s(x) * (1-s(x)). + double_swish'(x) = x * s'(x) + s(x). + = x * s(x) * (1-s(x)) + s(x). + = double_swish(x) * (1-s(x)) + s(x) + ... so we just need to remember s(x) but not x itself. + """ + + @staticmethod + def forward(ctx, x: Tensor) -> Tensor: + requires_grad = x.requires_grad + if x.dtype == torch.float16: + x = x.to(torch.float32) + + s = torch.sigmoid(x - 1.0) + y = x * s + + if requires_grad: + deriv = y * (1 - s) + s + + # notes on derivative of x * sigmoid(x - 1): + # https://www.wolframalpha.com/input?i=d%2Fdx+%28x+*+sigmoid%28x-1%29%29 + # min \simeq -0.043638. Take floor as -0.044 so it's a lower bund + # max \simeq 1.1990. Take ceil to be 1.2 so it's an upper bound. + # the combination of "+ torch.rand_like(deriv)" and casting to torch.uint8 (which + # floors), should be expectation-preserving. + floor = -0.044 + ceil = 1.2 + d_scaled = (deriv - floor) * (255.0 / (ceil - floor)) + torch.rand_like( + deriv + ) + if __name__ == "__main__": + # for self-testing only. + assert d_scaled.min() >= 0.0 + assert d_scaled.max() < 256.0 + d_int = d_scaled.to(torch.uint8) + ctx.save_for_backward(d_int) + if x.dtype == torch.float16 or torch.is_autocast_enabled(): + y = y.to(torch.float16) + return y + + @staticmethod + def backward(ctx, y_grad: Tensor) -> Tensor: + (d,) = ctx.saved_tensors + # the same constants as used in forward pass. + floor = -0.043637 + ceil = 1.2 + + d = d * ((ceil - floor) / 255.0) + floor + return y_grad * d + + +class DoubleSwish(torch.nn.Module): + def __init__(self): + super().__init__() + + def forward(self, x: Tensor) -> Tensor: + """Return double-swish activation function which is an approximation to Swish(Swish(x)), + that we approximate closely with x * sigmoid(x-1). + """ + if torch.jit.is_scripting() or torch.jit.is_tracing(): + return x * torch.sigmoid(x - 1.0) + return DoubleSwishFunction.apply(x) + + +# Dropout2 is just like normal dropout, except it supports schedules on the dropout rates. +class Dropout2(nn.Module): + def __init__(self, p: FloatLike): + super().__init__() + self.p = p + + def forward(self, x: Tensor) -> Tensor: + return torch.nn.functional.dropout(x, p=float(self.p), training=self.training) + + +class MulForDropout3(torch.autograd.Function): + # returns (x * y * alpha) where alpha is a float and y doesn't require + # grad and is zero-or-one. + @staticmethod + @custom_fwd + def forward(ctx, x, y, alpha): + assert not y.requires_grad + ans = x * y * alpha + ctx.save_for_backward(ans) + ctx.alpha = alpha + return ans + + @staticmethod + @custom_bwd + def backward(ctx, ans_grad): + (ans,) = ctx.saved_tensors + x_grad = ctx.alpha * ans_grad * (ans != 0) + return x_grad, None, None + + +# Dropout3 is just like normal dropout, except it supports schedules on the dropout rates, +# and it lets you choose one dimension to share the dropout mask over +class Dropout3(nn.Module): + def __init__(self, p: FloatLike, shared_dim: int): + super().__init__() + self.p = p + self.shared_dim = shared_dim + + def forward(self, x: Tensor) -> Tensor: + p = float(self.p) + if not self.training or p == 0: + return _no_op(x) + scale = 1.0 / (1 - p) + rand_shape = list(x.shape) + rand_shape[self.shared_dim] = 1 + mask = torch.rand(*rand_shape, device=x.device) > p + ans = MulForDropout3.apply(x, mask, scale) + return ans + + +class SwooshLFunction(torch.autograd.Function): + """ + swoosh_l(x) = log(1 + exp(x-4)) - 0.08*x - 0.035 + """ + + @staticmethod + def forward(ctx, x: Tensor) -> Tensor: + requires_grad = x.requires_grad + if x.dtype == torch.float16: + x = x.to(torch.float32) + + zero = torch.tensor(0.0, dtype=x.dtype, device=x.device) + + coeff = -0.08 + + with torch.cuda.amp.autocast(enabled=False): + with torch.enable_grad(): + x = x.detach() + x.requires_grad = True + y = torch.logaddexp(zero, x - 4.0) + coeff * x - 0.035 + + if not requires_grad: + return y + + y.backward(gradient=torch.ones_like(y)) + + grad = x.grad + floor = coeff + ceil = 1.0 + coeff + 0.005 + + d_scaled = (grad - floor) * (255.0 / (ceil - floor)) + torch.rand_like( + grad + ) + if __name__ == "__main__": + # for self-testing only. + assert d_scaled.min() >= 0.0 + assert d_scaled.max() < 256.0 + + d_int = d_scaled.to(torch.uint8) + ctx.save_for_backward(d_int) + if x.dtype == torch.float16 or torch.is_autocast_enabled(): + y = y.to(torch.float16) + return y + + @staticmethod + def backward(ctx, y_grad: Tensor) -> Tensor: + (d,) = ctx.saved_tensors + # the same constants as used in forward pass. + + coeff = -0.08 + floor = coeff + ceil = 1.0 + coeff + 0.005 + d = d * ((ceil - floor) / 255.0) + floor + return y_grad * d + + +class SwooshL(torch.nn.Module): + def forward(self, x: Tensor) -> Tensor: + """Return Swoosh-L activation.""" + if torch.jit.is_scripting() or torch.jit.is_tracing(): + zero = torch.tensor(0.0, dtype=x.dtype, device=x.device) + return logaddexp(zero, x - 4.0) - 0.08 * x - 0.035 + if not x.requires_grad: + return k2.swoosh_l_forward(x) + else: + return k2.swoosh_l(x) + # return SwooshLFunction.apply(x) + + +class SwooshLOnnx(torch.nn.Module): + def forward(self, x: Tensor) -> Tensor: + """Return Swoosh-L activation.""" + zero = torch.tensor(0.0, dtype=x.dtype, device=x.device) + return logaddexp_onnx(zero, x - 4.0) - 0.08 * x - 0.035 + + +class SwooshRFunction(torch.autograd.Function): + """ + swoosh_r(x) = log(1 + exp(x-1)) - 0.08*x - 0.313261687 + + derivatives are between -0.08 and 0.92. + """ + + @staticmethod + def forward(ctx, x: Tensor) -> Tensor: + requires_grad = x.requires_grad + + if x.dtype == torch.float16: + x = x.to(torch.float32) + + zero = torch.tensor(0.0, dtype=x.dtype, device=x.device) + + with torch.cuda.amp.autocast(enabled=False): + with torch.enable_grad(): + x = x.detach() + x.requires_grad = True + y = torch.logaddexp(zero, x - 1.0) - 0.08 * x - 0.313261687 + + if not requires_grad: + return y + y.backward(gradient=torch.ones_like(y)) + + grad = x.grad + floor = -0.08 + ceil = 0.925 + + d_scaled = (grad - floor) * (255.0 / (ceil - floor)) + torch.rand_like( + grad + ) + if __name__ == "__main__": + # for self-testing only. + assert d_scaled.min() >= 0.0 + assert d_scaled.max() < 256.0 + + d_int = d_scaled.to(torch.uint8) + ctx.save_for_backward(d_int) + if x.dtype == torch.float16 or torch.is_autocast_enabled(): + y = y.to(torch.float16) + return y + + @staticmethod + def backward(ctx, y_grad: Tensor) -> Tensor: + (d,) = ctx.saved_tensors + # the same constants as used in forward pass. + floor = -0.08 + ceil = 0.925 + d = d * ((ceil - floor) / 255.0) + floor + return y_grad * d + + +class SwooshR(torch.nn.Module): + def forward(self, x: Tensor) -> Tensor: + """Return Swoosh-R activation.""" + if torch.jit.is_scripting() or torch.jit.is_tracing(): + zero = torch.tensor(0.0, dtype=x.dtype, device=x.device) + return logaddexp(zero, x - 1.0) - 0.08 * x - 0.313261687 + if not x.requires_grad: + return k2.swoosh_r_forward(x) + else: + return k2.swoosh_r(x) + # return SwooshRFunction.apply(x) + + +class SwooshROnnx(torch.nn.Module): + def forward(self, x: Tensor) -> Tensor: + """Return Swoosh-R activation.""" + zero = torch.tensor(0.0, dtype=x.dtype, device=x.device) + return logaddexp_onnx(zero, x - 1.0) - 0.08 * x - 0.313261687 + + +# simple version of SwooshL that does not redefine the backprop, used in +# ActivationDropoutAndLinearFunction. +def SwooshLForward(x: Tensor): + x_offset = x - 4.0 + log_sum = (1.0 + x_offset.exp()).log().to(x.dtype) + log_sum = torch.where(log_sum == float("inf"), x_offset, log_sum) + return log_sum - 0.08 * x - 0.035 + + +# simple version of SwooshR that does not redefine the backprop, used in +# ActivationDropoutAndLinearFunction. +def SwooshRForward(x: Tensor): + x_offset = x - 1.0 + log_sum = (1.0 + x_offset.exp()).log().to(x.dtype) + log_sum = torch.where(log_sum == float("inf"), x_offset, log_sum) + return log_sum - 0.08 * x - 0.313261687 + + +class ActivationDropoutAndLinearFunction(torch.autograd.Function): + @staticmethod + @custom_fwd + def forward( + ctx, + x: Tensor, + weight: Tensor, + bias: Optional[Tensor], + activation: str, + dropout_p: float, + dropout_shared_dim: Optional[int], + ): + if dropout_p != 0.0: + dropout_shape = list(x.shape) + if dropout_shared_dim is not None: + dropout_shape[dropout_shared_dim] = 1 + # else it won't be very memory efficient. + dropout_mask = (1.0 / (1.0 - dropout_p)) * ( + torch.rand(*dropout_shape, device=x.device, dtype=x.dtype) > dropout_p + ) + else: + dropout_mask = None + + ctx.save_for_backward(x, weight, bias, dropout_mask) + + ctx.activation = activation + + forward_activation_dict = { + "SwooshL": k2.swoosh_l_forward, + "SwooshR": k2.swoosh_r_forward, + } + # it will raise a KeyError if this fails. This will be an error. We let it + # propagate to the user. + activation_func = forward_activation_dict[activation] + x = activation_func(x) + if dropout_mask is not None: + x = x * dropout_mask + x = torch.nn.functional.linear(x, weight, bias) + return x + + @staticmethod + @custom_bwd + def backward(ctx, ans_grad: Tensor): + saved = ctx.saved_tensors + (x, weight, bias, dropout_mask) = saved + + forward_and_deriv_activation_dict = { + "SwooshL": k2.swoosh_l_forward_and_deriv, + "SwooshR": k2.swoosh_r_forward_and_deriv, + } + # the following lines a KeyError if the activation is unrecognized. + # This will be an error. We let it propagate to the user. + func = forward_and_deriv_activation_dict[ctx.activation] + + y, func_deriv = func(x) + if dropout_mask is not None: + y = y * dropout_mask + # now compute derivative of y w.r.t. weight and bias.. + # y: (..., in_channels), ans_grad: (..., out_channels), + (out_channels, in_channels) = weight.shape + + in_channels = y.shape[-1] + g = ans_grad.reshape(-1, out_channels) + weight_deriv = torch.matmul(g.t(), y.reshape(-1, in_channels)) + y_deriv = torch.matmul(ans_grad, weight) + bias_deriv = None if bias is None else g.sum(dim=0) + x_deriv = y_deriv * func_deriv + if dropout_mask is not None: + # order versus func_deriv does not matter + x_deriv = x_deriv * dropout_mask + + return x_deriv, weight_deriv, bias_deriv, None, None, None + + +class ActivationDropoutAndLinear(torch.nn.Module): + """ + This merges an activation function followed by dropout and then a nn.Linear module; + it does so in a memory efficient way so that it only stores the input to the whole + module. If activation == SwooshL and dropout_shared_dim != None, this will be + equivalent to: + nn.Sequential(SwooshL(), + Dropout3(dropout_p, shared_dim=dropout_shared_dim), + ScaledLinear(in_channels, out_channels, bias=bias, + initial_scale=initial_scale)) + If dropout_shared_dim is None, the dropout would be equivalent to + Dropout2(dropout_p). Note: Dropout3 will be more memory efficient as the dropout + mask is smaller. + + Args: + in_channels: number of input channels, e.g. 256 + out_channels: number of output channels, e.g. 256 + bias: if true, have a bias + activation: the activation function, for now just support SwooshL. + dropout_p: the dropout probability or schedule (happens after nonlinearity). + dropout_shared_dim: the dimension, if any, across which the dropout mask is + shared (e.g. the time dimension). If None, this may be less memory + efficient if there are modules before this one that cache the input + for their backprop (e.g. Balancer or Whiten). + """ + + def __init__( + self, + in_channels: int, + out_channels: int, + bias: bool = True, + activation: str = "SwooshL", + dropout_p: FloatLike = 0.0, + dropout_shared_dim: Optional[int] = -1, + initial_scale: float = 1.0, + ): + super().__init__() + # create a temporary module of nn.Linear that we'll steal the + # weights and bias from + l = ScaledLinear( + in_channels, out_channels, bias=bias, initial_scale=initial_scale + ) + + self.weight = l.weight + # register_parameter properly handles making it a parameter when l.bias + # is None. I think there is some reason for doing it this way rather + # than just setting it to None but I don't know what it is, maybe + # something to do with exporting the module.. + self.register_parameter("bias", l.bias) + + self.activation = activation + self.dropout_p = dropout_p + self.dropout_shared_dim = dropout_shared_dim + + def forward(self, x: Tensor): + if torch.jit.is_scripting() or torch.jit.is_tracing(): + if self.activation == "SwooshL": + x = SwooshLForward(x) + elif self.activation == "SwooshR": + x = SwooshRForward(x) + else: + assert False, self.activation + return torch.nn.functional.linear(x, self.weight, self.bias) + + return ActivationDropoutAndLinearFunction.apply( + x, + self.weight, + self.bias, + self.activation, + float(self.dropout_p), + self.dropout_shared_dim, + ) + + +def convert_num_channels(x: Tensor, num_channels: int) -> Tensor: + if num_channels <= x.shape[-1]: + return x[..., :num_channels] + else: + shape = list(x.shape) + shape[-1] = num_channels - shape[-1] + zeros = torch.zeros(shape, dtype=x.dtype, device=x.device) + return torch.cat((x, zeros), dim=-1) + + +def _test_whiten(): + for proportion in [0.1, 0.5, 10.0]: + logging.info(f"_test_whiten(): proportion = {proportion}") + x = torch.randn(100, 128) + direction = torch.randn(128) + coeffs = torch.randn(100, 1) + x += proportion * direction * coeffs + + x.requires_grad = True + + m = Whiten( + 1, 5.0, prob=1.0, grad_scale=0.1 # num_groups # whitening_limit, + ) # grad_scale + + for _ in range(4): + y = m(x) + + y_grad = torch.randn_like(x) + y.backward(gradient=y_grad) + + if proportion < 0.2: + assert torch.allclose(x.grad, y_grad) + elif proportion > 1.0: + assert not torch.allclose(x.grad, y_grad) + + +def _test_balancer_sign(): + probs = torch.arange(0, 1, 0.01) + N = 1000 + x = 1.0 * ((2.0 * (torch.rand(probs.numel(), N) < probs.unsqueeze(-1))) - 1.0) + x = x.detach() + x.requires_grad = True + m = Balancer( + probs.numel(), + channel_dim=0, + min_positive=0.05, + max_positive=0.95, + min_abs=0.0, + prob=1.0, + ) + + y_grad = torch.sign(torch.randn(probs.numel(), N)) + + y = m(x) + y.backward(gradient=y_grad) + print("_test_balancer_sign: x = ", x) + print("_test_balancer_sign: y grad = ", y_grad) + print("_test_balancer_sign: x grad = ", x.grad) + + +def _test_balancer_magnitude(): + magnitudes = torch.arange(0, 1, 0.01) + N = 1000 + x = torch.sign(torch.randn(magnitudes.numel(), N)) * magnitudes.unsqueeze(-1) + x = x.detach() + x.requires_grad = True + m = Balancer( + magnitudes.numel(), + channel_dim=0, + min_positive=0.0, + max_positive=1.0, + min_abs=0.2, + max_abs=0.7, + prob=1.0, + ) + + y_grad = torch.sign(torch.randn(magnitudes.numel(), N)) + + y = m(x) + y.backward(gradient=y_grad) + print("_test_balancer_magnitude: x = ", x) + print("_test_balancer_magnitude: y grad = ", y_grad) + print("_test_balancer_magnitude: x grad = ", x.grad) + + +def _test_double_swish_deriv(): + x = torch.randn(10, 12, dtype=torch.double) * 3.0 + x.requires_grad = True + m = DoubleSwish() + + tol = (1.2 - (-0.043637)) / 255.0 + torch.autograd.gradcheck(m, x, atol=tol) + + # for self-test. + x = torch.randn(1000, 1000, dtype=torch.double) * 3.0 + x.requires_grad = True + y = m(x) + + +def _test_swooshl_deriv(): + x = torch.randn(10, 12, dtype=torch.double) * 3.0 + x.requires_grad = True + m = SwooshL() + + tol = 1.0 / 255.0 + torch.autograd.gradcheck(m, x, atol=tol, eps=0.01) + + # for self-test. + x = torch.randn(1000, 1000, dtype=torch.double) * 3.0 + x.requires_grad = True + y = m(x) + + +def _test_swooshr_deriv(): + x = torch.randn(10, 12, dtype=torch.double) * 3.0 + x.requires_grad = True + m = SwooshR() + + tol = 1.0 / 255.0 + torch.autograd.gradcheck(m, x, atol=tol, eps=0.01) + + # for self-test. + x = torch.randn(1000, 1000, dtype=torch.double) * 3.0 + x.requires_grad = True + y = m(x) + + +def _test_softmax(): + a = torch.randn(2, 10, dtype=torch.float64) + b = a.clone() + a.requires_grad = True + b.requires_grad = True + a.softmax(dim=1)[:, 0].sum().backward() + print("a grad = ", a.grad) + softmax(b, dim=1)[:, 0].sum().backward() + print("b grad = ", b.grad) + assert torch.allclose(a.grad, b.grad) + + +def _test_piecewise_linear(): + p = PiecewiseLinear((0, 10.0)) + for x in [-100, 0, 100]: + assert p(x) == 10.0 + p = PiecewiseLinear((0, 10.0), (1, 0.0)) + for x, y in [(-100, 10.0), (0, 10.0), (0.5, 5.0), (1, 0.0), (2, 0.0)]: + print("x, y = ", x, y) + assert p(x) == y, (x, p(x), y) + + q = PiecewiseLinear((0.5, 15.0), (0.6, 1.0)) + x_vals = [-1.0, 0.0, 0.1, 0.2, 0.5, 0.6, 0.7, 0.9, 1.0, 2.0] + pq = p.max(q) + for x in x_vals: + y1 = max(p(x), q(x)) + y2 = pq(x) + assert abs(y1 - y2) < 0.001 + pq = p.min(q) + for x in x_vals: + y1 = min(p(x), q(x)) + y2 = pq(x) + assert abs(y1 - y2) < 0.001 + pq = p + q + for x in x_vals: + y1 = p(x) + q(x) + y2 = pq(x) + assert abs(y1 - y2) < 0.001 + + +def _test_activation_dropout_and_linear(): + in_channels = 20 + out_channels = 30 + + for bias in [True, False]: + # actually we don't test for dropout_p != 0.0 because forward functions will give + # different answers. This is because we are using the k2 implementation of + # swoosh_l an swoosh_r inside SwooshL() and SwooshR(), and they call randn() + # internally, messing up the random state. + for dropout_p in [0.0]: + for activation in ["SwooshL", "SwooshR"]: + m1 = nn.Sequential( + SwooshL() if activation == "SwooshL" else SwooshR(), + Dropout3(p=dropout_p, shared_dim=-1), + ScaledLinear( + in_channels, out_channels, bias=bias, initial_scale=0.5 + ), + ) + m2 = ActivationDropoutAndLinear( + in_channels, + out_channels, + bias=bias, + initial_scale=0.5, + activation=activation, + dropout_p=dropout_p, + ) + with torch.no_grad(): + m2.weight[:] = m1[2].weight + if bias: + m2.bias[:] = m1[2].bias + # make sure forward gives same result. + x1 = torch.randn(10, in_channels) + x1.requires_grad = True + + # TEMP. + assert torch.allclose( + SwooshRFunction.apply(x1), SwooshRForward(x1), atol=1.0e-03 + ) + + x2 = x1.clone().detach() + x2.requires_grad = True + seed = 10 + torch.manual_seed(seed) + y1 = m1(x1) + y_grad = torch.randn_like(y1) + y1.backward(gradient=y_grad) + torch.manual_seed(seed) + y2 = m2(x2) + y2.backward(gradient=y_grad) + + print( + f"bias = {bias}, dropout_p = {dropout_p}, activation = {activation}" + ) + print("y1 = ", y1) + print("y2 = ", y2) + assert torch.allclose(y1, y2, atol=0.02) + assert torch.allclose(m1[2].weight.grad, m2.weight.grad, atol=1.0e-05) + if bias: + assert torch.allclose(m1[2].bias.grad, m2.bias.grad, atol=1.0e-05) + print("x1.grad = ", x1.grad) + print("x2.grad = ", x2.grad) + + def isclose(a, b): + # return true if cosine similarity is > 0.9. + return (a * b).sum() > 0.9 * ( + (a**2).sum() * (b**2).sum() + ).sqrt() + + # the SwooshL() implementation has a noisy gradient due to 1-byte + # storage of it. + assert isclose(x1.grad, x2.grad) + + +if __name__ == "__main__": + logging.getLogger().setLevel(logging.INFO) + torch.set_num_threads(1) + torch.set_num_interop_threads(1) + _test_piecewise_linear() + _test_softmax() + _test_whiten() + _test_balancer_sign() + _test_balancer_magnitude() + _test_double_swish_deriv() + _test_swooshr_deriv() + _test_swooshl_deriv() + _test_activation_dropout_and_linear() diff --git a/egs/icmcasr/ASR/zipformer/streaming_beam_search.py b/egs/icmcasr/ASR/zipformer/streaming_beam_search.py new file mode 100644 index 000000000..3c8565b33 --- /dev/null +++ b/egs/icmcasr/ASR/zipformer/streaming_beam_search.py @@ -0,0 +1,295 @@ +# Copyright 2022 Xiaomi Corp. (authors: Wei Kang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import warnings +from typing import List + +import k2 +import torch +import torch.nn as nn +from beam_search import Hypothesis, HypothesisList, get_hyps_shape +from decode_stream import DecodeStream + +from icefall.decode import one_best_decoding +from icefall.utils import get_texts + + +def greedy_search( + model: nn.Module, + encoder_out: torch.Tensor, + streams: List[DecodeStream], + blank_penalty: float = 0.0, +) -> None: + """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. + + Args: + model: + The transducer model. + encoder_out: + Output from the encoder. Its shape is (N, T, C), where N >= 1. + streams: + A list of Stream objects. + """ + assert len(streams) == encoder_out.size(0) + assert encoder_out.ndim == 3 + + blank_id = model.decoder.blank_id + context_size = model.decoder.context_size + device = model.device + T = encoder_out.size(1) + + decoder_input = torch.tensor( + [stream.hyp[-context_size:] for stream in streams], + device=device, + dtype=torch.int64, + ) + # decoder_out is of shape (N, 1, decoder_out_dim) + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + + for t in range(T): + # current_encoder_out's shape: (batch_size, 1, encoder_out_dim) + current_encoder_out = encoder_out[:, t : t + 1, :] # noqa + + logits = model.joiner( + current_encoder_out.unsqueeze(2), + decoder_out.unsqueeze(1), + project_input=False, + ) + # logits'shape (batch_size, vocab_size) + logits = logits.squeeze(1).squeeze(1) + + if blank_penalty != 0.0: + logits[:, 0] -= blank_penalty + + assert logits.ndim == 2, logits.shape + y = logits.argmax(dim=1).tolist() + emitted = False + for i, v in enumerate(y): + if v != blank_id: + streams[i].hyp.append(v) + emitted = True + if emitted: + # update decoder output + decoder_input = torch.tensor( + [stream.hyp[-context_size:] for stream in streams], + device=device, + dtype=torch.int64, + ) + decoder_out = model.decoder( + decoder_input, + need_pad=False, + ) + decoder_out = model.joiner.decoder_proj(decoder_out) + + +def modified_beam_search( + model: nn.Module, + encoder_out: torch.Tensor, + streams: List[DecodeStream], + num_active_paths: int = 4, + blank_penalty: float = 0.0, +) -> None: + """Beam search in batch mode with --max-sym-per-frame=1 being hardcoded. + + Args: + model: + The RNN-T model. + encoder_out: + A 3-D tensor of shape (N, T, encoder_out_dim) containing the output of + the encoder model. + streams: + A list of stream objects. + num_active_paths: + Number of active paths during the beam search. + """ + assert encoder_out.ndim == 3, encoder_out.shape + assert len(streams) == encoder_out.size(0) + + blank_id = model.decoder.blank_id + context_size = model.decoder.context_size + device = next(model.parameters()).device + batch_size = len(streams) + T = encoder_out.size(1) + + B = [stream.hyps for stream in streams] + + for t in range(T): + current_encoder_out = encoder_out[:, t].unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim) + + hyps_shape = get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.stack( + [hyp.log_prob.reshape(1) for hyps in A for hyp in hyps], dim=0 + ) # (num_hyps, 1) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + # decoder_out is of shape (num_hyps, 1, 1, decoder_output_dim) + + # Note: For torch 1.7.1 and below, it requires a torch.int64 tensor + # as index, so we use `to(torch.int64)` below. + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, encoder_out_dim) + + logits = model.joiner(current_encoder_out, decoder_out, project_input=False) + # logits is of shape (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) + + if blank_penalty != 0.0: + logits[:, 0] -= blank_penalty + + log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs.add_(ys_log_probs) + + vocab_size = log_probs.size(-1) + + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs) + + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(num_active_paths) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + new_ys = hyp.ys[:] + new_token = topk_token_indexes[k] + if new_token != blank_id: + new_ys.append(new_token) + + new_log_prob = topk_log_probs[k] + new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob) + B[i].add(new_hyp) + + for i in range(batch_size): + streams[i].hyps = B[i] + + +def fast_beam_search_one_best( + model: nn.Module, + encoder_out: torch.Tensor, + processed_lens: torch.Tensor, + streams: List[DecodeStream], + beam: float, + max_states: int, + max_contexts: int, + blank_penalty: float = 0.0, +) -> None: + """It limits the maximum number of symbols per frame to 1. + + A lattice is first generated by Fsa-based beam search, then we get the + recognition by applying shortest path on the lattice. + + Args: + model: + An instance of `Transducer`. + encoder_out: + A tensor of shape (N, T, C) from the encoder. + processed_lens: + A tensor of shape (N,) containing the number of processed frames + in `encoder_out` before padding. + streams: + A list of stream objects. + beam: + Beam value, similar to the beam used in Kaldi.. + max_states: + Max states per stream per frame. + max_contexts: + Max contexts pre stream per frame. + """ + assert encoder_out.ndim == 3 + B, T, C = encoder_out.shape + assert B == len(streams) + + context_size = model.decoder.context_size + vocab_size = model.decoder.vocab_size + + config = k2.RnntDecodingConfig( + vocab_size=vocab_size, + decoder_history_len=context_size, + beam=beam, + max_contexts=max_contexts, + max_states=max_states, + ) + individual_streams = [] + for i in range(B): + individual_streams.append(streams[i].rnnt_decoding_stream) + decoding_streams = k2.RnntDecodingStreams(individual_streams, config) + + for t in range(T): + # shape is a RaggedShape of shape (B, context) + # contexts is a Tensor of shape (shape.NumElements(), context_size) + shape, contexts = decoding_streams.get_contexts() + # `nn.Embedding()` in torch below v1.7.1 supports only torch.int64 + contexts = contexts.to(torch.int64) + # decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim) + decoder_out = model.decoder(contexts, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + # current_encoder_out is of shape + # (shape.NumElements(), 1, joiner_dim) + # fmt: off + current_encoder_out = torch.index_select( + encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64) + ) + # fmt: on + logits = model.joiner( + current_encoder_out.unsqueeze(2), + decoder_out.unsqueeze(1), + project_input=False, + ) + logits = logits.squeeze(1).squeeze(1) + + if blank_penalty != 0.0: + logits[:, 0] -= blank_penalty + + log_probs = logits.log_softmax(dim=-1) + decoding_streams.advance(log_probs) + + decoding_streams.terminate_and_flush_to_streams() + + lattice = decoding_streams.format_output(processed_lens.tolist()) + best_path = one_best_decoding(lattice) + hyp_tokens = get_texts(best_path) + + for i in range(B): + streams[i].hyp = hyp_tokens[i] diff --git a/egs/icmcasr/ASR/zipformer/streaming_decode.py b/egs/icmcasr/ASR/zipformer/streaming_decode.py new file mode 100755 index 000000000..904caf8af --- /dev/null +++ b/egs/icmcasr/ASR/zipformer/streaming_decode.py @@ -0,0 +1,853 @@ +#!/usr/bin/env python3 +# Copyright 2022-2023 Xiaomi Corporation (Authors: Wei Kang, +# Fangjun Kuang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +""" +Usage: +./zipformer/streaming_decode.py \ + --epoch 28 \ + --avg 15 \ + --causal 1 \ + --chunk-size 32 \ + --left-context-frames 256 \ + --exp-dir ./zipformer/exp \ + --decoding-method greedy_search \ + --num-decode-streams 2000 +""" + +import argparse +import logging +import math +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import numpy as np +import sentencepiece as spm +import torch +from asr_datamodule import LibriSpeechAsrDataModule +from decode_stream import DecodeStream +from kaldifeat import Fbank, FbankOptions +from lhotse import CutSet +from streaming_beam_search import ( + fast_beam_search_one_best, + greedy_search, + modified_beam_search, +) +from torch import Tensor, nn +from torch.nn.utils.rnn import pad_sequence +from train import add_model_arguments, get_params, get_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.utils import ( + AttributeDict, + make_pad_mask, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + +LOG_EPS = math.log(1e-10) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=28, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=15, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="zipformer/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="greedy_search", + help="""Supported decoding methods are: + greedy_search + modified_beam_search + fast_beam_search + """, + ) + + parser.add_argument( + "--num_active_paths", + type=int, + default=4, + help="""An interger indicating how many candidates we will keep for each + frame. Used only when --decoding-method is modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=4, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --decoding-method is fast_beam_search""", + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=4, + help="""Used only when --decoding-method is + fast_beam_search""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=32, + help="""Used only when --decoding-method is + fast_beam_search""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + parser.add_argument( + "--num-decode-streams", + type=int, + default=2000, + help="The number of streams that can be decoded parallel.", + ) + + add_model_arguments(parser) + + return parser + + +def get_init_states( + model: nn.Module, + batch_size: int = 1, + device: torch.device = torch.device("cpu"), +) -> List[torch.Tensor]: + """ + Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6] + is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2). + states[-2] is the cached left padding for ConvNeXt module, + of shape (batch_size, num_channels, left_pad, num_freqs) + states[-1] is processed_lens of shape (batch,), which records the number + of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch. + """ + states = model.encoder.get_init_states(batch_size, device) + + embed_states = model.encoder_embed.get_init_states(batch_size, device) + states.append(embed_states) + + processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device) + states.append(processed_lens) + + return states + + +def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]: + """Stack list of zipformer states that correspond to separate utterances + into a single emformer state, so that it can be used as an input for + zipformer when those utterances are formed into a batch. + + Args: + state_list: + Each element in state_list corresponding to the internal state + of the zipformer model for a single utterance. For element-n, + state_list[n] is a list of cached tensors of all encoder layers. For layer-i, + state_list[n][i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, + cached_val2, cached_conv1, cached_conv2). + state_list[n][-2] is the cached left padding for ConvNeXt module, + of shape (batch_size, num_channels, left_pad, num_freqs) + state_list[n][-1] is processed_lens of shape (batch,), which records the number + of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch. + + Note: + It is the inverse of :func:`unstack_states`. + """ + batch_size = len(state_list) + assert (len(state_list[0]) - 2) % 6 == 0, len(state_list[0]) + tot_num_layers = (len(state_list[0]) - 2) // 6 + + batch_states = [] + for layer in range(tot_num_layers): + layer_offset = layer * 6 + # cached_key: (left_context_len, batch_size, key_dim) + cached_key = torch.cat( + [state_list[i][layer_offset] for i in range(batch_size)], dim=1 + ) + # cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim) + cached_nonlin_attn = torch.cat( + [state_list[i][layer_offset + 1] for i in range(batch_size)], dim=1 + ) + # cached_val1: (left_context_len, batch_size, value_dim) + cached_val1 = torch.cat( + [state_list[i][layer_offset + 2] for i in range(batch_size)], dim=1 + ) + # cached_val2: (left_context_len, batch_size, value_dim) + cached_val2 = torch.cat( + [state_list[i][layer_offset + 3] for i in range(batch_size)], dim=1 + ) + # cached_conv1: (#batch, channels, left_pad) + cached_conv1 = torch.cat( + [state_list[i][layer_offset + 4] for i in range(batch_size)], dim=0 + ) + # cached_conv2: (#batch, channels, left_pad) + cached_conv2 = torch.cat( + [state_list[i][layer_offset + 5] for i in range(batch_size)], dim=0 + ) + batch_states += [ + cached_key, + cached_nonlin_attn, + cached_val1, + cached_val2, + cached_conv1, + cached_conv2, + ] + + cached_embed_left_pad = torch.cat( + [state_list[i][-2] for i in range(batch_size)], dim=0 + ) + batch_states.append(cached_embed_left_pad) + + processed_lens = torch.cat([state_list[i][-1] for i in range(batch_size)], dim=0) + batch_states.append(processed_lens) + + return batch_states + + +def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]: + """Unstack the zipformer state corresponding to a batch of utterances + into a list of states, where the i-th entry is the state from the i-th + utterance in the batch. + + Note: + It is the inverse of :func:`stack_states`. + + Args: + batch_states: A list of cached tensors of all encoder layers. For layer-i, + states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, + cached_conv1, cached_conv2). + state_list[-2] is the cached left padding for ConvNeXt module, + of shape (batch_size, num_channels, left_pad, num_freqs) + states[-1] is processed_lens of shape (batch,), which records the number + of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch. + + Returns: + state_list: A list of list. Each element in state_list corresponding to the internal state + of the zipformer model for a single utterance. + """ + assert (len(batch_states) - 2) % 6 == 0, len(batch_states) + tot_num_layers = (len(batch_states) - 2) // 6 + + processed_lens = batch_states[-1] + batch_size = processed_lens.shape[0] + + state_list = [[] for _ in range(batch_size)] + + for layer in range(tot_num_layers): + layer_offset = layer * 6 + # cached_key: (left_context_len, batch_size, key_dim) + cached_key_list = batch_states[layer_offset].chunk(chunks=batch_size, dim=1) + # cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim) + cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk( + chunks=batch_size, dim=1 + ) + # cached_val1: (left_context_len, batch_size, value_dim) + cached_val1_list = batch_states[layer_offset + 2].chunk( + chunks=batch_size, dim=1 + ) + # cached_val2: (left_context_len, batch_size, value_dim) + cached_val2_list = batch_states[layer_offset + 3].chunk( + chunks=batch_size, dim=1 + ) + # cached_conv1: (#batch, channels, left_pad) + cached_conv1_list = batch_states[layer_offset + 4].chunk( + chunks=batch_size, dim=0 + ) + # cached_conv2: (#batch, channels, left_pad) + cached_conv2_list = batch_states[layer_offset + 5].chunk( + chunks=batch_size, dim=0 + ) + for i in range(batch_size): + state_list[i] += [ + cached_key_list[i], + cached_nonlin_attn_list[i], + cached_val1_list[i], + cached_val2_list[i], + cached_conv1_list[i], + cached_conv2_list[i], + ] + + cached_embed_left_pad_list = batch_states[-2].chunk(chunks=batch_size, dim=0) + for i in range(batch_size): + state_list[i].append(cached_embed_left_pad_list[i]) + + processed_lens_list = batch_states[-1].chunk(chunks=batch_size, dim=0) + for i in range(batch_size): + state_list[i].append(processed_lens_list[i]) + + return state_list + + +def streaming_forward( + features: Tensor, + feature_lens: Tensor, + model: nn.Module, + states: List[Tensor], + chunk_size: int, + left_context_len: int, +) -> Tuple[Tensor, Tensor, List[Tensor]]: + """ + Returns encoder outputs, output lengths, and updated states. + """ + cached_embed_left_pad = states[-2] + (x, x_lens, new_cached_embed_left_pad,) = model.encoder_embed.streaming_forward( + x=features, + x_lens=feature_lens, + cached_left_pad=cached_embed_left_pad, + ) + assert x.size(1) == chunk_size, (x.size(1), chunk_size) + + src_key_padding_mask = make_pad_mask(x_lens) + + # processed_mask is used to mask out initial states + processed_mask = torch.arange(left_context_len, device=x.device).expand( + x.size(0), left_context_len + ) + processed_lens = states[-1] # (batch,) + # (batch, left_context_size) + processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1) + # Update processed lengths + new_processed_lens = processed_lens + x_lens + + # (batch, left_context_size + chunk_size) + src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1) + + x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) + encoder_states = states[:-2] + ( + encoder_out, + encoder_out_lens, + new_encoder_states, + ) = model.encoder.streaming_forward( + x=x, + x_lens=x_lens, + states=encoder_states, + src_key_padding_mask=src_key_padding_mask, + ) + encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C) + + new_states = new_encoder_states + [ + new_cached_embed_left_pad, + new_processed_lens, + ] + return encoder_out, encoder_out_lens, new_states + + +def decode_one_chunk( + params: AttributeDict, + model: nn.Module, + decode_streams: List[DecodeStream], +) -> List[int]: + """Decode one chunk frames of features for each decode_streams and + return the indexes of finished streams in a List. + + Args: + params: + It's the return value of :func:`get_params`. + model: + The neural model. + decode_streams: + A List of DecodeStream, each belonging to a utterance. + Returns: + Return a List containing which DecodeStreams are finished. + """ + device = model.device + chunk_size = int(params.chunk_size) + left_context_len = int(params.left_context_frames) + + features = [] + feature_lens = [] + states = [] + processed_lens = [] # Used in fast-beam-search + + for stream in decode_streams: + feat, feat_len = stream.get_feature_frames(chunk_size * 2) + features.append(feat) + feature_lens.append(feat_len) + states.append(stream.states) + processed_lens.append(stream.done_frames) + + feature_lens = torch.tensor(feature_lens, device=device) + features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS) + + # Make sure the length after encoder_embed is at least 1. + # The encoder_embed subsample features (T - 7) // 2 + # The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling + tail_length = chunk_size * 2 + 7 + 2 * 3 + if features.size(1) < tail_length: + pad_length = tail_length - features.size(1) + feature_lens += pad_length + features = torch.nn.functional.pad( + features, + (0, 0, 0, pad_length), + mode="constant", + value=LOG_EPS, + ) + + states = stack_states(states) + + encoder_out, encoder_out_lens, new_states = streaming_forward( + features=features, + feature_lens=feature_lens, + model=model, + states=states, + chunk_size=chunk_size, + left_context_len=left_context_len, + ) + + encoder_out = model.joiner.encoder_proj(encoder_out) + + if params.decoding_method == "greedy_search": + greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams) + elif params.decoding_method == "fast_beam_search": + processed_lens = torch.tensor(processed_lens, device=device) + processed_lens = processed_lens + encoder_out_lens + fast_beam_search_one_best( + model=model, + encoder_out=encoder_out, + processed_lens=processed_lens, + streams=decode_streams, + beam=params.beam, + max_states=params.max_states, + max_contexts=params.max_contexts, + ) + elif params.decoding_method == "modified_beam_search": + modified_beam_search( + model=model, + streams=decode_streams, + encoder_out=encoder_out, + num_active_paths=params.num_active_paths, + ) + else: + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") + + states = unstack_states(new_states) + + finished_streams = [] + for i in range(len(decode_streams)): + decode_streams[i].states = states[i] + decode_streams[i].done_frames += encoder_out_lens[i] + if decode_streams[i].done: + finished_streams.append(i) + + return finished_streams + + +def decode_dataset( + cuts: CutSet, + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[List[str], List[str]]]]: + """Decode dataset. + + Args: + cuts: + Lhotse Cutset containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search. + Returns: + Return a dict, whose key may be "greedy_search" if greedy search + is used, or it may be "beam_7" if beam size of 7 is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + device = model.device + + opts = FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = 16000 + opts.mel_opts.num_bins = 80 + + log_interval = 100 + + decode_results = [] + # Contain decode streams currently running. + decode_streams = [] + for num, cut in enumerate(cuts): + # each utterance has a DecodeStream. + initial_states = get_init_states(model=model, batch_size=1, device=device) + decode_stream = DecodeStream( + params=params, + cut_id=cut.id, + initial_states=initial_states, + decoding_graph=decoding_graph, + device=device, + ) + + audio: np.ndarray = cut.load_audio() + # audio.shape: (1, num_samples) + assert len(audio.shape) == 2 + assert audio.shape[0] == 1, "Should be single channel" + assert audio.dtype == np.float32, audio.dtype + + # The trained model is using normalized samples + assert audio.max() <= 1, "Should be normalized to [-1, 1])" + + samples = torch.from_numpy(audio).squeeze(0) + + fbank = Fbank(opts) + feature = fbank(samples.to(device)) + decode_stream.set_features(feature, tail_pad_len=30) + decode_stream.ground_truth = cut.supervisions[0].text + + decode_streams.append(decode_stream) + + while len(decode_streams) >= params.num_decode_streams: + finished_streams = decode_one_chunk( + params=params, model=model, decode_streams=decode_streams + ) + for i in sorted(finished_streams, reverse=True): + decode_results.append( + ( + decode_streams[i].id, + decode_streams[i].ground_truth.split(), + sp.decode(decode_streams[i].decoding_result()).split(), + ) + ) + del decode_streams[i] + + if num % log_interval == 0: + logging.info(f"Cuts processed until now is {num}.") + + # decode final chunks of last sequences + while len(decode_streams): + finished_streams = decode_one_chunk( + params=params, model=model, decode_streams=decode_streams + ) + for i in sorted(finished_streams, reverse=True): + decode_results.append( + ( + decode_streams[i].id, + decode_streams[i].ground_truth.split(), + sp.decode(decode_streams[i].decoding_result()).split(), + ) + ) + del decode_streams[i] + + if params.decoding_method == "greedy_search": + key = "greedy_search" + elif params.decoding_method == "fast_beam_search": + key = ( + f"beam_{params.beam}_" + f"max_contexts_{params.max_contexts}_" + f"max_states_{params.max_states}" + ) + elif params.decoding_method == "modified_beam_search": + key = f"num_active_paths_{params.num_active_paths}" + else: + raise ValueError(f"Unsupported decoding method: {params.decoding_method}") + return {key: decode_results} + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[List[str], List[str]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + results = sorted(results) + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_filename, "w") as f: + wer = write_error_stats( + f, f"{test_set_name}-{key}", results, enable_log=True + ) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = ( + params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_info, "w") as f: + print("settings\tWER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + params.res_dir = params.exp_dir / "streaming" / params.decoding_method + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + assert params.causal, params.causal + assert "," not in params.chunk_size, "chunk_size should be one value in decoding." + assert ( + "," not in params.left_context_frames + ), "left_context_frames should be one value in decoding." + params.suffix += f"-chunk-{params.chunk_size}" + params.suffix += f"-left-context-{params.left_context_frames}" + + # for fast_beam_search + if params.decoding_method == "fast_beam_search": + params.suffix += f"-beam-{params.beam}" + params.suffix += f"-max-contexts-{params.max_contexts}" + params.suffix += f"-max-states-{params.max_states}" + + if params.use_averaged_model: + params.suffix += "-use-averaged-model" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # and is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if start >= 0: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to(device) + model.eval() + model.device = device + + decoding_graph = None + if params.decoding_method == "fast_beam_search": + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + librispeech = LibriSpeechAsrDataModule(args) + + test_clean_cuts = librispeech.test_clean_cuts() + test_other_cuts = librispeech.test_other_cuts() + + test_sets = ["test-clean", "test-other"] + test_cuts = [test_clean_cuts, test_other_cuts] + + for test_set, test_cut in zip(test_sets, test_cuts): + results_dict = decode_dataset( + cuts=test_cut, + params=params, + model=model, + sp=sp, + decoding_graph=decoding_graph, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/icmcasr/ASR/zipformer/subsampling.py b/egs/icmcasr/ASR/zipformer/subsampling.py new file mode 100644 index 000000000..d16d87bac --- /dev/null +++ b/egs/icmcasr/ASR/zipformer/subsampling.py @@ -0,0 +1,406 @@ +#!/usr/bin/env python3 +# Copyright 2023 Xiaomi Corp. (authors: Daniel Povey, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Tuple +import warnings + +import torch +from torch import Tensor, nn +from scaling import ( + Balancer, + BiasNorm, + Dropout3, + FloatLike, + Optional, + ScaledConv2d, + ScaleGrad, + ScheduledFloat, + SwooshL, + SwooshR, + Whiten, +) + + +class ConvNeXt(nn.Module): + """ + Our interpretation of the ConvNeXt module as used in https://arxiv.org/pdf/2206.14747.pdf + """ + + def __init__( + self, + channels: int, + hidden_ratio: int = 3, + kernel_size: Tuple[int, int] = (7, 7), + layerdrop_rate: FloatLike = None, + ): + super().__init__() + self.padding = ((kernel_size[0] - 1) // 2, (kernel_size[1] - 1) // 2) + hidden_channels = channels * hidden_ratio + if layerdrop_rate is None: + layerdrop_rate = ScheduledFloat((0.0, 0.2), (20000.0, 0.015)) + self.layerdrop_rate = layerdrop_rate + + self.depthwise_conv = nn.Conv2d( + in_channels=channels, + out_channels=channels, + groups=channels, + kernel_size=kernel_size, + padding=self.padding, + ) + + self.pointwise_conv1 = nn.Conv2d( + in_channels=channels, out_channels=hidden_channels, kernel_size=1 + ) + + self.hidden_balancer = Balancer( + hidden_channels, + channel_dim=1, + min_positive=0.3, + max_positive=1.0, + min_abs=0.75, + max_abs=5.0, + ) + + self.activation = SwooshL() + self.pointwise_conv2 = ScaledConv2d( + in_channels=hidden_channels, + out_channels=channels, + kernel_size=1, + initial_scale=0.01, + ) + + self.out_balancer = Balancer( + channels, + channel_dim=1, + min_positive=0.4, + max_positive=0.6, + min_abs=1.0, + max_abs=6.0, + ) + self.out_whiten = Whiten( + num_groups=1, + whitening_limit=5.0, + prob=(0.025, 0.25), + grad_scale=0.01, + ) + + def forward(self, x: Tensor) -> Tensor: + if torch.jit.is_scripting() or torch.jit.is_tracing() or not self.training: + return self.forward_internal(x) + layerdrop_rate = float(self.layerdrop_rate) + + if layerdrop_rate != 0.0: + batch_size = x.shape[0] + mask = ( + torch.rand((batch_size, 1, 1, 1), dtype=x.dtype, device=x.device) + > layerdrop_rate + ) + else: + mask = None + # turns out this caching idea does not work with --world-size > 1 + # return caching_eval(self.forward_internal, x, mask) + return self.forward_internal(x, mask) + + def forward_internal( + self, x: Tensor, layer_skip_mask: Optional[Tensor] = None + ) -> Tensor: + """ + x layout: (N, C, H, W), i.e. (batch_size, num_channels, num_frames, num_freqs) + + The returned value has the same shape as x. + """ + bypass = x + x = self.depthwise_conv(x) + x = self.pointwise_conv1(x) + x = self.hidden_balancer(x) + x = self.activation(x) + x = self.pointwise_conv2(x) + + if layer_skip_mask is not None: + x = x * layer_skip_mask + + x = bypass + x + x = self.out_balancer(x) + + if x.requires_grad: + x = x.transpose(1, 3) # (N, W, H, C); need channel dim to be last + x = self.out_whiten(x) + x = x.transpose(1, 3) # (N, C, H, W) + + return x + + def streaming_forward( + self, + x: Tensor, + cached_left_pad: Tensor, + ) -> Tuple[Tensor, Tensor]: + """ + Args: + x layout: (N, C, H, W), i.e. (batch_size, num_channels, num_frames, num_freqs) + cached_left_pad: (batch_size, num_channels, left_pad, num_freqs) + + Returns: + - The returned value has the same shape as x. + - Updated cached_left_pad. + """ + padding = self.padding + + # The length without right padding for depth-wise conv + T = x.size(2) - padding[0] + + bypass = x[:, :, :T, :] + + # Pad left side + assert cached_left_pad.size(2) == padding[0], ( + cached_left_pad.size(2), + padding[0], + ) + x = torch.cat([cached_left_pad, x], dim=2) + # Update cached left padding + cached_left_pad = x[:, :, T : padding[0] + T, :] + + # depthwise_conv + x = torch.nn.functional.conv2d( + x, + weight=self.depthwise_conv.weight, + bias=self.depthwise_conv.bias, + padding=(0, padding[1]), + groups=self.depthwise_conv.groups, + ) + x = self.pointwise_conv1(x) + x = self.hidden_balancer(x) + x = self.activation(x) + x = self.pointwise_conv2(x) + + x = bypass + x + return x, cached_left_pad + + +class Conv2dSubsampling(nn.Module): + """Convolutional 2D subsampling (to 1/2 length). + + Convert an input of shape (N, T, idim) to an output + with shape (N, T', odim), where + T' = (T-3)//2 - 2 == (T-7)//2 + + It is based on + https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa + """ + + def __init__( + self, + in_channels: int, + out_channels: int, + layer1_channels: int = 8, + layer2_channels: int = 32, + layer3_channels: int = 128, + dropout: FloatLike = 0.1, + ) -> None: + """ + Args: + in_channels: + Number of channels in. The input shape is (N, T, in_channels). + Caution: It requires: T >=7, in_channels >=7 + out_channels + Output dim. The output shape is (N, (T-3)//2, out_channels) + layer1_channels: + Number of channels in layer1 + layer1_channels: + Number of channels in layer2 + bottleneck: + bottleneck dimension for 1d squeeze-excite + """ + assert in_channels >= 7 + super().__init__() + + # The ScaleGrad module is there to prevent the gradients + # w.r.t. the weight or bias of the first Conv2d module in self.conv from + # exceeding the range of fp16 when using automatic mixed precision (amp) + # training. (The second one is necessary to stop its bias from getting + # a too-large gradient). + + self.conv = nn.Sequential( + nn.Conv2d( + in_channels=1, + out_channels=layer1_channels, + kernel_size=3, + padding=(0, 1), # (time, freq) + ), + ScaleGrad(0.2), + Balancer(layer1_channels, channel_dim=1, max_abs=1.0), + SwooshR(), + nn.Conv2d( + in_channels=layer1_channels, + out_channels=layer2_channels, + kernel_size=3, + stride=2, + padding=0, + ), + Balancer(layer2_channels, channel_dim=1, max_abs=4.0), + SwooshR(), + nn.Conv2d( + in_channels=layer2_channels, + out_channels=layer3_channels, + kernel_size=3, + stride=(1, 2), # (time, freq) + ), + Balancer(layer3_channels, channel_dim=1, max_abs=4.0), + SwooshR(), + ) + + # just one convnext layer + self.convnext = ConvNeXt(layer3_channels, kernel_size=(7, 7)) + + # (in_channels-3)//4 + self.out_width = (((in_channels - 1) // 2) - 1) // 2 + self.layer3_channels = layer3_channels + + self.out = nn.Linear(self.out_width * layer3_channels, out_channels) + # use a larger than normal grad_scale on this whitening module; there is + # only one such module, so there is not a concern about adding together + # many copies of this extra gradient term. + self.out_whiten = Whiten( + num_groups=1, + whitening_limit=ScheduledFloat((0.0, 4.0), (20000.0, 8.0), default=4.0), + prob=(0.025, 0.25), + grad_scale=0.02, + ) + + # max_log_eps=0.0 is to prevent both eps and the output of self.out from + # getting large, there is an unnecessary degree of freedom. + self.out_norm = BiasNorm(out_channels) + self.dropout = Dropout3(dropout, shared_dim=1) + + def forward( + self, x: torch.Tensor, x_lens: torch.Tensor + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Subsample x. + + Args: + x: + Its shape is (N, T, idim). + x_lens: + A tensor of shape (batch_size,) containing the number of frames in + + Returns: + - a tensor of shape (N, (T-7)//2, odim) + - output lengths, of shape (batch_size,) + """ + # On entry, x is (N, T, idim) + x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W) + # scaling x by 0.1 allows us to use a larger grad-scale in fp16 "amp" (automatic mixed precision) + # training, since the weights in the first convolution are otherwise the limiting factor for getting infinite + # gradients. + x = self.conv(x) + x = self.convnext(x) + + # Now x is of shape (N, odim, (T-7)//2, (idim-3)//4) + b, c, t, f = x.size() + + x = x.transpose(1, 2).reshape(b, t, c * f) + # now x: (N, (T-7)//2, out_width * layer3_channels)) + + x = self.out(x) + # Now x is of shape (N, (T-7)//2, odim) + x = self.out_whiten(x) + x = self.out_norm(x) + x = self.dropout(x) + + if torch.jit.is_scripting() or torch.jit.is_tracing(): + x_lens = (x_lens - 7) // 2 + else: + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + x_lens = (x_lens - 7) // 2 + assert x.size(1) == x_lens.max().item(), (x.size(1), x_lens.max()) + + return x, x_lens + + def streaming_forward( + self, + x: torch.Tensor, + x_lens: torch.Tensor, + cached_left_pad: Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """Subsample x. + + Args: + x: + Its shape is (N, T, idim). + x_lens: + A tensor of shape (batch_size,) containing the number of frames in + + Returns: + - a tensor of shape (N, (T-7)//2, odim) + - output lengths, of shape (batch_size,) + - updated cache + """ + # On entry, x is (N, T, idim) + x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W) + + # T' = (T-7)//2 + x = self.conv(x) + + # T' = (T-7)//2-3 + x, cached_left_pad = self.convnext.streaming_forward( + x, cached_left_pad=cached_left_pad + ) + + # Now x is of shape (N, odim, T', ((idim-1)//2 - 1)//2) + b, c, t, f = x.size() + + x = x.transpose(1, 2).reshape(b, t, c * f) + # now x: (N, T', out_width * layer3_channels)) + + x = self.out(x) + # Now x is of shape (N, T', odim) + x = self.out_norm(x) + + if torch.jit.is_scripting() or torch.jit.is_tracing(): + assert self.convnext.padding[0] == 3 + # The ConvNeXt module needs 3 frames of right padding after subsampling + x_lens = (x_lens - 7) // 2 - 3 + else: + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + # The ConvNeXt module needs 3 frames of right padding after subsampling + assert self.convnext.padding[0] == 3 + x_lens = (x_lens - 7) // 2 - 3 + + assert x.size(1) == x_lens.max().item(), (x.shape, x_lens.max()) + + return x, x_lens, cached_left_pad + + @torch.jit.export + def get_init_states( + self, + batch_size: int = 1, + device: torch.device = torch.device("cpu"), + ) -> Tensor: + """Get initial states for Conv2dSubsampling module. + It is the cached left padding for ConvNeXt module, + of shape (batch_size, num_channels, left_pad, num_freqs) + """ + left_pad = self.convnext.padding[0] + freq = self.out_width + channels = self.layer3_channels + cached_embed_left_pad = torch.zeros(batch_size, channels, left_pad, freq).to( + device + ) + + return cached_embed_left_pad diff --git a/egs/icmcasr/ASR/zipformer/train.py b/egs/icmcasr/ASR/zipformer/train.py new file mode 100755 index 000000000..7009f3346 --- /dev/null +++ b/egs/icmcasr/ASR/zipformer/train.py @@ -0,0 +1,1389 @@ +#!/usr/bin/env python3 +# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang, +# Mingshuang Luo, +# Zengwei Yao, +# Daniel Povey) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +# For non-streaming model training: +./zipformer/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --use-fp16 1 \ + --exp-dir zipformer/exp \ + --full-libri 1 \ + --max-duration 1000 + +# For streaming model training: +./zipformer/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --use-fp16 1 \ + --exp-dir zipformer/exp \ + --causal 1 \ + --full-libri 1 \ + --max-duration 1000 + +It supports training with: + - transducer loss (default), with `--use-transducer True --use-ctc False` + - ctc loss (not recommended), with `--use-transducer False --use-ctc True` + - transducer loss & ctc loss, with `--use-transducer True --use-ctc True` +""" + + +import argparse +import copy +import logging +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, Optional, Tuple, Union + +import k2 +import optim +import sentencepiece as spm +import torch +import torch.multiprocessing as mp +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from decoder import Decoder +from joiner import Joiner +from lhotse.cut import Cut +from lhotse.dataset.sampling.base import CutSampler +from lhotse.utils import fix_random_seed +from model import AsrModel +from optim import Eden, ScaledAdam +from scaling import ScheduledFloat +from subsampling import Conv2dSubsampling +from torch import Tensor +from torch.cuda.amp import GradScaler +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.utils.tensorboard import SummaryWriter +from zipformer import Zipformer2 + +from icefall import diagnostics +from icefall.checkpoint import load_checkpoint, remove_checkpoints +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.checkpoint import ( + save_checkpoint_with_global_batch_idx, + update_averaged_model, +) +from icefall.dist import cleanup_dist, setup_dist +from icefall.env import get_env_info +from icefall.hooks import register_inf_check_hooks +from icefall.utils import ( + AttributeDict, + MetricsTracker, + get_parameter_groups_with_lrs, + setup_logger, + str2bool, +) + +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] + + +def get_adjusted_batch_count(params: AttributeDict) -> float: + # returns the number of batches we would have used so far if we had used the reference + # duration. This is for purposes of set_batch_count(). + return ( + params.batch_idx_train + * (params.max_duration * params.world_size) + / params.ref_duration + ) + + +def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None: + if isinstance(model, DDP): + # get underlying nn.Module + model = model.module + for name, module in model.named_modules(): + if hasattr(module, "batch_count"): + module.batch_count = batch_count + if hasattr(module, "name"): + module.name = name + + +def add_model_arguments(parser: argparse.ArgumentParser): + parser.add_argument( + "--num-encoder-layers", + type=str, + default="2,2,3,4,3,2", + help="Number of zipformer encoder layers per stack, comma separated.", + ) + + parser.add_argument( + "--downsampling-factor", + type=str, + default="1,2,4,8,4,2", + help="Downsampling factor for each stack of encoder layers.", + ) + + parser.add_argument( + "--feedforward-dim", + type=str, + default="512,768,1024,1536,1024,768", + help="Feedforward dimension of the zipformer encoder layers, per stack, comma separated.", + ) + + parser.add_argument( + "--num-heads", + type=str, + default="4,4,4,8,4,4", + help="Number of attention heads in the zipformer encoder layers: a single int or comma-separated list.", + ) + + parser.add_argument( + "--encoder-dim", + type=str, + default="192,256,384,512,384,256", + help="Embedding dimension in encoder stacks: a single int or comma-separated list.", + ) + + parser.add_argument( + "--query-head-dim", + type=str, + default="32", + help="Query/key dimension per head in encoder stacks: a single int or comma-separated list.", + ) + + parser.add_argument( + "--value-head-dim", + type=str, + default="12", + help="Value dimension per head in encoder stacks: a single int or comma-separated list.", + ) + + parser.add_argument( + "--pos-head-dim", + type=str, + default="4", + help="Positional-encoding dimension per head in encoder stacks: a single int or comma-separated list.", + ) + + parser.add_argument( + "--pos-dim", + type=int, + default="48", + help="Positional-encoding embedding dimension", + ) + + parser.add_argument( + "--encoder-unmasked-dim", + type=str, + default="192,192,256,256,256,192", + help="Unmasked dimensions in the encoders, relates to augmentation during training. " + "A single int or comma-separated list. Must be <= each corresponding encoder_dim.", + ) + + parser.add_argument( + "--cnn-module-kernel", + type=str, + default="31,31,15,15,15,31", + help="Sizes of convolutional kernels in convolution modules in each encoder stack: " + "a single int or comma-separated list.", + ) + + parser.add_argument( + "--decoder-dim", + type=int, + default=512, + help="Embedding dimension in the decoder model.", + ) + + parser.add_argument( + "--joiner-dim", + type=int, + default=512, + help="""Dimension used in the joiner model. + Outputs from the encoder and decoder model are projected + to this dimension before adding. + """, + ) + + parser.add_argument( + "--causal", + type=str2bool, + default=False, + help="If True, use causal version of model.", + ) + + parser.add_argument( + "--chunk-size", + type=str, + default="16,32,64,-1", + help="Chunk sizes (at 50Hz frame rate) will be chosen randomly from this list during training. " + " Must be just -1 if --causal=False", + ) + + parser.add_argument( + "--left-context-frames", + type=str, + default="64,128,256,-1", + help="Maximum left-contexts for causal training, measured in frames which will " + "be converted to a number of chunks. If splitting into chunks, " + "chunk left-context frames will be chosen randomly from this list; else not relevant.", + ) + + parser.add_argument( + "--use-transducer", + type=str2bool, + default=True, + help="If True, use Transducer head.", + ) + + parser.add_argument( + "--use-ctc", + type=str2bool, + default=False, + help="If True, use CTC head.", + ) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=30, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=1, + help="""Resume training from this epoch. It should be positive. + If larger than 1, it will load checkpoint from + exp-dir/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--start-batch", + type=int, + default=0, + help="""If positive, --start-epoch is ignored and + it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="zipformer/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--base-lr", type=float, default=0.045, help="The base learning rate." + ) + + parser.add_argument( + "--lr-batches", + type=float, + default=7500, + help="""Number of steps that affects how rapidly the learning rate + decreases. We suggest not to change this.""", + ) + + parser.add_argument( + "--lr-epochs", + type=float, + default=3.5, + help="""Number of epochs that affects how rapidly the learning rate decreases. + """, + ) + + parser.add_argument( + "--ref-duration", + type=float, + default=600, + help="Reference batch duration for purposes of adjusting batch counts for setting various " + "schedules inside the model", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; " "2 means tri-gram", + ) + + parser.add_argument( + "--prune-range", + type=int, + default=5, + help="The prune range for rnnt loss, it means how many symbols(context)" + "we are using to compute the loss", + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.25, + help="The scale to smooth the loss with lm " + "(output of prediction network) part.", + ) + + parser.add_argument( + "--am-scale", + type=float, + default=0.0, + help="The scale to smooth the loss with am (output of encoder network)" "part.", + ) + + parser.add_argument( + "--simple-loss-scale", + type=float, + default=0.5, + help="To get pruning ranges, we will calculate a simple version" + "loss(joiner is just addition), this simple loss also uses for" + "training (as a regularization item). We will scale the simple loss" + "with this parameter before adding to the final loss.", + ) + + parser.add_argument( + "--ctc-loss-scale", + type=float, + default=0.2, + help="Scale for CTC loss.", + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--print-diagnostics", + type=str2bool, + default=False, + help="Accumulate stats on activations, print them and exit.", + ) + + parser.add_argument( + "--inf-check", + type=str2bool, + default=False, + help="Add hooks to check for infinite module outputs and gradients.", + ) + + parser.add_argument( + "--save-every-n", + type=int, + default=4000, + help="""Save checkpoint after processing this number of batches" + periodically. We save checkpoint to exp-dir/ whenever + params.batch_idx_train % save_every_n == 0. The checkpoint filename + has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt' + Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the + end of each epoch where `xxx` is the epoch number counting from 1. + """, + ) + + parser.add_argument( + "--keep-last-k", + type=int, + default=30, + help="""Only keep this number of checkpoints on disk. + For instance, if it is 3, there are only 3 checkpoints + in the exp-dir with filenames `checkpoint-xxx.pt`. + It does not affect checkpoints with name `epoch-xxx.pt`. + """, + ) + + parser.add_argument( + "--average-period", + type=int, + default=200, + help="""Update the averaged model, namely `model_avg`, after processing + this number of batches. `model_avg` is a separate version of model, + in which each floating-point parameter is the average of all the + parameters from the start of training. Each time we take the average, + we do: `model_avg = model * (average_period / batch_idx_train) + + model_avg * ((batch_idx_train - average_period) / batch_idx_train)`. + """, + ) + + parser.add_argument( + "--use-fp16", + type=str2bool, + default=False, + help="Whether to use half precision training.", + ) + + add_model_arguments(parser) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval is 0 + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - subsampling_factor: The subsampling factor for the model. + + - encoder_dim: Hidden dim for multi-head attention model. + + - num_decoder_layers: Number of decoder layer of transformer decoder. + + - warm_step: The warmup period that dictates the decay of the + scale on "simple" (un-pruned) loss. + """ + params = AttributeDict( + { + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 50, + "reset_interval": 200, + "valid_interval": 3000, # For the 100h subset, use 800 + # parameters for zipformer + "feature_dim": 80, + "subsampling_factor": 4, # not passed in, this is fixed. + "warm_step": 2000, + "env_info": get_env_info(), + } + ) + + return params + + +def _to_int_tuple(s: str): + return tuple(map(int, s.split(","))) + + +def get_encoder_embed(params: AttributeDict) -> nn.Module: + # encoder_embed converts the input of shape (N, T, num_features) + # to the shape (N, (T - 7) // 2, encoder_dims). + # That is, it does two things simultaneously: + # (1) subsampling: T -> (T - 7) // 2 + # (2) embedding: num_features -> encoder_dims + # In the normal configuration, we will downsample once more at the end + # by a factor of 2, and most of the encoder stacks will run at a lower + # sampling rate. + encoder_embed = Conv2dSubsampling( + in_channels=params.feature_dim, + out_channels=_to_int_tuple(params.encoder_dim)[0], + dropout=ScheduledFloat((0.0, 0.3), (20000.0, 0.1)), + ) + return encoder_embed + + +def get_encoder_model(params: AttributeDict) -> nn.Module: + encoder = Zipformer2( + output_downsampling_factor=2, + downsampling_factor=_to_int_tuple(params.downsampling_factor), + num_encoder_layers=_to_int_tuple(params.num_encoder_layers), + encoder_dim=_to_int_tuple(params.encoder_dim), + encoder_unmasked_dim=_to_int_tuple(params.encoder_unmasked_dim), + query_head_dim=_to_int_tuple(params.query_head_dim), + pos_head_dim=_to_int_tuple(params.pos_head_dim), + value_head_dim=_to_int_tuple(params.value_head_dim), + pos_dim=params.pos_dim, + num_heads=_to_int_tuple(params.num_heads), + feedforward_dim=_to_int_tuple(params.feedforward_dim), + cnn_module_kernel=_to_int_tuple(params.cnn_module_kernel), + dropout=ScheduledFloat((0.0, 0.3), (20000.0, 0.1)), + warmup_batches=4000.0, + causal=params.causal, + chunk_size=_to_int_tuple(params.chunk_size), + left_context_frames=_to_int_tuple(params.left_context_frames), + ) + return encoder + + +def get_decoder_model(params: AttributeDict) -> nn.Module: + decoder = Decoder( + vocab_size=params.vocab_size, + decoder_dim=params.decoder_dim, + blank_id=params.blank_id, + context_size=params.context_size, + ) + return decoder + + +def get_joiner_model(params: AttributeDict) -> nn.Module: + joiner = Joiner( + encoder_dim=max(_to_int_tuple(params.encoder_dim)), + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return joiner + + +def get_model(params: AttributeDict) -> nn.Module: + assert params.use_transducer or params.use_ctc, ( + f"At least one of them should be True, " + f"but got params.use_transducer={params.use_transducer}, " + f"params.use_ctc={params.use_ctc}" + ) + + encoder_embed = get_encoder_embed(params) + encoder = get_encoder_model(params) + + if params.use_transducer: + decoder = get_decoder_model(params) + joiner = get_joiner_model(params) + else: + decoder = None + joiner = None + + model = AsrModel( + encoder_embed=encoder_embed, + encoder=encoder, + decoder=decoder, + joiner=joiner, + encoder_dim=max(_to_int_tuple(params.encoder_dim)), + decoder_dim=params.decoder_dim, + vocab_size=params.vocab_size, + use_transducer=params.use_transducer, + use_ctc=params.use_ctc, + ) + return model + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + model_avg: nn.Module = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, +) -> Optional[Dict[str, Any]]: + """Load checkpoint from file. + + If params.start_batch is positive, it will load the checkpoint from + `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if + params.start_epoch is larger than 1, it will load the checkpoint from + `params.start_epoch - 1`. + + Apart from loading state dict for `model` and `optimizer` it also updates + `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer that we are using. + scheduler: + The scheduler that we are using. + Returns: + Return a dict containing previously saved training info. + """ + if params.start_batch > 0: + filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" + elif params.start_epoch > 1: + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + else: + return None + + assert filename.is_file(), f"{filename} does not exist!" + + saved_params = load_checkpoint( + filename, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + if params.start_batch > 0: + if "cur_epoch" in saved_params: + params["start_epoch"] = saved_params["cur_epoch"] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: Union[nn.Module, DDP], + model_avg: Optional[nn.Module] = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, + sampler: Optional[CutSampler] = None, + scaler: Optional[GradScaler] = None, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer used in the training. + sampler: + The sampler for the training dataset. + scaler: + The scaler used for mix precision training. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=sampler, + scaler=scaler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + batch: dict, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of Zipformer in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + warmup: a floating point value which increases throughout training; + values >= 1.0 are fully warmed up and have all modules present. + """ + device = model.device if isinstance(model, DDP) else next(model.parameters()).device + feature = batch["inputs"] + # at entry, feature is (N, T, C) + assert feature.ndim == 3 + feature = feature.to(device) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + batch_idx_train = params.batch_idx_train + warm_step = params.warm_step + + texts = batch["supervisions"]["text"] + y = sp.encode(texts, out_type=int) + y = k2.RaggedTensor(y) + + with torch.set_grad_enabled(is_training): + simple_loss, pruned_loss, ctc_loss = model( + x=feature, + x_lens=feature_lens, + y=y, + prune_range=params.prune_range, + am_scale=params.am_scale, + lm_scale=params.lm_scale, + ) + + loss = 0.0 + + if params.use_transducer: + s = params.simple_loss_scale + # take down the scale on the simple loss from 1.0 at the start + # to params.simple_loss scale by warm_step. + simple_loss_scale = ( + s + if batch_idx_train >= warm_step + else 1.0 - (batch_idx_train / warm_step) * (1.0 - s) + ) + pruned_loss_scale = ( + 1.0 + if batch_idx_train >= warm_step + else 0.1 + 0.9 * (batch_idx_train / warm_step) + ) + loss += simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss + + if params.use_ctc: + loss += params.ctc_loss_scale * ctc_loss + + assert loss.requires_grad == is_training + + info = MetricsTracker() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + if params.use_transducer: + info["simple_loss"] = simple_loss.detach().cpu().item() + info["pruned_loss"] = pruned_loss.detach().cpu().item() + if params.use_ctc: + info["ctc_loss"] = ctc_loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: Union[nn.Module, DDP], + optimizer: torch.optim.Optimizer, + scheduler: LRSchedulerType, + sp: spm.SentencePieceProcessor, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + scaler: GradScaler, + model_avg: Optional[nn.Module] = None, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + scheduler: + The learning rate scheduler, we call step() every step. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + scaler: + The scaler used for mix precision training. + model_avg: + The stored model averaged from the start of training. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + + tot_loss = MetricsTracker() + + saved_bad_model = False + + def save_bad_model(suffix: str = ""): + save_checkpoint_impl( + filename=params.exp_dir / f"bad-model{suffix}-{rank}.pt", + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=0, + ) + + for batch_idx, batch in enumerate(train_dl): + if batch_idx % 10 == 0: + set_batch_count(model, get_adjusted_batch_count(params)) + + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + scaler.scale(loss).backward() + scheduler.step_batch(params.batch_idx_train) + + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + except: # noqa + save_bad_model() + display_and_save_batch(batch, params=params, sp=sp) + raise + + if params.print_diagnostics and batch_idx == 5: + return + + if ( + rank == 0 + and params.batch_idx_train > 0 + and params.batch_idx_train % params.average_period == 0 + ): + update_averaged_model( + params=params, + model_cur=model, + model_avg=model_avg, + ) + + if ( + params.batch_idx_train > 0 + and params.batch_idx_train % params.save_every_n == 0 + ): + save_checkpoint_with_global_batch_idx( + out_dir=params.exp_dir, + global_batch_idx=params.batch_idx_train, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + remove_checkpoints( + out_dir=params.exp_dir, + topk=params.keep_last_k, + rank=rank, + ) + + if batch_idx % 100 == 0 and params.use_fp16: + # If the grad scale was less than 1, try increasing it. The _growth_interval + # of the grad scaler is configurable, but we can't configure it to have different + # behavior depending on the current grad scale. + cur_grad_scale = scaler._scale.item() + + if cur_grad_scale < 8.0 or (cur_grad_scale < 32.0 and batch_idx % 400 == 0): + scaler.update(cur_grad_scale * 2.0) + if cur_grad_scale < 0.01: + if not saved_bad_model: + save_bad_model(suffix="-first-warning") + saved_bad_model = True + logging.warning(f"Grad scale is small: {cur_grad_scale}") + if cur_grad_scale < 1.0e-05: + save_bad_model() + raise RuntimeError( + f"grad_scale is too small, exiting: {cur_grad_scale}" + ) + + if batch_idx % params.log_interval == 0: + cur_lr = max(scheduler.get_last_lr()) + cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0 + + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}, " + f"lr: {cur_lr:.2e}, " + + (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "") + ) + + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) + if params.use_fp16: + tb_writer.add_scalar( + "train/grad_scale", cur_grad_scale, params.batch_idx_train + ) + + if batch_idx % params.valid_interval == 0 and not params.print_diagnostics: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + model=model, + sp=sp, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + + fix_random_seed(params.seed) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + if not params.use_transducer: + params.ctc_loss_scale = 1.0 + + logging.info(params) + + logging.info("About to create model") + model = get_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + assert params.save_every_n >= params.average_period + model_avg: Optional[nn.Module] = None + if rank == 0: + # model_avg is only used with rank 0 + model_avg = copy.deepcopy(model).to(torch.float64) + + assert params.start_epoch > 0, params.start_epoch + checkpoints = load_checkpoint_if_available( + params=params, model=model, model_avg=model_avg + ) + + model.to(device) + if world_size > 1: + logging.info("Using DDP") + model = DDP(model, device_ids=[rank], find_unused_parameters=True) + + optimizer = ScaledAdam( + get_parameter_groups_with_lrs(model, lr=params.base_lr, include_names=True), + lr=params.base_lr, # should have no effect + clipping_scale=2.0, + ) + + scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) + + if checkpoints and "optimizer" in checkpoints: + logging.info("Loading optimizer state dict") + optimizer.load_state_dict(checkpoints["optimizer"]) + + if ( + checkpoints + and "scheduler" in checkpoints + and checkpoints["scheduler"] is not None + ): + logging.info("Loading scheduler state dict") + scheduler.load_state_dict(checkpoints["scheduler"]) + + if params.print_diagnostics: + opts = diagnostics.TensorDiagnosticOptions( + 512 + ) # allow 4 megabytes per sub-module + diagnostic = diagnostics.attach_diagnostics(model, opts) + + if params.inf_check: + register_inf_check_hooks(model) + + librispeech = LibriSpeechAsrDataModule(args) + + train_cuts = librispeech.train_clean_100_cuts() + if params.full_libri: + train_cuts += librispeech.train_clean_360_cuts() + train_cuts += librispeech.train_other_500_cuts() + + def remove_short_and_long_utt(c: Cut): + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ../local/display_manifest_statistics.py + # + # You should use ../local/display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + if c.duration < 1.0 or c.duration > 20.0: + # logging.warning( + # f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + # ) + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./zipformer.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 7) // 2 + 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True + + train_cuts = train_cuts.filter(remove_short_and_long_utt) + + if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: + # We only load the sampler's state dict when it loads a checkpoint + # saved in the middle of an epoch + sampler_state_dict = checkpoints["sampler"] + else: + sampler_state_dict = None + + train_dl = librispeech.train_dataloaders( + train_cuts, sampler_state_dict=sampler_state_dict + ) + + valid_cuts = librispeech.dev_clean_cuts() + valid_cuts += librispeech.dev_other_cuts() + valid_dl = librispeech.valid_dataloaders(valid_cuts) + + if not params.print_diagnostics: + scan_pessimistic_batches_for_oom( + model=model, + train_dl=train_dl, + optimizer=optimizer, + sp=sp, + params=params, + ) + + scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0) + if checkpoints and "grad_scaler" in checkpoints: + logging.info("Loading grad scaler state dict") + scaler.load_state_dict(checkpoints["grad_scaler"]) + + for epoch in range(params.start_epoch, params.num_epochs + 1): + scheduler.step_epoch(epoch - 1) + fix_random_seed(params.seed + epoch - 1) + train_dl.sampler.set_epoch(epoch - 1) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sp=sp, + train_dl=train_dl, + valid_dl=valid_dl, + scaler=scaler, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + if params.print_diagnostics: + diagnostic.print_diagnostics() + break + + save_checkpoint( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + + logging.info("Done!") + + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def display_and_save_batch( + batch: dict, + params: AttributeDict, + sp: spm.SentencePieceProcessor, +) -> None: + """Display the batch statistics and save the batch into disk. + + Args: + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + params: + Parameters for training. See :func:`get_params`. + sp: + The BPE model. + """ + from lhotse.utils import uuid4 + + filename = f"{params.exp_dir}/batch-{uuid4()}.pt" + logging.info(f"Saving batch to {filename}") + torch.save(batch, filename) + + supervisions = batch["supervisions"] + features = batch["inputs"] + + logging.info(f"features shape: {features.shape}") + + y = sp.encode(supervisions["text"], out_type=int) + num_tokens = sum(len(i) for i in y) + logging.info(f"num tokens: {num_tokens}") + + +def scan_pessimistic_batches_for_oom( + model: Union[nn.Module, DDP], + train_dl: torch.utils.data.DataLoader, + optimizer: torch.optim.Optimizer, + sp: spm.SentencePieceProcessor, + params: AttributeDict, +): + from lhotse.dataset import find_pessimistic_batches + + logging.info( + "Sanity check -- see if any of the batches in epoch 1 would cause OOM." + ) + batches, crit_values = find_pessimistic_batches(train_dl.sampler) + for criterion, cuts in batches.items(): + batch = train_dl.dataset[cuts] + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, _ = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + loss.backward() + optimizer.zero_grad() + except Exception as e: + if "CUDA out of memory" in str(e): + logging.error( + "Your GPU ran out of memory with the current " + "max_duration setting. We recommend decreasing " + "max_duration and trying again.\n" + f"Failing criterion: {criterion} " + f"(={crit_values[criterion]}) ..." + ) + display_and_save_batch(batch, params=params, sp=sp) + raise + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + + +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/icmcasr/ASR/zipformer/zipformer.py b/egs/icmcasr/ASR/zipformer/zipformer.py new file mode 100644 index 000000000..1a174b315 --- /dev/null +++ b/egs/icmcasr/ASR/zipformer/zipformer.py @@ -0,0 +1,2432 @@ +#!/usr/bin/env python3 +# Copyright 2022-2023 Xiaomi Corp. (authors: Daniel Povey, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import copy +import math +import warnings +from typing import List, Optional, Tuple, Union +import logging +import torch +import random +from encoder_interface import EncoderInterface +from scaling import ( + Balancer, + BiasNorm, + Dropout2, + ChunkCausalDepthwiseConv1d, + ActivationDropoutAndLinear, + ScaledLinear, # not as in other dirs.. just scales down initial parameter values. + Whiten, + Identity, # more friendly to backward hooks than nn.Identity(), for diagnostic reasons. + penalize_abs_values_gt, + softmax, + ScheduledFloat, + FloatLike, + limit_param_value, + convert_num_channels, +) +from torch import Tensor, nn + + +class Zipformer2(EncoderInterface): + """ + Args: + + Note: all "int or Tuple[int]" arguments below will be treated as lists of the same length + as downsampling_factor if they are single ints or one-element tuples. The length of + downsampling_factor defines the number of stacks. + + output_downsampling_factor (int): how much to downsample at the output. Note: + we also downsample by a factor of 2 in the Conv2dSubsampling encoder. + You should probably leave this at 2. + downsampling_factor (Tuple[int]): downsampling factor for each encoder stack. + Note: this is in addition to the downsampling factor of 2 that is applied in + the frontend (self.encoder_embed). + encoder_dim (Tuple[int]): embedding dimension of each of the encoder stacks, one per + encoder stack. + num_encoder_layers (int or Tuple[int])): number of encoder layers for each stack + encoder_unmasked_dim (int or Tuple[int]): unmasked dimension in each of + the encoder stacks for purposes of per-frame dropout (recommend 256 for + now). + query_head_dim (int or Tuple[int]): dimension of query and key per attention + head: per stack, if a tuple.. + pos_head_dim (int or Tuple[int]): dimension of positional-encoding projection per + attention head + value_head_dim (int or Tuple[int]): dimension of value in each attention head + num_heads: (int or Tuple[int]): number of heads in the self-attention mechanism. + Must be at least 4. + feedforward_dim (int or Tuple[int]): hidden dimension in feedforward modules + cnn_module_kernel (int or Tuple[int])): Kernel size of convolution module + + pos_dim (int): the dimension of each positional-encoding vector prior to projection, + e.g. 128. + + dropout (float): dropout rate + warmup_batches (float): number of batches to warm up over; this controls + dropout of encoder layers. + causal (bool): if True, support chunkwise causal convolution. This should + not hurt WER as no modeling power is lost, but the convolution modules will be + slightly slower and use more memory. Enables use of the chunk_size and + left_context_chunks options in forward(), which simulates streaming + decoding. + chunk_size: (list of int): only set this to other than [-1] if causal; + the chunk size will be randomly chosen from this list. -1 means no chunking. + left_context_frames: (list of int): determines the number of left- + context chunks for causal training; will be rounded to a number of + chunks. Must not be less than cnn_module_kernel (after factoring in + rounding and downsampling); an error will be thrown if this is violated. + """ + + def __init__( + self, + output_downsampling_factor: int = 2, + downsampling_factor: Tuple[int] = (2, 4), + encoder_dim: Union[int, Tuple[int]] = 384, + num_encoder_layers: Union[int, Tuple[int]] = 4, + encoder_unmasked_dim: Union[int, Tuple[int]] = 256, + query_head_dim: Union[int, Tuple[int]] = 24, + pos_head_dim: Union[int, Tuple[int]] = 4, + value_head_dim: Union[int, Tuple[int]] = 12, + num_heads: Union[int, Tuple[int]] = 8, + feedforward_dim: Union[int, Tuple[int]] = 1536, + cnn_module_kernel: Union[int, Tuple[int]] = 31, + pos_dim: int = 192, + dropout: FloatLike = None, # see code below for default + warmup_batches: float = 4000.0, + causal: bool = False, + chunk_size: Tuple[int] = [-1], + left_context_frames: Tuple[int] = [-1], + ) -> None: + super(Zipformer2, self).__init__() + + if dropout is None: + dropout = ScheduledFloat((0.0, 0.3), (20000.0, 0.1)) + + def _to_tuple(x): + """Converts a single int or a 1-tuple of an int to a tuple with the same length + as downsampling_factor""" + if isinstance(x, int): + x = (x,) + if len(x) == 1: + x = x * len(downsampling_factor) + else: + assert len(x) == len(downsampling_factor) and isinstance(x[0], int) + return x + + self.output_downsampling_factor = output_downsampling_factor # int + self.downsampling_factor = downsampling_factor # tuple + self.encoder_dim = encoder_dim = _to_tuple(encoder_dim) # tuple + self.encoder_unmasked_dim = encoder_unmasked_dim = _to_tuple( + encoder_unmasked_dim + ) # tuple + num_encoder_layers = _to_tuple(num_encoder_layers) + self.num_encoder_layers = num_encoder_layers + self.query_head_dim = query_head_dim = _to_tuple(query_head_dim) + self.value_head_dim = value_head_dim = _to_tuple(value_head_dim) + pos_head_dim = _to_tuple(pos_head_dim) + self.num_heads = num_heads = _to_tuple(num_heads) + feedforward_dim = _to_tuple(feedforward_dim) + self.cnn_module_kernel = cnn_module_kernel = _to_tuple(cnn_module_kernel) + + self.causal = causal + self.chunk_size = chunk_size + self.left_context_frames = left_context_frames + + for u, d in zip(encoder_unmasked_dim, encoder_dim): + assert u <= d + + # each one will be Zipformer2Encoder or DownsampledZipformer2Encoder + encoders = [] + + num_encoders = len(downsampling_factor) + for i in range(num_encoders): + encoder_layer = Zipformer2EncoderLayer( + embed_dim=encoder_dim[i], + pos_dim=pos_dim, + num_heads=num_heads[i], + query_head_dim=query_head_dim[i], + pos_head_dim=pos_head_dim[i], + value_head_dim=value_head_dim[i], + feedforward_dim=feedforward_dim[i], + dropout=dropout, + cnn_module_kernel=cnn_module_kernel[i], + causal=causal, + ) + + # For the segment of the warmup period, we let the Conv2dSubsampling + # layer learn something. Then we start to warm up the other encoders. + encoder = Zipformer2Encoder( + encoder_layer, + num_encoder_layers[i], + pos_dim=pos_dim, + dropout=dropout, + warmup_begin=warmup_batches * (i + 1) / (num_encoders + 1), + warmup_end=warmup_batches * (i + 2) / (num_encoders + 1), + final_layerdrop_rate=0.035 * (downsampling_factor[i] ** 0.5), + ) + + if downsampling_factor[i] != 1: + encoder = DownsampledZipformer2Encoder( + encoder, + dim=encoder_dim[i], + downsample=downsampling_factor[i], + dropout=dropout, + ) + + encoders.append(encoder) + + self.encoders = nn.ModuleList(encoders) + + self.downsample_output = SimpleDownsample( + max(encoder_dim), downsample=output_downsampling_factor, dropout=dropout + ) + + def get_feature_masks(self, x: Tensor) -> Union[List[float], List[Tensor]]: + """ + In eval mode, returns [1.0] * num_encoders; in training mode, returns a number of + randomized feature masks, one per encoder. + On e.g. 15% of frames, these masks will zero out all enocder dims larger than + some supplied number, e.g. >256, so in effect on those frames we are using + a smaller encoer dim. + + We generate the random masks at this level because we want the 2 masks to 'agree' + all the way up the encoder stack. This will mean that the 1st mask will have + mask values repeated self.zipformer_subsampling_factor times. + + Args: + x: the embeddings (needed for the shape and dtype and device), of shape + (1, batch_size, encoder_dims0) + """ + num_encoders = len(self.encoder_dim) + if not self.training: + return [1.0] * num_encoders + + (num_frames0, batch_size, _encoder_dims0) = x.shape + + assert self.encoder_dim[0] == _encoder_dims0, ( + self.encoder_dim[0], + _encoder_dims0, + ) + + feature_mask_dropout_prob = 0.125 + + # mask1 shape: (1, batch_size, 1) + mask1 = ( + torch.rand(1, batch_size, 1, device=x.device) > feature_mask_dropout_prob + ).to(x.dtype) + + # mask2 has additional sequences masked, about twice the number. + mask2 = torch.logical_and( + mask1, + ( + torch.rand(1, batch_size, 1, device=x.device) + > feature_mask_dropout_prob + ).to(x.dtype), + ) + + # dim: (1, batch_size, 2) + mask = torch.cat((mask1, mask2), dim=-1) + + feature_masks = [] + for i in range(num_encoders): + channels = self.encoder_dim[i] + feature_mask = torch.ones( + 1, batch_size, channels, dtype=x.dtype, device=x.device + ) + u1 = self.encoder_unmasked_dim[i] + u2 = u1 + (channels - u1) // 2 + + feature_mask[:, :, u1:u2] *= mask[..., 0:1] + feature_mask[:, :, u2:] *= mask[..., 1:2] + + feature_masks.append(feature_mask) + + return feature_masks + + def get_chunk_info(self) -> Tuple[int, int]: + """ + Returns chunk_size and left_context_chunks. + """ + if not self.causal: + return -1, -1 + + if torch.jit.is_scripting() or torch.jit.is_tracing(): + assert len(self.chunk_size) == 1, self.chunk_size + chunk_size = self.chunk_size[0] + else: + chunk_size = random.choice(self.chunk_size) + + if chunk_size == -1: + left_context_chunks = -1 + else: + if torch.jit.is_scripting() or torch.jit.is_tracing(): + assert len(self.left_context_frames) == 1, self.left_context_frames + left_context_frames = self.left_context_frames[0] + else: + left_context_frames = random.choice(self.left_context_frames) + # Note: in Python, -1 // n == -1 for n > 0 + left_context_chunks = left_context_frames // chunk_size + if left_context_chunks == 0: + left_context_chunks = 1 + + return chunk_size, left_context_chunks + + def forward( + self, + x: Tensor, + x_lens: Tensor, + src_key_padding_mask: Optional[Tensor] = None, + ) -> Tuple[Tensor, Tensor]: + """ + Args: + x: + The input tensor. Its shape is (seq_len, batch_size, feature_dim). + x_lens: + A tensor of shape (batch_size,) containing the number of frames in + `x` before padding. + src_key_padding_mask: + The mask for padding, of shape (batch_size, seq_len); True means + masked position. May be None. + Returns: + Return a tuple containing 2 tensors: + - embeddings: its shape is (output_seq_len, batch_size, max(encoder_dim)) + - lengths, a tensor of shape (batch_size,) containing the number + of frames in `embeddings` before padding. + """ + outputs = [] + if torch.jit.is_scripting() or torch.jit.is_tracing(): + feature_masks = [1.0] * len(self.encoder_dim) + else: + feature_masks = self.get_feature_masks(x) + + chunk_size, left_context_chunks = self.get_chunk_info() + + if torch.jit.is_scripting() or torch.jit.is_tracing(): + # Not support exporting a model for simulating streaming decoding + attn_mask = None + else: + attn_mask = self._get_attn_mask(x, chunk_size, left_context_chunks) + + for i, module in enumerate(self.encoders): + ds = self.downsampling_factor[i] + x = convert_num_channels(x, self.encoder_dim[i]) + + x = module( + x, + chunk_size=chunk_size, + feature_mask=feature_masks[i], + src_key_padding_mask=( + None + if src_key_padding_mask is None + else src_key_padding_mask[..., ::ds] + ), + attn_mask=attn_mask, + ) + outputs.append(x) + + # if the last output has the largest dimension, x will be unchanged, + # it will be the same as outputs[-1]. Otherwise it will be concatenated + # from different pieces of 'outputs', taking each dimension from the + # most recent output that has it present. + x = self._get_full_dim_output(outputs) + x = self.downsample_output(x) + # class Downsample has this rounding behavior.. + assert self.output_downsampling_factor == 2, self.output_downsampling_factor + if torch.jit.is_scripting() or torch.jit.is_tracing(): + lengths = (x_lens + 1) // 2 + else: + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + lengths = (x_lens + 1) // 2 + + return x, lengths + + def _get_attn_mask( + self, x: Tensor, chunk_size: int, left_context_chunks: int + ) -> Optional[Tensor]: + """ + Return None if chunk_size == -1, else return attention mask of shape + (seq_len, seq_len), interpreted as (tgt_seq_len, src_seq_len). True + means a masked position. + Args: + x: embeddings after self.encoder_embed(), of shape (seq_len, batch_size, embed_dim). + chunk_size: chunk size, must divide + """ + if chunk_size <= 0: + return None + assert all(chunk_size % d == 0 for d in self.downsampling_factor) + if left_context_chunks >= 0: + num_encoders = len(self.encoder_dim) + assert all( + chunk_size * left_context_chunks + >= (self.cnn_module_kernel[i] // 2) * self.downsampling_factor[i] + for i in range(num_encoders) + ) + else: + left_context_chunks = 1000000 + + seq_len = x.shape[0] + + # t is frame index, shape (seq_len,) + t = torch.arange(seq_len, dtype=torch.int32, device=x.device) + # c is chunk index for each frame, shape (seq_len,) + if torch.jit.is_scripting() or torch.jit.is_tracing(): + c = t // chunk_size + else: + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + c = t // chunk_size + src_c = c + tgt_c = c.unsqueeze(-1) + + attn_mask = torch.logical_or(src_c > tgt_c, src_c < tgt_c - left_context_chunks) + if __name__ == "__main__": + logging.info(f"attn_mask = {attn_mask}") + return attn_mask + + def _get_full_dim_output(self, outputs: List[Tensor]): + num_encoders = len(self.encoder_dim) + assert len(outputs) == num_encoders + output_dim = max(self.encoder_dim) + output_pieces = [outputs[-1]] + cur_dim = self.encoder_dim[-1] + for i in range(num_encoders - 2, -1, -1): + d = self.encoder_dim[i] + if d > cur_dim: + this_output = outputs[i] + output_pieces.append(this_output[..., cur_dim:d]) + cur_dim = d + assert cur_dim == output_dim + return torch.cat(output_pieces, dim=-1) + + def streaming_forward( + self, + x: Tensor, + x_lens: Tensor, + states: List[Tensor], + src_key_padding_mask: Tensor, + ) -> Tuple[Tensor, Tensor, List[Tensor]]: + """ + Args: + x: + The input tensor. Its shape is (seq_len, batch_size, feature_dim). + x_lens: + A tensor of shape (batch_size,) containing the number of frames in + `x` before padding. + states: list of cached tensors of all encoder layers. For layer-i, + states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, + cached_conv1, cached_conv2). + src_key_padding_mask: + The mask for padding, of shape (batch_size, seq_len); True means + masked position. May be None. + Returns: + Return a tuple containing 2 tensors: + - embeddings: its shape is (output_seq_len, batch_size, max(encoder_dim)) + - lengths, a tensor of shape (batch_size,) containing the number + of frames in `embeddings` before padding. + - updated states + """ + outputs = [] + new_states = [] + layer_offset = 0 + + for i, module in enumerate(self.encoders): + num_layers = module.num_layers + ds = self.downsampling_factor[i] + x = convert_num_channels(x, self.encoder_dim[i]) + + x, new_layer_states = module.streaming_forward( + x, + states=states[layer_offset * 6 : (layer_offset + num_layers) * 6], + left_context_len=self.left_context_frames[0] // ds, + src_key_padding_mask=src_key_padding_mask[..., ::ds], + ) + layer_offset += num_layers + outputs.append(x) + new_states += new_layer_states + + # if the last output has the largest dimension, x will be unchanged, + # it will be the same as outputs[-1]. Otherwise it will be concatenated + # from different pieces of 'outputs', taking each dimension from the + # most recent output that has it present. + x = self._get_full_dim_output(outputs) + x = self.downsample_output(x) + # class Downsample has this rounding behavior.. + assert self.output_downsampling_factor == 2 + if torch.jit.is_scripting() or torch.jit.is_tracing(): + lengths = (x_lens + 1) // 2 + else: + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + lengths = (x_lens + 1) // 2 + + return x, lengths, new_states + + @torch.jit.export + def get_init_states( + self, + batch_size: int = 1, + device: torch.device = torch.device("cpu"), + ) -> List[Tensor]: + """Get initial states. + + A list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6] + is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2). + """ + states = [] + for i, module in enumerate(self.encoders): + num_layers = module.num_layers + embed_dim = self.encoder_dim[i] + ds = self.downsampling_factor[i] + num_heads = self.num_heads[i] + key_dim = self.query_head_dim[i] * num_heads + value_dim = self.value_head_dim[i] * num_heads + downsample_left = self.left_context_frames[0] // ds + nonlin_attn_head_dim = 3 * embed_dim // 4 + conv_left_pad = self.cnn_module_kernel[i] // 2 + for layer in range(num_layers): + cached_key = torch.zeros(downsample_left, batch_size, key_dim).to( + device + ) + cached_nonlin_attn = torch.zeros( + 1, batch_size, downsample_left, nonlin_attn_head_dim + ).to(device) + cached_val1 = torch.zeros(downsample_left, batch_size, value_dim).to( + device + ) + cached_val2 = torch.zeros(downsample_left, batch_size, value_dim).to( + device + ) + cached_conv1 = torch.zeros(batch_size, embed_dim, conv_left_pad).to( + device + ) + cached_conv2 = torch.zeros(batch_size, embed_dim, conv_left_pad).to( + device + ) + states += [ + cached_key, + cached_nonlin_attn, + cached_val1, + cached_val2, + cached_conv1, + cached_conv2, + ] + + return states + + +def _whitening_schedule(x: float, ratio: float = 2.0) -> ScheduledFloat: + return ScheduledFloat((0.0, x), (20000.0, ratio * x), default=x) + + +def _balancer_schedule(min_prob: float): + return ScheduledFloat((0.0, 0.4), (8000.0, min_prob)) + + +class Zipformer2EncoderLayer(nn.Module): + """ + Args: + embed_dim: the number of expected features in the input (required). + nhead: the number of heads in the multiheadattention models (required). + feedforward_dim: the dimension of the feedforward network model (default=2048). + dropout: the dropout value (default=0.1). + cnn_module_kernel (int): Kernel size of convolution module. + + Examples:: + >>> encoder_layer = Zipformer2EncoderLayer(embed_dim=512, nhead=8) + >>> src = torch.rand(10, 32, 512) + >>> pos_emb = torch.rand(32, 19, 512) + >>> out = encoder_layer(src, pos_emb) + """ + + def __init__( + self, + embed_dim: int, + pos_dim: int, + num_heads: int, + query_head_dim: int, + pos_head_dim: int, + value_head_dim: int, + feedforward_dim: int, + dropout: FloatLike = 0.1, + cnn_module_kernel: int = 31, + causal: bool = False, + attention_skip_rate: FloatLike = ScheduledFloat( + (0.0, 0.2), (4000.0, 0.05), (16000, 0.0), default=0 + ), + conv_skip_rate: FloatLike = ScheduledFloat( + (0.0, 0.2), (4000.0, 0.05), (16000, 0.0), default=0 + ), + const_attention_rate: FloatLike = ScheduledFloat( + (0.0, 0.25), (4000.0, 0.025), default=0 + ), + ff2_skip_rate: FloatLike = ScheduledFloat( + (0.0, 0.1), (4000.0, 0.01), (50000.0, 0.0) + ), + ff3_skip_rate: FloatLike = ScheduledFloat( + (0.0, 0.1), (4000.0, 0.01), (50000.0, 0.0) + ), + bypass_skip_rate: FloatLike = ScheduledFloat( + (0.0, 0.5), (4000.0, 0.02), default=0 + ), + ) -> None: + super(Zipformer2EncoderLayer, self).__init__() + self.embed_dim = embed_dim + + # self.bypass implements layer skipping as well as bypass; see its default values. + self.bypass = BypassModule( + embed_dim, skip_rate=bypass_skip_rate, straight_through_rate=0 + ) + # bypass_mid is bypass used in the middle of the layer. + self.bypass_mid = BypassModule(embed_dim, straight_through_rate=0) + + # skip probability for dynamic modules (meaning: anything but feedforward). + self.attention_skip_rate = copy.deepcopy(attention_skip_rate) + # an additional skip probability that applies to ConvModule to stop it from + # contributing too much early on. + self.conv_skip_rate = copy.deepcopy(conv_skip_rate) + + # ff2_skip_rate is to prevent the ff2 module from having output that's too big + # compared to its residual. + self.ff2_skip_rate = copy.deepcopy(ff2_skip_rate) + self.ff3_skip_rate = copy.deepcopy(ff3_skip_rate) + + self.const_attention_rate = copy.deepcopy(const_attention_rate) + + self.self_attn_weights = RelPositionMultiheadAttentionWeights( + embed_dim, + pos_dim=pos_dim, + num_heads=num_heads, + query_head_dim=query_head_dim, + pos_head_dim=pos_head_dim, + dropout=0.0, + ) + + self.self_attn1 = SelfAttention(embed_dim, num_heads, value_head_dim) + + self.self_attn2 = SelfAttention(embed_dim, num_heads, value_head_dim) + + self.feed_forward1 = FeedforwardModule( + embed_dim, (feedforward_dim * 3) // 4, dropout + ) + + self.feed_forward2 = FeedforwardModule(embed_dim, feedforward_dim, dropout) + + self.feed_forward3 = FeedforwardModule( + embed_dim, (feedforward_dim * 5) // 4, dropout + ) + + self.nonlin_attention = NonlinAttention( + embed_dim, hidden_channels=3 * embed_dim // 4 + ) + + self.conv_module1 = ConvolutionModule( + embed_dim, cnn_module_kernel, causal=causal + ) + + self.conv_module2 = ConvolutionModule( + embed_dim, cnn_module_kernel, causal=causal + ) + + # TODO: remove it + self.bypass_scale = nn.Parameter(torch.full((embed_dim,), 0.5)) + + self.norm = BiasNorm(embed_dim) + + self.balancer1 = Balancer( + embed_dim, + channel_dim=-1, + min_positive=0.45, + max_positive=0.55, + min_abs=0.2, + max_abs=4.0, + ) + + # balancer for output of NonlinAttentionModule + self.balancer_na = Balancer( + embed_dim, + channel_dim=-1, + min_positive=0.3, + max_positive=0.7, + min_abs=ScheduledFloat((0.0, 0.004), (4000.0, 0.02)), + prob=0.05, # out of concern for memory usage + ) + + # balancer for output of feedforward2, prevent it from staying too + # small. give this a very small probability, even at the start of + # training, it's to fix a rare problem and it's OK to fix it slowly. + self.balancer_ff2 = Balancer( + embed_dim, + channel_dim=-1, + min_positive=0.3, + max_positive=0.7, + min_abs=ScheduledFloat((0.0, 0.0), (4000.0, 0.1), default=0.0), + max_abs=2.0, + prob=0.05, + ) + + self.balancer_ff3 = Balancer( + embed_dim, + channel_dim=-1, + min_positive=0.3, + max_positive=0.7, + min_abs=ScheduledFloat((0.0, 0.0), (4000.0, 0.2), default=0.0), + max_abs=4.0, + prob=0.05, + ) + + self.whiten = Whiten( + num_groups=1, + whitening_limit=_whitening_schedule(4.0, ratio=3.0), + prob=(0.025, 0.25), + grad_scale=0.01, + ) + + self.balancer2 = Balancer( + embed_dim, + channel_dim=-1, + min_positive=0.45, + max_positive=0.55, + min_abs=0.1, + max_abs=4.0, + ) + + def get_sequence_dropout_mask( + self, x: Tensor, dropout_rate: float + ) -> Optional[Tensor]: + if ( + dropout_rate == 0.0 + or not self.training + or torch.jit.is_scripting() + or torch.jit.is_tracing() + ): + return None + batch_size = x.shape[1] + mask = (torch.rand(batch_size, 1, device=x.device) > dropout_rate).to(x.dtype) + return mask + + def sequence_dropout(self, x: Tensor, dropout_rate: float) -> Tensor: + """ + Apply sequence-level dropout to x. + x shape: (seq_len, batch_size, embed_dim) + """ + dropout_mask = self.get_sequence_dropout_mask(x, dropout_rate) + if dropout_mask is None: + return x + else: + return x * dropout_mask + + def forward( + self, + src: Tensor, + pos_emb: Tensor, + chunk_size: int = -1, + attn_mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + ) -> Tensor: + """ + Pass the input through the encoder layer. + Args: + src: the sequence to the encoder (required): shape (seq_len, batch_size, embedding_dim). + pos_emb: (1, 2*seq_len-1, pos_emb_dim) or (batch_size, 2*seq_len-1, pos_emb_dim) + chunk_size: the number of frames per chunk, of >= 0; if -1, no chunking. + feature_mask: something that broadcasts with src, that we'll multiply `src` + by at every layer: if a Tensor, likely of shape (seq_len, batch_size, embedding_dim) + attn_mask: the attention mask, of shape (batch_size, seq_len, seq_len) or (seq_len, seq_len), + interpreted as (batch_size, tgt_seq_len, src_seq_len) or (tgt_seq_len, src_seq_len). + True means masked position. May be None. + src_key_padding_mask: the mask for padding, of shape (batch_size, seq_len); True means + masked position. May be None. + + Returns: + A tensor which has the same shape as src + """ + src_orig = src + + # dropout rate for non-feedforward submodules + if torch.jit.is_scripting() or torch.jit.is_tracing(): + attention_skip_rate = 0.0 + else: + attention_skip_rate = ( + float(self.attention_skip_rate) if self.training else 0.0 + ) + + # attn_weights: (num_heads, batch_size, seq_len, seq_len) + attn_weights = self.self_attn_weights( + src, + pos_emb=pos_emb, + attn_mask=attn_mask, + key_padding_mask=src_key_padding_mask, + ) + + src = src + self.feed_forward1(src) + + self_attn_dropout_mask = self.get_sequence_dropout_mask( + src, attention_skip_rate + ) + + selected_attn_weights = attn_weights[0:1] + if torch.jit.is_scripting() or torch.jit.is_tracing(): + pass + elif not self.training and random.random() < float(self.const_attention_rate): + # Make attention weights constant. The intention is to + # encourage these modules to do something similar to an + # averaging-over-time operation. + # only need the mask, can just use the 1st one and expand later + selected_attn_weights = selected_attn_weights[0:1] + selected_attn_weights = (selected_attn_weights > 0.0).to( + selected_attn_weights.dtype + ) + selected_attn_weights = selected_attn_weights * ( + 1.0 / selected_attn_weights.sum(dim=-1, keepdim=True) + ) + + na = self.balancer_na(self.nonlin_attention(src, selected_attn_weights)) + + src = src + ( + na if self_attn_dropout_mask is None else na * self_attn_dropout_mask + ) + + self_attn = self.self_attn1(src, attn_weights) + + src = src + ( + self_attn + if self_attn_dropout_mask is None + else self_attn * self_attn_dropout_mask + ) + + if torch.jit.is_scripting() or torch.jit.is_tracing(): + conv_skip_rate = 0.0 + else: + conv_skip_rate = float(self.conv_skip_rate) if self.training else 0.0 + src = src + self.sequence_dropout( + self.conv_module1( + src, chunk_size=chunk_size, src_key_padding_mask=src_key_padding_mask + ), + conv_skip_rate, + ) + + if torch.jit.is_scripting() or torch.jit.is_tracing(): + ff2_skip_rate = 0.0 + else: + ff2_skip_rate = float(self.ff2_skip_rate) if self.training else 0.0 + src = src + self.sequence_dropout( + self.balancer_ff2(self.feed_forward2(src)), ff2_skip_rate + ) + + # bypass in the middle of the layer. + src = self.bypass_mid(src_orig, src) + + self_attn = self.self_attn2(src, attn_weights) + + src = src + ( + self_attn + if self_attn_dropout_mask is None + else self_attn * self_attn_dropout_mask + ) + + if torch.jit.is_scripting() or torch.jit.is_tracing(): + conv_skip_rate = 0.0 + else: + conv_skip_rate = float(self.conv_skip_rate) if self.training else 0.0 + src = src + self.sequence_dropout( + self.conv_module2( + src, chunk_size=chunk_size, src_key_padding_mask=src_key_padding_mask + ), + conv_skip_rate, + ) + + if torch.jit.is_scripting() or torch.jit.is_tracing(): + ff3_skip_rate = 0.0 + else: + ff3_skip_rate = float(self.ff3_skip_rate) if self.training else 0.0 + src = src + self.sequence_dropout( + self.balancer_ff3(self.feed_forward3(src)), ff3_skip_rate + ) + + src = self.balancer1(src) + src = self.norm(src) + + src = self.bypass(src_orig, src) + + src = self.balancer2(src) + src = self.whiten(src) + + return src + + def streaming_forward( + self, + src: Tensor, + pos_emb: Tensor, + cached_key: Tensor, + cached_nonlin_attn: Tensor, + cached_val1: Tensor, + cached_val2: Tensor, + cached_conv1: Tensor, + cached_conv2: Tensor, + left_context_len: int, + src_key_padding_mask: Tensor, + ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]: + """Pass the input through the encoder layer in streaming forward mode. + + Args: + src: the sequence to the encoder (required): shape (seq_len, batch_size, embedding_dim). + pos_emb: (1, left_context_len+2*seq_len-1, pos_emb_dim) or + (batch_size, left_context_len+2*seq_len-1, pos_emb_dim) + cached_key: cached attention key tensor of left context, + of shape (left_context_len, batch_size, key_dim) + cached_nonlin_attn: left context for nonlin_attention module, a Tensor of shape + (num_heads, batch_size, left_context_len, head_dim) + cached_val1: cached left context for the first attention module, + of shape (left_context_len, batch_size, value_dim) + cached_val2: cached left context for the second attention module, + of shape (left_context_len, batch_size, value_dim) + cached_conv1: cached left context for the first convolution module, + of shape (batch_size, channels, left_pad) + cached_conv2: cached left context for the second convolution module, + of shape (batch_size, channels, left_pad) + left_context_len: number of left context frames. + src_key_padding_mask: the mask for padding, of shape + (batch_size, left_context_len + seq_len); True means masked position. + May be None. + + Returns: + - x, with the same shape as src + - updated cached_key + - updated cached_nonlin_attn + - updated cached_val1 + - updated cached_val2 + - updated cached_conv1 + - updated cached_conv2 + """ + src_orig = src + + # attn_weights: (num_heads, batch_size, seq_len, seq_len) + attn_weights, cached_key = self.self_attn_weights.streaming_forward( + src, + pos_emb=pos_emb, + cached_key=cached_key, + left_context_len=left_context_len, + key_padding_mask=src_key_padding_mask, + ) + + src = src + self.feed_forward1(src) + + na, cached_nonlin_attn = self.nonlin_attention.streaming_forward( + src, + attn_weights[0:1], + cached_x=cached_nonlin_attn, + left_context_len=left_context_len, + ) + src = src + na + + self_attn, cached_val1 = self.self_attn1.streaming_forward( + src, + attn_weights=attn_weights, + cached_val=cached_val1, + left_context_len=left_context_len, + ) + src = src + self_attn + + src_conv, cached_conv1 = self.conv_module1.streaming_forward( + src, + cache=cached_conv1, + src_key_padding_mask=src_key_padding_mask[:, left_context_len:], + ) + src = src + src_conv + + src = src + self.feed_forward2(src) + + # bypass in the middle of the layer. + src = self.bypass_mid(src_orig, src) + + self_attn, cached_val2 = self.self_attn2.streaming_forward( + src, + attn_weights=attn_weights, + cached_val=cached_val2, + left_context_len=left_context_len, + ) + src = src + self_attn + + src_conv, cached_conv2 = self.conv_module2.streaming_forward( + src, + cache=cached_conv2, + src_key_padding_mask=src_key_padding_mask[:, left_context_len:], + ) + src = src + src_conv + + src = src + self.feed_forward3(src) + + src = self.norm(src) + + src = self.bypass(src_orig, src) + + return ( + src, + cached_key, + cached_nonlin_attn, + cached_val1, + cached_val2, + cached_conv1, + cached_conv2, + ) + + +class Zipformer2Encoder(nn.Module): + r"""Zipformer2Encoder is a stack of N encoder layers + + Args: + encoder_layer: an instance of the Zipformer2EncoderLayer() class (required). + num_layers: the number of sub-encoder-layers in the encoder (required). + pos_dim: the dimension for the relative positional encoding + + Examples:: + >>> encoder_layer = Zipformer2EncoderLayer(embed_dim=512, nhead=8) + >>> zipformer_encoder = Zipformer2Encoder(encoder_layer, num_layers=6) + >>> src = torch.rand(10, 32, 512) + >>> out = zipformer_encoder(src) + """ + + def __init__( + self, + encoder_layer: nn.Module, + num_layers: int, + pos_dim: int, + dropout: float, + warmup_begin: float, + warmup_end: float, + initial_layerdrop_rate: float = 0.5, + final_layerdrop_rate: float = 0.05, + ) -> None: + super().__init__() + self.encoder_pos = CompactRelPositionalEncoding( + pos_dim, dropout_rate=0.15, length_factor=1.0 + ) + + self.layers = nn.ModuleList( + [copy.deepcopy(encoder_layer) for i in range(num_layers)] + ) + self.num_layers = num_layers + + assert 0 <= warmup_begin <= warmup_end + + delta = (1.0 / num_layers) * (warmup_end - warmup_begin) + cur_begin = warmup_begin # interpreted as a training batch index + for i in range(num_layers): + cur_end = cur_begin + delta + self.layers[i].bypass.skip_rate = ScheduledFloat( + (cur_begin, initial_layerdrop_rate), + (cur_end, final_layerdrop_rate), + default=0.0, + ) + cur_begin = cur_end + + def forward( + self, + src: Tensor, + chunk_size: int = -1, + feature_mask: Union[Tensor, float] = 1.0, + attn_mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + ) -> Tensor: + r"""Pass the input through the encoder layers in turn. + + Args: + src: the sequence to the encoder (required): shape (seq_len, batch_size, embedding_dim). + chunk_size: the number of frames per chunk, of >= 0; if -1, no chunking. + feature_mask: something that broadcasts with src, that we'll multiply `src` + by at every layer: if a Tensor, likely of shape (seq_len, batch_size, embedding_dim) + attn_mask: the attention mask, of shape (batch_size, seq_len, seq_len) or (seq_len, seq_len), + interpreted as (batch_size, tgt_seq_len, src_seq_len) or (tgt_seq_len, src_seq_len). + True means masked position. May be None. + src_key_padding_mask: the mask for padding, of shape (batch_size, seq_len); True means + masked position. May be None. + + Returns: a Tensor with the same shape as src. + """ + pos_emb = self.encoder_pos(src) + output = src + + if not torch.jit.is_scripting() and not torch.jit.is_tracing(): + output = output * feature_mask + + for i, mod in enumerate(self.layers): + output = mod( + output, + pos_emb, + chunk_size=chunk_size, + attn_mask=attn_mask, + src_key_padding_mask=src_key_padding_mask, + ) + + if not torch.jit.is_scripting() and not torch.jit.is_tracing(): + output = output * feature_mask + + return output + + def streaming_forward( + self, + src: Tensor, + states: List[Tensor], + left_context_len: int, + src_key_padding_mask: Tensor, + ) -> Tuple[Tensor, List[Tensor]]: + r"""Pass the input through the encoder layers in turn. + + Args: + src: the sequence to the encoder (required): shape (seq_len, batch_size, embedding_dim). + states: list of cached tensors of N encoder layers. For layer-i, states[i*6:(i+1)*6] is + (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2). + left_context_len: Number of left context frames. + src_key_padding_mask: the mask for padding, of shape + (batch_size, left_context_len + seq_len); True means masked position. + May be None. + + Returns: + - output, a Tensor with the same shape as src. + - updated states + """ + pos_emb = self.encoder_pos(src, left_context_len) + output = src + + new_states = [] + for i, mod in enumerate(self.layers): + ( + cached_key, + cached_nonlin_attn, + cached_val1, + cached_val2, + cached_conv1, + cached_conv2, + ) = states[i * 6 : (i + 1) * 6] + ( + output, + new_cached_key, + new_cached_nonlin_attn, + new_cached_val1, + new_cached_val2, + new_cached_conv1, + new_cached_conv2, + ) = mod.streaming_forward( + output, + pos_emb, + cached_key=cached_key, + cached_nonlin_attn=cached_nonlin_attn, + cached_val1=cached_val1, + cached_val2=cached_val2, + cached_conv1=cached_conv1, + cached_conv2=cached_conv2, + left_context_len=left_context_len, + src_key_padding_mask=src_key_padding_mask, + ) + new_states += [ + new_cached_key, + new_cached_nonlin_attn, + new_cached_val1, + new_cached_val2, + new_cached_conv1, + new_cached_conv2, + ] + + return output, new_states + + +class BypassModule(nn.Module): + """ + An nn.Module that implements a learnable bypass scale, and also randomized per-sequence + layer-skipping. The bypass is limited during early stages of training to be close to + "straight-through", i.e. to not do the bypass operation much initially, in order to + force all the modules to learn something. + """ + + def __init__( + self, + embed_dim: int, + skip_rate: FloatLike = 0.0, + straight_through_rate: FloatLike = 0.0, + scale_min: FloatLike = ScheduledFloat((0.0, 0.9), (20000.0, 0.2), default=0), + scale_max: FloatLike = 1.0, + ): + super().__init__() + self.bypass_scale = nn.Parameter(torch.full((embed_dim,), 0.5)) + self.skip_rate = copy.deepcopy(skip_rate) + self.straight_through_rate = copy.deepcopy(straight_through_rate) + self.scale_min = copy.deepcopy(scale_min) + self.scale_max = copy.deepcopy(scale_max) + + def _get_bypass_scale(self, batch_size: int): + # returns bypass-scale of shape (num_channels,), + # or (batch_size, num_channels,). This is actually the + # scale on the non-residual term, so 0 correponds to bypassing + # this module. + if torch.jit.is_scripting() or torch.jit.is_tracing() or not self.training: + return self.bypass_scale + else: + ans = limit_param_value( + self.bypass_scale, min=float(self.scale_min), max=float(self.scale_max) + ) + skip_rate = float(self.skip_rate) + if skip_rate != 0.0: + mask = torch.rand((batch_size, 1), device=ans.device) > skip_rate + ans = ans * mask + # now ans is of shape (batch_size, num_channels), and is zero for sequences + # on which we have randomly chosen to do layer-skipping. + straight_through_rate = float(self.straight_through_rate) + if straight_through_rate != 0.0: + mask = ( + torch.rand((batch_size, 1), device=ans.device) + < straight_through_rate + ) + ans = torch.maximum(ans, mask.to(ans.dtype)) + return ans + + def forward(self, src_orig: Tensor, src: Tensor): + """ + Args: src_orig and src are both of shape (seq_len, batch_size, num_channels) + Returns: something with the same shape as src and src_orig + """ + bypass_scale = self._get_bypass_scale(src.shape[1]) + return src_orig + (src - src_orig) * bypass_scale + + +class DownsampledZipformer2Encoder(nn.Module): + r""" + DownsampledZipformer2Encoder is a zipformer encoder evaluated at a reduced frame rate, + after convolutional downsampling, and then upsampled again at the output, and combined + with the origin input, so that the output has the same shape as the input. + """ + + def __init__( + self, encoder: nn.Module, dim: int, downsample: int, dropout: FloatLike + ): + super(DownsampledZipformer2Encoder, self).__init__() + self.downsample_factor = downsample + self.downsample = SimpleDownsample(dim, downsample, dropout) + self.num_layers = encoder.num_layers + self.encoder = encoder + self.upsample = SimpleUpsample(dim, downsample) + self.out_combiner = BypassModule(dim, straight_through_rate=0) + + def forward( + self, + src: Tensor, + chunk_size: int = -1, + feature_mask: Union[Tensor, float] = 1.0, + attn_mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + ) -> Tensor: + r"""Downsample, go through encoder, upsample. + + Args: + src: the sequence to the encoder (required): shape (seq_len, batch_size, embedding_dim). + feature_mask: something that broadcasts with src, that we'll multiply `src` + by at every layer: if a Tensor, likely of shape (seq_len, batch_size, embedding_dim) + attn_mask: the attention mask, of shape (batch_size, seq_len, seq_len) or (seq_len, seq_len), + interpreted as (batch_size, tgt_seq_len, src_seq_len) or (tgt_seq_len, src_seq_len). + True means masked position. May be None. + src_key_padding_mask: the mask for padding, of shape (batch_size, seq_len); True means + masked position. May be None. + + Returns: a Tensor with the same shape as src. + """ + src_orig = src + src = self.downsample(src) + ds = self.downsample_factor + if attn_mask is not None: + attn_mask = attn_mask[::ds, ::ds] + + src = self.encoder( + src, + chunk_size=chunk_size // ds, + feature_mask=feature_mask, + attn_mask=attn_mask, + src_key_padding_mask=src_key_padding_mask, + ) + src = self.upsample(src) + # remove any extra frames that are not a multiple of downsample_factor + src = src[: src_orig.shape[0]] + + return self.out_combiner(src_orig, src) + + def streaming_forward( + self, + src: Tensor, + states: List[Tensor], + left_context_len: int, + src_key_padding_mask: Tensor, + ) -> Tuple[Tensor, List[Tensor]]: + r"""Downsample, go through encoder, upsample, in streaming forward mode. + + Args: + src: the sequence to the encoder (required): shape (seq_len, batch_size, embedding_dim). + states: list of cached tensors of N encoder layers. For layer-i, states[i*6:(i+1)*6] is + (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2). + left_context_len: Number of left context frames. + src_key_padding_mask: the mask for padding, of shape (batch_size, left_context_len+seq_len); + True means masked position. May be None. + + Returns: + - output, a Tensor with the same shape as src. + - updated states + """ + src_orig = src + src = self.downsample(src) + + src, new_states = self.encoder.streaming_forward( + src, + states=states, + left_context_len=left_context_len, + src_key_padding_mask=src_key_padding_mask, + ) + src = self.upsample(src) + # remove any extra frames that are not a multiple of downsample_factor + src = src[: src_orig.shape[0]] + + return self.out_combiner(src_orig, src), new_states + + +class SimpleDownsample(torch.nn.Module): + """ + Does downsampling with attention, by weighted sum, and a projection.. + """ + + def __init__(self, channels: int, downsample: int, dropout: FloatLike): + super(SimpleDownsample, self).__init__() + + self.bias = nn.Parameter(torch.zeros(downsample)) + + self.name = None # will be set from training code + self.dropout = copy.deepcopy(dropout) + + self.downsample = downsample + + def forward(self, src: Tensor) -> Tensor: + """ + x: (seq_len, batch_size, in_channels) + Returns a tensor of shape + ( (seq_len+downsample-1)//downsample, batch_size, channels) + """ + (seq_len, batch_size, in_channels) = src.shape + ds = self.downsample + d_seq_len = (seq_len + ds - 1) // ds + + # Pad to an exact multiple of self.downsample + # right-pad src, repeating the last element. + pad = d_seq_len * ds - seq_len + src_extra = src[src.shape[0] - 1 :].expand(pad, src.shape[1], src.shape[2]) + src = torch.cat((src, src_extra), dim=0) + assert src.shape[0] == d_seq_len * ds + + src = src.reshape(d_seq_len, ds, batch_size, in_channels) + + weights = self.bias.softmax(dim=0) + # weights: (downsample, 1, 1) + weights = weights.unsqueeze(-1).unsqueeze(-1) + + # ans1 is the first `in_channels` channels of the output + ans = (src * weights).sum(dim=1) + + return ans + + +class SimpleUpsample(torch.nn.Module): + """ + A very simple form of upsampling that mostly just repeats the input, but + also adds a position-specific bias. + """ + + def __init__(self, num_channels: int, upsample: int): + super(SimpleUpsample, self).__init__() + self.upsample = upsample + + def forward(self, src: Tensor) -> Tensor: + """ + x: (seq_len, batch_size, num_channels) + Returns a tensor of shape + ( (seq_len*upsample), batch_size, num_channels) + """ + upsample = self.upsample + (seq_len, batch_size, num_channels) = src.shape + src = src.unsqueeze(1).expand(seq_len, upsample, batch_size, num_channels) + src = src.reshape(seq_len * upsample, batch_size, num_channels) + return src + + +class CompactRelPositionalEncoding(torch.nn.Module): + """ + Relative positional encoding module. This version is "compact" meaning it is able to encode + the important information about the relative position in a relatively small number of dimensions. + The goal is to make it so that small differences between large relative offsets (e.g. 1000 vs. 1001) + make very little difference to the embedding. Such differences were potentially important + when encoding absolute position, but not important when encoding relative position because there + is now no need to compare two large offsets with each other. + + Our embedding works done by projecting the interval [-infinity,infinity] to a finite interval + using the atan() function, before doing the fourier transform of that fixed interval. The + atan() function would compress the "long tails" too small, + making it hard to distinguish between different magnitudes of large offsets, so we use a logarithmic + function to compress large offsets to a smaller range before applying atan(). + Scalings are chosen in such a way that the embedding can clearly distinguish invidual offsets as long + as they are quite close to the origin, e.g. abs(offset) <= about sqrt(embedding_dim) + + + Args: + embed_dim: Embedding dimension. + dropout_rate: Dropout rate. + max_len: Maximum input length: just a heuristic for initialization. + length_factor: a heuristic scale (should be >= 1.0) which, if larger, gives + less weight to small differences of offset near the origin. + """ + + def __init__( + self, + embed_dim: int, + dropout_rate: FloatLike, + max_len: int = 1000, + length_factor: float = 1.0, + ) -> None: + """Construct a CompactRelPositionalEncoding object.""" + super(CompactRelPositionalEncoding, self).__init__() + self.embed_dim = embed_dim + assert embed_dim % 2 == 0 + self.dropout = Dropout2(dropout_rate) + self.pe = None + assert length_factor >= 1.0 + self.length_factor = length_factor + self.extend_pe(torch.tensor(0.0).expand(max_len)) + + def extend_pe(self, x: Tensor, left_context_len: int = 0) -> None: + """Reset the positional encodings.""" + T = x.size(0) + left_context_len + + if self.pe is not None: + # self.pe contains both positive and negative parts + # the length of self.pe is 2 * input_len - 1 + if self.pe.size(0) >= T * 2 - 1: + self.pe = self.pe.to(dtype=x.dtype, device=x.device) + return + + # if T == 4, x would contain [ -3, -2, 1, 0, 1, 2, 3 ] + x = torch.arange(-(T - 1), T, device=x.device).to(torch.float32).unsqueeze(1) + + freqs = 1 + torch.arange(self.embed_dim // 2, device=x.device) + + # `compression_length` this is arbitrary/heuristic, if it is larger we have more resolution + # for small time offsets but less resolution for large time offsets. + compression_length = self.embed_dim**0.5 + # x_compressed, like X, goes from -infinity to infinity as T goes from -infinity to infinity; + # but it does so more slowly than T for large absolute values of T. + # The formula is chosen so that d(x_compressed )/dx is 1 around x == 0, which + # is important. + x_compressed = ( + compression_length + * x.sign() + * ((x.abs() + compression_length).log() - math.log(compression_length)) + ) + + # if self.length_factor == 1.0, then length_scale is chosen so that the + # FFT can exactly separate points close to the origin (T == 0). So this + # part of the formulation is not really heuristic. + # But empirically, for ASR at least, length_factor > 1.0 seems to work better. + length_scale = self.length_factor * self.embed_dim / (2.0 * math.pi) + + # note for machine implementations: if atan is not available, we can use: + # x.sign() * ((1 / (x.abs() + 1)) - 1) * (-math.pi/2) + # check on wolframalpha.com: plot(sign(x) * (1 / ( abs(x) + 1) - 1 ) * -pi/2 , atan(x)) + x_atan = (x_compressed / length_scale).atan() # results between -pi and pi + + cosines = (x_atan * freqs).cos() + sines = (x_atan * freqs).sin() + + pe = torch.zeros(x.shape[0], self.embed_dim, device=x.device) + pe[:, 0::2] = cosines + pe[:, 1::2] = sines + pe[:, -1] = 1.0 # for bias. + + self.pe = pe.to(dtype=x.dtype) + + def forward(self, x: Tensor, left_context_len: int = 0) -> Tensor: + """Create positional encoding. + + Args: + x (Tensor): Input tensor (time, batch, `*`). + left_context_len: (int): Length of cached left context. + + Returns: + positional embedding, of shape (batch, left_context_len + 2*time-1, `*`). + """ + self.extend_pe(x, left_context_len) + x_size_left = x.size(0) + left_context_len + # length of positive side: x.size(0) + left_context_len + # length of negative side: x.size(0) + pos_emb = self.pe[ + self.pe.size(0) // 2 + - x_size_left + + 1 : self.pe.size(0) // 2 # noqa E203 + + x.size(0), + :, + ] + pos_emb = pos_emb.unsqueeze(0) + return self.dropout(pos_emb) + + +class RelPositionMultiheadAttentionWeights(nn.Module): + r"""Module that computes multi-head attention weights with relative position encoding. + Various other modules consume the resulting attention weights: see, for example, the + SimpleAttention module which allows you to compute conventional attention. + + This is a quite heavily modified from: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context", + we have to write up the differences. + + + Args: + embed_dim: number of channels at the input to this module, e.g. 256 + pos_dim: dimension of the positional encoding vectors, e.g. 128. + num_heads: number of heads to compute weights for, e.g. 8 + query_head_dim: dimension of the query (and key), per head. e.g. 24. + pos_head_dim: dimension of the projected positional encoding per head, e.g. 4. + dropout: dropout probability for attn_output_weights. Default: 0.0. + pos_emb_skip_rate: probability for skipping the pos_emb part of the scores on + any given call to forward(), in training time. + """ + + def __init__( + self, + embed_dim: int, + pos_dim: int, + num_heads: int, + query_head_dim: int, + pos_head_dim: int, + dropout: float = 0.0, + pos_emb_skip_rate: FloatLike = ScheduledFloat((0.0, 0.5), (4000.0, 0.0)), + ) -> None: + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.query_head_dim = query_head_dim + self.pos_head_dim = pos_head_dim + self.dropout = dropout + self.pos_emb_skip_rate = copy.deepcopy(pos_emb_skip_rate) + self.name = None # will be overwritten in training code; for diagnostics. + + key_head_dim = query_head_dim + in_proj_dim = (query_head_dim + key_head_dim + pos_head_dim) * num_heads + + # the initial_scale is supposed to take over the "scaling" factor of + # head_dim ** -0.5 that has been used in previous forms of attention, + # dividing it between the query and key. Note: this module is intended + # to be used with the ScaledAdam optimizer; with most other optimizers, + # it would be necessary to apply the scaling factor in the forward function. + self.in_proj = ScaledLinear( + embed_dim, in_proj_dim, bias=True, initial_scale=query_head_dim**-0.25 + ) + + self.whiten_keys = Whiten( + num_groups=num_heads, + whitening_limit=_whitening_schedule(3.0), + prob=(0.025, 0.25), + grad_scale=0.025, + ) + + # add a balancer for the keys that runs with very small probability, and + # tries to enforce that all dimensions have mean around zero. The + # weights produced by this module are invariant to adding a constant to + # the keys, so the derivative of the bias is mathematically zero; but + # due to how Adam/ScaledAdam work, it can learn a fairly large nonzero + # bias because the small numerical roundoff tends to have a non-random + # sign. This module is intended to prevent that. Use a very small + # probability; that should be suffixient to fix the problem. + self.balance_keys = Balancer( + key_head_dim * num_heads, + channel_dim=-1, + min_positive=0.4, + max_positive=0.6, + min_abs=0.0, + max_abs=100.0, + prob=0.025, + ) + + # linear transformation for positional encoding. + self.linear_pos = ScaledLinear( + pos_dim, num_heads * pos_head_dim, bias=False, initial_scale=0.05 + ) + + # the following are for diagnosics only, see --print-diagnostics option + self.copy_pos_query = Identity() + self.copy_query = Identity() + + def forward( + self, + x: Tensor, + pos_emb: Tensor, + key_padding_mask: Optional[Tensor] = None, + attn_mask: Optional[Tensor] = None, + ) -> Tensor: + r""" + Args: + x: input of shape (seq_len, batch_size, embed_dim) + pos_emb: Positional embedding tensor, of shape (1, 2*seq_len - 1, pos_dim) + key_padding_mask: a bool tensor of shape (batch_size, seq_len). Positions that + are True in this mask will be ignored as sources in the attention weighting. + attn_mask: mask of shape (seq_len, seq_len) or (batch_size, seq_len, seq_len), + interpreted as ([batch_size,] tgt_seq_len, src_seq_len) + saying which positions are allowed to attend to which other positions. + Returns: + a tensor of attention weights, of shape (hum_heads, batch_size, seq_len, seq_len) + interpreted as (hum_heads, batch_size, tgt_seq_len, src_seq_len). + """ + x = self.in_proj(x) + query_head_dim = self.query_head_dim + pos_head_dim = self.pos_head_dim + num_heads = self.num_heads + + seq_len, batch_size, _ = x.shape + + query_dim = query_head_dim * num_heads + + # self-attention + q = x[..., 0:query_dim] + k = x[..., query_dim : 2 * query_dim] + # p is the position-encoding query + p = x[..., 2 * query_dim :] + assert p.shape[-1] == num_heads * pos_head_dim + + q = self.copy_query(q) # for diagnostics only, does nothing. + k = self.whiten_keys(self.balance_keys(k)) # does nothing in the forward pass. + p = self.copy_pos_query(p) # for diagnostics only, does nothing. + + q = q.reshape(seq_len, batch_size, num_heads, query_head_dim) + p = p.reshape(seq_len, batch_size, num_heads, pos_head_dim) + k = k.reshape(seq_len, batch_size, num_heads, query_head_dim) + + # time1 refers to target, time2 refers to source. + q = q.permute(2, 1, 0, 3) # (head, batch, time1, query_head_dim) + p = p.permute(2, 1, 0, 3) # (head, batch, time1, pos_head_dim) + k = k.permute(2, 1, 3, 0) # (head, batch, d_k, time2) + + attn_scores = torch.matmul(q, k) + + use_pos_scores = False + if torch.jit.is_scripting() or torch.jit.is_tracing(): + # We can't put random.random() in the same line + use_pos_scores = True + elif not self.training or random.random() >= float(self.pos_emb_skip_rate): + use_pos_scores = True + + if use_pos_scores: + pos_emb = self.linear_pos(pos_emb) + seq_len2 = 2 * seq_len - 1 + pos_emb = pos_emb.reshape(-1, seq_len2, num_heads, pos_head_dim).permute( + 2, 0, 3, 1 + ) + # pos shape now: (head, {1 or batch_size}, pos_dim, seq_len2) + + # (head, batch, time1, pos_dim) x (head, 1, pos_dim, seq_len2) -> (head, batch, time1, seq_len2) + # [where seq_len2 represents relative position.] + pos_scores = torch.matmul(p, pos_emb) + # the following .as_strided() expression converts the last axis of pos_scores from relative + # to absolute position. I don't know whether I might have got the time-offsets backwards or + # not, but let this code define which way round it is supposed to be. + if torch.jit.is_tracing(): + (num_heads, batch_size, time1, n) = pos_scores.shape + rows = torch.arange(start=time1 - 1, end=-1, step=-1) + cols = torch.arange(seq_len) + rows = rows.repeat(batch_size * num_heads).unsqueeze(-1) + indexes = rows + cols + pos_scores = pos_scores.reshape(-1, n) + pos_scores = torch.gather(pos_scores, dim=1, index=indexes) + pos_scores = pos_scores.reshape(num_heads, batch_size, time1, seq_len) + else: + pos_scores = pos_scores.as_strided( + (num_heads, batch_size, seq_len, seq_len), + ( + pos_scores.stride(0), + pos_scores.stride(1), + pos_scores.stride(2) - pos_scores.stride(3), + pos_scores.stride(3), + ), + storage_offset=pos_scores.stride(3) * (seq_len - 1), + ) + + attn_scores = attn_scores + pos_scores + + if torch.jit.is_scripting() or torch.jit.is_tracing(): + pass + elif self.training and random.random() < 0.1: + # This is a harder way of limiting the attention scores to not be + # too large. It incurs a penalty if any of them has an absolute + # value greater than 50.0. this should be outside the normal range + # of the attention scores. We use this mechanism instead of, say, + # something added to the loss function involving the entropy, + # because once the entropy gets very small gradients through the + # softmax can become very small, and we'd get zero derivatives. The + # choices of 1.0e-04 as the scale on the penalty makes this + # mechanism vulnerable to the absolute scale of the loss function, + # but we view this as a failsafe to avoid "implausible" parameter + # values rather than a regularization method that should be active + # under normal circumstances. + attn_scores = penalize_abs_values_gt( + attn_scores, limit=25.0, penalty=1.0e-04, name=self.name + ) + + assert attn_scores.shape == (num_heads, batch_size, seq_len, seq_len) + + if attn_mask is not None: + assert attn_mask.dtype == torch.bool + # use -1000 to avoid nan's where attn_mask and key_padding_mask make + # all scores zero. It's important that this be large enough that exp(-1000) + # is exactly zero, for reasons related to const_attention_rate, it + # compares the final weights with zero. + attn_scores = attn_scores.masked_fill(attn_mask, -1000) + + if key_padding_mask is not None: + assert key_padding_mask.shape == ( + batch_size, + seq_len, + ), key_padding_mask.shape + attn_scores = attn_scores.masked_fill( + key_padding_mask.unsqueeze(1), + -1000, + ) + + # We use our own version of softmax, defined in scaling.py, which should + # save a little of the memory used in backprop by, if we are in + # automatic mixed precision mode (amp / autocast), by only storing the + # half-precision output for backprop purposes. + attn_weights = softmax(attn_scores, dim=-1) + + if torch.jit.is_scripting() or torch.jit.is_tracing(): + pass + elif random.random() < 0.001 and not self.training: + self._print_attn_entropy(attn_weights) + + attn_weights = nn.functional.dropout( + attn_weights, p=self.dropout, training=self.training + ) + + return attn_weights + + def streaming_forward( + self, + x: Tensor, + pos_emb: Tensor, + cached_key: Tensor, + left_context_len: int, + key_padding_mask: Tensor, + ) -> Tuple[Tensor, Tensor]: + r""" + Args: + x: input of shape (seq_len, batch_size, embed_dim) + pos_emb: Positional embedding tensor, of shape (1, left_context_len+2*seq_len-1, pos_dim) + cached_key: cached attention key tensor of left context, + of shape (left_context_len, batch_size, key_dim) + left_context_len: number of left context frames. + key_padding_mask: a bool tensor of shape (batch_size, seq_len). Positions that + are True in this mask will be ignored as sources in the attention weighting. + + Returns: + - attention weights, of shape (hum_heads, batch_size, seq_len, seq_len2), + interpreted as (hum_heads, batch_size, tgt_seq_len, src_seq_len). + - updated cached attention key tensor of left context. + """ + x = self.in_proj(x) + query_head_dim = self.query_head_dim + pos_head_dim = self.pos_head_dim + num_heads = self.num_heads + + seq_len, batch_size, _ = x.shape + + query_dim = query_head_dim * num_heads + + # self-attention + q = x[..., 0:query_dim] + k = x[..., query_dim : 2 * query_dim] + # p is the position-encoding query + p = x[..., 2 * query_dim :] + assert p.shape[-1] == num_heads * pos_head_dim + + # Pad cached left contexts + assert cached_key.shape[0] == left_context_len, ( + cached_key.shape[0], + left_context_len, + ) + k = torch.cat([cached_key, k], dim=0) + # Update cached left contexts + cached_key = k[-left_context_len:, ...] + + # The length of key + k_len = k.shape[0] + + q = q.reshape(seq_len, batch_size, num_heads, query_head_dim) + p = p.reshape(seq_len, batch_size, num_heads, pos_head_dim) + k = k.reshape(k_len, batch_size, num_heads, query_head_dim) + + # time1 refers to target, time2 refers to source. + q = q.permute(2, 1, 0, 3) # (head, batch, time1, query_head_dim) + p = p.permute(2, 1, 0, 3) # (head, batch, time1, pos_head_dim) + k = k.permute(2, 1, 3, 0) # (head, batch, d_k, time2) + + attn_scores = torch.matmul(q, k) + + pos_emb = self.linear_pos(pos_emb) + seq_len2 = 2 * seq_len - 1 + left_context_len + pos_emb = pos_emb.reshape(-1, seq_len2, num_heads, pos_head_dim).permute( + 2, 0, 3, 1 + ) + # pos shape now: (head, {1 or batch_size}, pos_dim, seq_len2) + + # (head, batch, time1, pos_dim) x (head, 1, pos_dim, seq_len2) -> (head, batch, time1, seq_len2) + # [where seq_len2 represents relative position.] + pos_scores = torch.matmul(p, pos_emb) + + if torch.jit.is_tracing(): + (num_heads, batch_size, time1, n) = pos_scores.shape + rows = torch.arange(start=time1 - 1, end=-1, step=-1) + cols = torch.arange(k_len) + rows = rows.repeat(batch_size * num_heads).unsqueeze(-1) + indexes = rows + cols + pos_scores = pos_scores.reshape(-1, n) + pos_scores = torch.gather(pos_scores, dim=1, index=indexes) + pos_scores = pos_scores.reshape(num_heads, batch_size, time1, k_len) + # the following .as_strided() expression converts the last axis of pos_scores from relative + # to absolute position. I don't know whether I might have got the time-offsets backwards or + # not, but let this code define which way round it is supposed to be. + else: + pos_scores = pos_scores.as_strided( + (num_heads, batch_size, seq_len, k_len), + ( + pos_scores.stride(0), + pos_scores.stride(1), + pos_scores.stride(2) - pos_scores.stride(3), + pos_scores.stride(3), + ), + storage_offset=pos_scores.stride(3) * (seq_len - 1), + ) + + attn_scores = attn_scores + pos_scores + + assert attn_scores.shape == ( + num_heads, + batch_size, + seq_len, + k_len, + ), attn_scores.shape + + if key_padding_mask is not None: + assert key_padding_mask.shape == (batch_size, k_len), key_padding_mask.shape + attn_scores = attn_scores.masked_fill( + key_padding_mask.unsqueeze(1), + -1000, + ) + + attn_weights = attn_scores.softmax(dim=-1) + + return attn_weights, cached_key + + def _print_attn_entropy(self, attn_weights: Tensor): + # attn_weights: (num_heads, batch_size, seq_len, seq_len) + (num_heads, batch_size, seq_len, seq_len) = attn_weights.shape + + with torch.no_grad(): + with torch.cuda.amp.autocast(enabled=False): + attn_weights = attn_weights.to(torch.float32) + attn_weights_entropy = ( + -((attn_weights + 1.0e-20).log() * attn_weights) + .sum(dim=-1) + .mean(dim=(1, 2)) + ) + logging.info( + f"name={self.name}, attn_weights_entropy = {attn_weights_entropy}" + ) + + +class SelfAttention(nn.Module): + """ + The simplest possible attention module. This one works with already-computed attention + weights, e.g. as computed by RelPositionMultiheadAttentionWeights. + + Args: + embed_dim: the input and output embedding dimension + num_heads: the number of attention heads + value_head_dim: the value dimension per head + """ + + def __init__( + self, + embed_dim: int, + num_heads: int, + value_head_dim: int, + ) -> None: + super().__init__() + self.in_proj = nn.Linear(embed_dim, num_heads * value_head_dim, bias=True) + + self.out_proj = ScaledLinear( + num_heads * value_head_dim, embed_dim, bias=True, initial_scale=0.05 + ) + + self.whiten = Whiten( + num_groups=1, + whitening_limit=_whitening_schedule(7.5, ratio=3.0), + prob=(0.025, 0.25), + grad_scale=0.01, + ) + + def forward( + self, + x: Tensor, + attn_weights: Tensor, + ) -> Tensor: + """ + Args: + x: input tensor, of shape (seq_len, batch_size, embed_dim) + attn_weights: a tensor of shape (num_heads, batch_size, seq_len, seq_len), + with seq_len being interpreted as (tgt_seq_len, src_seq_len). Expect + attn_weights.sum(dim=-1) == 1. + Returns: + a tensor with the same shape as x. + """ + (seq_len, batch_size, embed_dim) = x.shape + num_heads = attn_weights.shape[0] + assert attn_weights.shape == (num_heads, batch_size, seq_len, seq_len) + + x = self.in_proj(x) # (seq_len, batch_size, num_heads * value_head_dim) + x = x.reshape(seq_len, batch_size, num_heads, -1).permute(2, 1, 0, 3) + # now x: (num_heads, batch_size, seq_len, value_head_dim) + value_head_dim = x.shape[-1] + + # todo: see whether there is benefit in overriding matmul + x = torch.matmul(attn_weights, x) + # v: (num_heads, batch_size, seq_len, value_head_dim) + + x = ( + x.permute(2, 1, 0, 3) + .contiguous() + .view(seq_len, batch_size, num_heads * value_head_dim) + ) + + # returned value is of shape (seq_len, batch_size, embed_dim), like the input. + x = self.out_proj(x) + x = self.whiten(x) + + return x + + def streaming_forward( + self, + x: Tensor, + attn_weights: Tensor, + cached_val: Tensor, + left_context_len: int, + ) -> Tuple[Tensor, Tensor]: + """ + Args: + x: input tensor, of shape (seq_len, batch_size, embed_dim) + attn_weights: a tensor of shape (num_heads, batch_size, seq_len, seq_len), + with seq_len being interpreted as (tgt_seq_len, src_seq_len). Expect + attn_weights.sum(dim=-1) == 1. + cached_val: cached attention value tensor of left context, + of shape (left_context_len, batch_size, value_dim) + left_context_len: number of left context frames. + + Returns: + - attention weighted output, a tensor with the same shape as x. + - updated cached attention value tensor of left context. + """ + (seq_len, batch_size, embed_dim) = x.shape + num_heads = attn_weights.shape[0] + seq_len2 = seq_len + left_context_len + assert attn_weights.shape == (num_heads, batch_size, seq_len, seq_len2) + + x = self.in_proj(x) # (seq_len, batch_size, num_heads * value_head_dim) + + # Pad cached left contexts + assert cached_val.shape[0] == left_context_len, ( + cached_val.shape[0], + left_context_len, + ) + x = torch.cat([cached_val, x], dim=0) + # Update cached left contexts + cached_val = x[-left_context_len:, ...] + + x = x.reshape(seq_len2, batch_size, num_heads, -1).permute(2, 1, 0, 3) + # now x: (num_heads, batch_size, seq_len, value_head_dim) + value_head_dim = x.shape[-1] + + # todo: see whether there is benefit in overriding matmul + x = torch.matmul(attn_weights, x) + # v: (num_heads, batch_size, seq_len, value_head_dim) + + x = ( + x.permute(2, 1, 0, 3) + .contiguous() + .view(seq_len, batch_size, num_heads * value_head_dim) + ) + + # returned value is of shape (seq_len, batch_size, embed_dim), like the input. + x = self.out_proj(x) + + return x, cached_val + + +class FeedforwardModule(nn.Module): + """Feedforward module in Zipformer2 model.""" + + def __init__(self, embed_dim: int, feedforward_dim: int, dropout: FloatLike): + super(FeedforwardModule, self).__init__() + self.in_proj = nn.Linear(embed_dim, feedforward_dim) + + self.hidden_balancer = Balancer( + feedforward_dim, + channel_dim=-1, + min_positive=0.3, + max_positive=1.0, + min_abs=0.75, + max_abs=5.0, + ) + + # shared_dim=0 means we share the dropout mask along the time axis + self.out_proj = ActivationDropoutAndLinear( + feedforward_dim, + embed_dim, + activation="SwooshL", + dropout_p=dropout, + dropout_shared_dim=0, + bias=True, + initial_scale=0.1, + ) + + self.out_whiten = Whiten( + num_groups=1, + whitening_limit=_whitening_schedule(7.5), + prob=(0.025, 0.25), + grad_scale=0.01, + ) + + def forward(self, x: Tensor): + x = self.in_proj(x) + x = self.hidden_balancer(x) + # out_proj contains SwooshL activation, then dropout, then linear. + x = self.out_proj(x) + x = self.out_whiten(x) + return x + + +class NonlinAttention(nn.Module): + """This is like the ConvolutionModule, but refactored so that we use multiplication by attention weights (borrowed + from the attention module) in place of actual convolution. We also took out the second nonlinearity, the + one after the attention mechanism. + + Args: + channels (int): The number of channels of conv layers. + """ + + def __init__( + self, + channels: int, + hidden_channels: int, + ) -> None: + super().__init__() + + self.hidden_channels = hidden_channels + + self.in_proj = nn.Linear(channels, hidden_channels * 3, bias=True) + + # balancer that goes before the sigmoid. Have quite a large min_abs value, at 2.0, + # because we noticed that well-trained instances of this module have abs-value before the sigmoid + # starting from about 3, and poorly-trained instances of the module have smaller abs values + # before the sigmoid. + self.balancer = Balancer( + hidden_channels, + channel_dim=-1, + min_positive=ScheduledFloat((0.0, 0.25), (20000.0, 0.05)), + max_positive=ScheduledFloat((0.0, 0.75), (20000.0, 0.95)), + min_abs=0.5, + max_abs=5.0, + ) + self.tanh = nn.Tanh() + + self.identity1 = Identity() # for diagnostics. + self.identity2 = Identity() # for diagnostics. + self.identity3 = Identity() # for diagnostics. + + self.out_proj = ScaledLinear( + hidden_channels, channels, bias=True, initial_scale=0.05 + ) + + self.whiten1 = Whiten( + num_groups=1, + whitening_limit=_whitening_schedule(5.0), + prob=(0.025, 0.25), + grad_scale=0.01, + ) + + self.whiten2 = Whiten( + num_groups=1, + whitening_limit=_whitening_schedule(5.0, ratio=3.0), + prob=(0.025, 0.25), + grad_scale=0.01, + ) + + def forward( + self, + x: Tensor, + attn_weights: Tensor, + ) -> Tensor: + """. + Args: + x: a Tensor of shape (seq_len, batch_size, num_channels) + attn_weights: a Tensor of shape (num_heads, batch_size, seq_len, seq_len) + Returns: + a Tensor with the same shape as x + """ + x = self.in_proj(x) + + (seq_len, batch_size, _) = x.shape + hidden_channels = self.hidden_channels + + s, x, y = x.chunk(3, dim=-1) + + # s will go through tanh. + + s = self.balancer(s) + s = self.tanh(s) + + s = s.unsqueeze(-1).reshape(seq_len, batch_size, hidden_channels) + x = self.whiten1(x) + x = x * s + x = self.identity1(x) # diagnostics only, it's the identity. + + (seq_len, batch_size, embed_dim) = x.shape + num_heads = attn_weights.shape[0] + assert attn_weights.shape == (num_heads, batch_size, seq_len, seq_len) + + x = x.reshape(seq_len, batch_size, num_heads, -1).permute(2, 1, 0, 3) + # now x: (num_heads, batch_size, seq_len, head_dim) + x = torch.matmul(attn_weights, x) + # now x: (num_heads, batch_size, seq_len, head_dim) + x = x.permute(2, 1, 0, 3).reshape(seq_len, batch_size, -1) + + y = self.identity2(y) + x = x * y + x = self.identity3(x) + + x = self.out_proj(x) + x = self.whiten2(x) + return x + + def streaming_forward( + self, + x: Tensor, + attn_weights: Tensor, + cached_x: Tensor, + left_context_len: int, + ) -> Tuple[Tensor, Tensor]: + """. + Args: + x: a Tensor of shape (seq_len, batch_size, num_channels) + attn_weights: a Tensor of shape (num_heads, batch_size, seq_len, seq_len) + cached_x: left context, a Tensor of shape + (num_heads, batch_size, left_context_len, head_dim) + left_context_len: number of left context frames. + Returns: + - a Tensor with the same shape as x + - updated left context with same shape as cached_x + """ + x = self.in_proj(x) + + (seq_len, batch_size, _) = x.shape + hidden_channels = self.hidden_channels + + s, x, y = x.chunk(3, dim=-1) + + # s will go through tanh. + s = self.tanh(s) + + s = s.unsqueeze(-1).reshape(seq_len, batch_size, hidden_channels) + x = x * s + + (seq_len, batch_size, embed_dim) = x.shape + num_heads = attn_weights.shape[0] + assert attn_weights.shape == ( + num_heads, + batch_size, + seq_len, + left_context_len + seq_len, + ) + + x = x.reshape(seq_len, batch_size, num_heads, -1).permute(2, 1, 0, 3) + # now x: (num_heads, batch_size, seq_len, head_dim) + + # Pad cached tensor + assert cached_x.shape[2] == left_context_len, ( + cached_x.shape[2], + left_context_len, + ) + x_pad = torch.cat([cached_x, x], dim=2) + # Update cached tensor + cached_x = x_pad[:, :, -left_context_len:, :] + + x = torch.matmul(attn_weights, x_pad) + # now x: (num_heads, batch_size, seq_len, head_dim) + x = x.permute(2, 1, 0, 3).reshape(seq_len, batch_size, -1) + + x = x * y + + x = self.out_proj(x) + return x, cached_x + + +class ConvolutionModule(nn.Module): + """ConvolutionModule in Zipformer2 model. + Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/zipformer/convolution.py + + Args: + channels (int): The number of channels of conv layers. + kernel_size (int): Kernerl size of conv layers. + bias (bool): Whether to use bias in conv layers (default=True). + + """ + + def __init__( + self, + channels: int, + kernel_size: int, + causal: bool, + ) -> None: + """Construct a ConvolutionModule object.""" + super(ConvolutionModule, self).__init__() + # kernerl_size should be a odd number for 'SAME' padding + assert (kernel_size - 1) % 2 == 0 + + bottleneck_dim = channels + self.causal = causal + + self.in_proj = nn.Linear( + channels, + 2 * bottleneck_dim, + ) + # the gradients on in_proj are a little noisy, likely to do with the + # sigmoid in glu. + + # after in_proj we put x through a gated linear unit (nn.functional.glu). + # For most layers the normal rms value of channels of x seems to be in the range 1 to 4, + # but sometimes, for some reason, for layer 0 the rms ends up being very large, + # between 50 and 100 for different channels. This will cause very peaky and + # sparse derivatives for the sigmoid gating function, which will tend to make + # the loss function not learn effectively. (for most layers the average absolute values + # are in the range 0.5..9.0, and the average p(x>0), i.e. positive proportion, + # at the output of pointwise_conv1.output is around 0.35 to 0.45 for different + # layers, which likely breaks down as 0.5 for the "linear" half and + # 0.2 to 0.3 for the part that goes into the sigmoid. The idea is that if we + # constrain the rms values to a reasonable range via a constraint of max_abs=10.0, + # it will be in a better position to start learning something, i.e. to latch onto + # the correct range. + self.balancer1 = Balancer( + bottleneck_dim, + channel_dim=-1, + min_positive=ScheduledFloat((0.0, 0.05), (8000.0, 0.025)), + max_positive=1.0, + min_abs=1.5, + max_abs=ScheduledFloat((0.0, 5.0), (8000.0, 10.0), default=1.0), + ) + + self.activation1 = Identity() # for diagnostics + + self.sigmoid = nn.Sigmoid() + + self.activation2 = Identity() # for diagnostics + + assert kernel_size % 2 == 1 + + self.depthwise_conv = ( + ChunkCausalDepthwiseConv1d(channels=bottleneck_dim, kernel_size=kernel_size) + if causal + else nn.Conv1d( + in_channels=bottleneck_dim, + out_channels=bottleneck_dim, + groups=bottleneck_dim, + kernel_size=kernel_size, + padding=kernel_size // 2, + ) + ) + + self.balancer2 = Balancer( + bottleneck_dim, + channel_dim=1, + min_positive=ScheduledFloat((0.0, 0.1), (8000.0, 0.05)), + max_positive=1.0, + min_abs=ScheduledFloat((0.0, 0.2), (20000.0, 0.5)), + max_abs=10.0, + ) + + self.whiten = Whiten( + num_groups=1, + whitening_limit=_whitening_schedule(7.5), + prob=(0.025, 0.25), + grad_scale=0.01, + ) + + self.out_proj = ActivationDropoutAndLinear( + bottleneck_dim, + channels, + activation="SwooshR", + dropout_p=0.0, + initial_scale=0.05, + ) + + def forward( + self, + x: Tensor, + src_key_padding_mask: Optional[Tensor] = None, + chunk_size: int = -1, + ) -> Tensor: + """Compute convolution module. + + Args: + x: Input tensor (#time, batch, channels). + src_key_padding_mask: the mask for the src keys per batch (optional): + (batch, #time), contains True in masked positions. + + Returns: + Tensor: Output tensor (#time, batch, channels). + + """ + + x = self.in_proj(x) # (time, batch, 2*channels) + + x, s = x.chunk(2, dim=-1) + s = self.balancer1(s) + s = self.sigmoid(s) + x = self.activation1(x) # identity. + x = x * s + x = self.activation2(x) # identity + + # (time, batch, channels) + + # exchange the temporal dimension and the feature dimension + x = x.permute(1, 2, 0) # (#batch, channels, time). + + if src_key_padding_mask is not None: + x = x.masked_fill(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0) + + if ( + not torch.jit.is_scripting() + and not torch.jit.is_tracing() + and chunk_size >= 0 + ): + # Not support exporting a model for simulated streaming decoding + assert ( + self.causal + ), "Must initialize model with causal=True if you use chunk_size" + x = self.depthwise_conv(x, chunk_size=chunk_size) + else: + x = self.depthwise_conv(x) + + x = self.balancer2(x) + x = x.permute(2, 0, 1) # (time, batch, channels) + + x = self.whiten(x) # (time, batch, channels) + x = self.out_proj(x) # (time, batch, channels) + + return x + + def streaming_forward( + self, + x: Tensor, + cache: Tensor, + src_key_padding_mask: Tensor, + ) -> Tuple[Tensor, Tensor]: + """Compute convolution module in streaming forward mode. + + Args: + x: Input tensor (#time, batch, channels). + cache: cached left context for depthwise_conv of shape + (#batch, channels, left_pad) + src_key_padding_mask: the mask for the src keys per batch (optional): + (batch, #time), contains True in masked positions. + + Returns: + - Output tensor (#time, batch, channels). + - Updated cache (#batch, channels, left_pad) + """ + + x = self.in_proj(x) # (time, batch, 2*channels) + + x, s = x.chunk(2, dim=2) + s = self.sigmoid(s) + x = x * s + # (time, batch, channels) + + # exchange the temporal dimension and the feature dimension + x = x.permute(1, 2, 0) # (#batch, channels, time). + + if src_key_padding_mask is not None: + x = x.masked_fill(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0) + + x, cache = self.depthwise_conv.streaming_forward(x, cache=cache) + + x = x.permute(2, 0, 1) # (time, batch, channels) + + x = self.out_proj(x) # (time, batch, channels) + + return x, cache + + +class ScalarMultiply(nn.Module): + def __init__(self, scale: float): + super().__init__() + self.scale = scale + + def forward(self, x): + return x * self.scale + + +def _test_zipformer_main(causal: bool = False): + batch_size = 5 + seq_len = 20 + # Just make sure the forward pass runs. + + c = Zipformer2( + encoder_dim=(64, 96), + encoder_unmasked_dim=(48, 64), + num_heads=(4, 4), + causal=causal, + chunk_size=(4,) if causal else (-1,), + left_context_frames=(64,), + ) + batch_size = 5 + seq_len = 20 + # Just make sure the forward pass runs. + f = c( + torch.randn(seq_len, batch_size, 64), + torch.full((batch_size,), seq_len, dtype=torch.int64), + ) + f[0].sum().backward() + c.eval() + f = c( + torch.randn(seq_len, batch_size, 64), + torch.full((batch_size,), seq_len, dtype=torch.int64), + ) + f # to remove flake8 warnings + + +if __name__ == "__main__": + logging.getLogger().setLevel(logging.INFO) + torch.set_num_threads(1) + torch.set_num_interop_threads(1) + _test_zipformer_main(False) + _test_zipformer_main(True) From 6a9cce407cf63ca1e3c60085363df77784aaaef3 Mon Sep 17 00:00:00 2001 From: wd929 Date: Fri, 20 Oct 2023 17:01:49 +0800 Subject: [PATCH 02/10] Training scripts for ICMC Signed-off-by: wd929 --- egs/icmcasr/ASR/zipformer/asr_datamodule.py | 91 ++++++++------------- egs/icmcasr/ASR/zipformer/train.py | 31 +++---- 2 files changed, 49 insertions(+), 73 deletions(-) diff --git a/egs/icmcasr/ASR/zipformer/asr_datamodule.py b/egs/icmcasr/ASR/zipformer/asr_datamodule.py index 20df469da..cd6d8ea7f 100644 --- a/egs/icmcasr/ASR/zipformer/asr_datamodule.py +++ b/egs/icmcasr/ASR/zipformer/asr_datamodule.py @@ -1,5 +1,6 @@ # Copyright 2021 Piotr Żelasko # Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo) +# Copyright 2023 NVIDIA Corporation (Author: Wen Ding) # # See ../../../../LICENSE for clarification regarding multiple authors # @@ -43,7 +44,6 @@ from torch.utils.data import DataLoader from icefall.utils import str2bool - class _SeedWorkers: def __init__(self, seed: int): self.seed = seed @@ -52,7 +52,7 @@ class _SeedWorkers: fix_random_seed(self.seed + worker_id) -class LibriSpeechAsrDataModule: +class ICMCAsrDataModule: """ DataModule for k2 ASR experiments. It assumes there is always one train and valid dataloader, @@ -82,20 +82,19 @@ class LibriSpeechAsrDataModule: "effective batch sizes, sampling strategies, applied data " "augmentations, etc.", ) + group.add_argument( - "--full-libri", + "--ihm-only", type=str2bool, default=True, - help="""Used only when --mini-libri is False.When enabled, - use 960h LibriSpeech. Otherwise, use 100h subset.""", + help="True for only use ihm data for training", ) group.add_argument( - "--mini-libri", + "--full-data", type=str2bool, default=False, - help="True for mini librispeech", + help="True for all data", ) - group.add_argument( "--manifest-dir", type=Path, @@ -402,74 +401,50 @@ class LibriSpeechAsrDataModule: return test_dl @lru_cache() - def train_clean_5_cuts(self) -> CutSet: - logging.info("mini_librispeech: About to get train-clean-5 cuts") + def train_ihm_cuts(self) -> CutSet: + logging.info("About to get train-ihm cuts") return load_manifest_lazy( - self.args.manifest_dir / "librispeech_cuts_train-clean-5.jsonl.gz" + self.args.manifest_dir / "cuts_train_ihm.jsonl.gz" ) @lru_cache() - def train_clean_100_cuts(self) -> CutSet: - logging.info("About to get train-clean-100 cuts") + def train_ihm_rvb_cuts(self) -> CutSet: + logging.info("About to get train-ihm-rvb cuts") return load_manifest_lazy( - self.args.manifest_dir / "librispeech_cuts_train-clean-100.jsonl.gz" + self.args.manifest_dir / "cuts_train_ihm_rvb.jsonl.gz" ) @lru_cache() - def train_clean_360_cuts(self) -> CutSet: - logging.info("About to get train-clean-360 cuts") + def train_shm_cuts(self) -> CutSet: + logging.info("About to get train-shm cuts") return load_manifest_lazy( - self.args.manifest_dir / "librispeech_cuts_train-clean-360.jsonl.gz" + self.args.manifest_dir / "cuts_train_sdm.jsonl.gz" ) @lru_cache() - def train_other_500_cuts(self) -> CutSet: - logging.info("About to get train-other-500 cuts") + def dev_ihm_cuts(self) -> CutSet: + logging.info("About to get dev-ihm cuts") return load_manifest_lazy( - self.args.manifest_dir / "librispeech_cuts_train-other-500.jsonl.gz" + self.args.manifest_dir / "cuts_dev_ihm.jsonl.gz" ) @lru_cache() - def train_all_shuf_cuts(self) -> CutSet: - logging.info( - "About to get the shuffled train-clean-100, \ - train-clean-360 and train-other-500 cuts" - ) - return load_manifest_lazy( - self.args.manifest_dir / "librispeech_cuts_train-all-shuf.jsonl.gz" - ) - - @lru_cache() - def dev_clean_2_cuts(self) -> CutSet: - logging.info("mini_librispeech: About to get dev-clean-2 cuts") - return load_manifest_lazy( - self.args.manifest_dir / "librispeech_cuts_dev-clean-2.jsonl.gz" - ) - - @lru_cache() - def dev_clean_cuts(self) -> CutSet: - logging.info("About to get dev-clean cuts") - return load_manifest_lazy( - self.args.manifest_dir / "librispeech_cuts_dev-clean.jsonl.gz" - ) - - @lru_cache() - def dev_other_cuts(self) -> CutSet: + def dev_shm_cuts(self) -> CutSet: logging.info("About to get dev-other cuts") return load_manifest_lazy( - self.args.manifest_dir / "librispeech_cuts_dev-other.jsonl.gz" + self.args.manifest_dir / "cuts_dev_sdm.jsonl.gz" ) - @lru_cache() - def test_clean_cuts(self) -> CutSet: - logging.info("About to get test-clean cuts") - return load_manifest_lazy( - self.args.manifest_dir / "librispeech_cuts_test-clean.jsonl.gz" - ) + # @lru_cache() + # def test_clean_cuts(self) -> CutSet: + # logging.info("About to get test-clean cuts") + # return load_manifest_lazy( + # self.args.manifest_dir / "librispeech_cuts_test-clean.jsonl.gz" + # ) - @lru_cache() - def test_other_cuts(self) -> CutSet: - logging.info("About to get test-other cuts") - return load_manifest_lazy( - self.args.manifest_dir / "librispeech_cuts_test-other.jsonl.gz" - ) + # @lru_cache() + # def test_other_cuts(self) -> CutSet: + # logging.info("About to get test-other cuts") + # return load_manifest_lazy( + # self.args.manifest_dir / "librispeech_cuts_test-other.jsonl.gz" + # ) diff --git a/egs/icmcasr/ASR/zipformer/train.py b/egs/icmcasr/ASR/zipformer/train.py index 7009f3346..413b3c661 100755 --- a/egs/icmcasr/ASR/zipformer/train.py +++ b/egs/icmcasr/ASR/zipformer/train.py @@ -25,13 +25,14 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3" # For non-streaming model training: ./zipformer/train.py \ - --world-size 4 \ + --world-size 1 \ --num-epochs 30 \ --start-epoch 1 \ - --use-fp16 1 \ --exp-dir zipformer/exp \ - --full-libri 1 \ - --max-duration 1000 + --manifest-dir '/mnt/samsung-t7/yuekai/asr/icefall-icmcasr/egs/icmcasr/ASR/data/manifests' \ + --max-duration 1000 \ + --bpe-model /raid/wend/asr/icmc/multi_zh/icefall-asr-multi-zh-hans-zipformer-2023-9-2/data/lang_bpe_2000/bpe.model + # For streaming model training: ./zipformer/train.py \ @@ -65,7 +66,7 @@ import sentencepiece as spm import torch import torch.multiprocessing as mp import torch.nn as nn -from asr_datamodule import LibriSpeechAsrDataModule +from asr_datamodule import ICMCAsrDataModule from decoder import Decoder from joiner import Joiner from lhotse.cut import Cut @@ -1172,12 +1173,12 @@ def run(rank, world_size, args): if params.inf_check: register_inf_check_hooks(model) - librispeech = LibriSpeechAsrDataModule(args) + icmc = ICMCAsrDataModule(args) - train_cuts = librispeech.train_clean_100_cuts() - if params.full_libri: - train_cuts += librispeech.train_clean_360_cuts() - train_cuts += librispeech.train_other_500_cuts() + train_cuts = icmc.train_ihm_cuts() + if params.full_data: + train_cuts += icmc.train_ihm_rvb_cuts() + train_cuts += icmc.train_shm_cuts() def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 1 second and 20 seconds @@ -1225,13 +1226,13 @@ def run(rank, world_size, args): else: sampler_state_dict = None - train_dl = librispeech.train_dataloaders( + train_dl = icmc.train_dataloaders( train_cuts, sampler_state_dict=sampler_state_dict ) - valid_cuts = librispeech.dev_clean_cuts() - valid_cuts += librispeech.dev_other_cuts() - valid_dl = librispeech.valid_dataloaders(valid_cuts) + valid_cuts = icmc.dev_ihm_cuts() + # valid_cuts += librispeech.dev_other_cuts() + valid_dl = icmc.valid_dataloaders(valid_cuts) if not params.print_diagnostics: scan_pessimistic_batches_for_oom( @@ -1370,7 +1371,7 @@ def scan_pessimistic_batches_for_oom( def main(): parser = get_parser() - LibriSpeechAsrDataModule.add_arguments(parser) + ICMCAsrDataModule.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) From eb11c2486f1c85088b217baafb737c900d80514f Mon Sep 17 00:00:00 2001 From: wd929 Date: Tue, 24 Oct 2023 17:08:14 +0800 Subject: [PATCH 03/10] Decoding scripts Signed-off-by: wd929 --- egs/icmcasr/ASR/zipformer/decode.py | 27 ++++++++++++++------------- 1 file changed, 14 insertions(+), 13 deletions(-) diff --git a/egs/icmcasr/ASR/zipformer/decode.py b/egs/icmcasr/ASR/zipformer/decode.py index 3531d657f..12dd61b54 100755 --- a/egs/icmcasr/ASR/zipformer/decode.py +++ b/egs/icmcasr/ASR/zipformer/decode.py @@ -2,6 +2,7 @@ # # Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang, # Zengwei Yao) +# 2023 NVIDIA Corporation (Wen Ding) # # See ../../../../LICENSE for clarification regarding multiple authors # @@ -20,9 +21,9 @@ Usage: (1) greedy search ./zipformer/decode.py \ - --epoch 28 \ - --avg 15 \ - --exp-dir ./zipformer/exp \ + --epoch 13 \ + --avg 10 \ + --exp-dir ./zipformer/exp_maxdur500_lr0.0225/ \ --max-duration 600 \ --decoding-method greedy_search @@ -106,7 +107,7 @@ import k2 import sentencepiece as spm import torch import torch.nn as nn -from asr_datamodule import LibriSpeechAsrDataModule +from asr_datamodule import ICMCAsrDataModule from beam_search import ( beam_search, fast_beam_search_nbest, @@ -729,7 +730,7 @@ def save_results( ) with open(errs_filename, "w") as f: wer = write_error_stats( - f, f"{test_set_name}-{key}", results, enable_log=True + f, f"{test_set_name}-{key}", results, enable_log=True, compute_CER=True ) test_set_wers[key] = wer @@ -755,7 +756,7 @@ def save_results( @torch.no_grad() def main(): parser = get_parser() - LibriSpeechAsrDataModule.add_arguments(parser) + ICMCAsrDataModule.add_arguments(parser) LmScorer.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) @@ -1014,16 +1015,16 @@ def main(): # we need cut ids to display recognition results. args.return_cuts = True - librispeech = LibriSpeechAsrDataModule(args) + icmc = ICMCAsrDataModule(args) - test_clean_cuts = librispeech.test_clean_cuts() - test_other_cuts = librispeech.test_other_cuts() + test_ihm_cuts = icmc.dev_ihm_cuts() + test_shm_cuts = icmc.dev_shm_cuts() - test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) - test_other_dl = librispeech.test_dataloaders(test_other_cuts) + test_ihm_dl = icmc.test_dataloaders(test_ihm_cuts) + test_shm_dl = icmc.test_dataloaders(test_shm_cuts) - test_sets = ["test-clean", "test-other"] - test_dl = [test_clean_dl, test_other_dl] + test_sets = ["test-ihm", "test-shm"] + test_dl = [test_ihm_dl, test_shm_dl] for test_set, test_dl in zip(test_sets, test_dl): results_dict = decode_dataset( From 1e5f93bd0d2d9ad57e032c2487c9c786e2eb8639 Mon Sep 17 00:00:00 2001 From: wd929 Date: Tue, 7 Nov 2023 18:16:52 +0800 Subject: [PATCH 04/10] Add compute FBANK for aec_iva recipe --- .../ASR/local/compute_fbank_aec_iva.py | 133 ++++++++++++++++++ 1 file changed, 133 insertions(+) create mode 100755 egs/icmcasr/ASR/local/compute_fbank_aec_iva.py diff --git a/egs/icmcasr/ASR/local/compute_fbank_aec_iva.py b/egs/icmcasr/ASR/local/compute_fbank_aec_iva.py new file mode 100755 index 000000000..faf194d83 --- /dev/null +++ b/egs/icmcasr/ASR/local/compute_fbank_aec_iva.py @@ -0,0 +1,133 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# 2023 NVIDIA Corp. (authors: Wen Ding) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This file computes fbank features of the LibriSpeech dataset. +It looks for manifests in the directory data/manifests. + +The generated fbank features are saved in data/fbank. +""" + +import argparse +import logging +import os +from pathlib import Path +from typing import Optional + +import sentencepiece as spm +import torch +from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter +from lhotse.recipes.utils import read_manifests_if_cached + +from icefall.utils import get_executor, str2bool + +# Torch's multithreaded behavior needs to be disabled or +# it wastes a lot of CPU and slow things down. +# Do this outside of main() in case it needs to take effect +# even when we are not invoking the main (e.g. when spawning subprocesses). +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + + +def get_args(): + parser = argparse.ArgumentParser() + + parser.add_argument( + "--perturb-speed", + type=str2bool, + default=True, + help="""Perturb speed with factor 0.9 and 1.1 on train subset.""", + ) + + return parser.parse_args() + + +def compute_fbank_aec_iva( + perturb_speed: Optional[bool] = True, +): + src_dir = Path("data_aec_iva/manifests") + output_dir = Path("data_aec_iva/fbank") + num_jobs = 20 + num_mel_bins = 80 + + dataset_parts = ( + "dev_aec_iva", + "train_aec_iva", + ) + + prefix = "icmcasr-aec-iva" + suffix = "jsonl.gz" + manifests = read_manifests_if_cached( + dataset_parts=dataset_parts, + output_dir=src_dir, + prefix=prefix, + suffix=suffix, + ) + assert manifests is not None + + assert len(manifests) == len(dataset_parts), ( + len(manifests), + len(dataset_parts), + list(manifests.keys()), + dataset_parts, + ) + + extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) + + with get_executor() as ex: # Initialize the executor only once. + for partition, m in manifests.items(): + cuts_filename = f"{prefix}_cuts_{partition}.{suffix}" + if (output_dir / cuts_filename).is_file(): + logging.info(f"{partition} already exists - skipping.") + continue + logging.info(f"Processing {partition}") + cut_set = CutSet.from_manifests( + recordings=m["recordings"], + supervisions=m["supervisions"], + ) + + if "train" in partition: + if perturb_speed: + logging.info(f"Doing speed perturb") + cut_set = ( + cut_set + + cut_set.perturb_speed(0.9) + + cut_set.perturb_speed(1.1) + ) + cut_set = cut_set.compute_and_store_features( + extractor=extractor, + storage_path=f"{output_dir}/{prefix}_feats_{partition}", + # when an executor is specified, make more partitions + num_jobs=num_jobs if ex is None else 80, + executor=ex, + storage_type=LilcomChunkyWriter, + ) + cut_set.to_file(output_dir / cuts_filename) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + args = get_args() + logging.info(vars(args)) + compute_fbank_aec_iva( + perturb_speed=args.perturb_speed, + ) + From 22f68dd34497539e1dd9c860760c50b4ecc7ef01 Mon Sep 17 00:00:00 2001 From: Yuekai Zhang Date: Mon, 27 Nov 2023 14:51:30 +0800 Subject: [PATCH 05/10] add gss support --- .../ASR/local/compute_fbank_icmcasr.py | 64 +++---- .../ASR/local/prepare_icmc_enhanced.py | 163 ++++++++++++++++++ egs/icmcasr/ASR/local/prepare_icmc_gss.sh | 99 +++++++++++ egs/icmcasr/ASR/prepare.sh | 19 +- 4 files changed, 310 insertions(+), 35 deletions(-) create mode 100644 egs/icmcasr/ASR/local/prepare_icmc_enhanced.py create mode 100644 egs/icmcasr/ASR/local/prepare_icmc_gss.sh diff --git a/egs/icmcasr/ASR/local/compute_fbank_icmcasr.py b/egs/icmcasr/ASR/local/compute_fbank_icmcasr.py index 6e986cb4f..e5623634b 100755 --- a/egs/icmcasr/ASR/local/compute_fbank_icmcasr.py +++ b/egs/icmcasr/ASR/local/compute_fbank_icmcasr.py @@ -64,12 +64,12 @@ def compute_fbank_icmcasr(num_mel_bins: int = 80, perturb_speed: bool = False): suffix="jsonl.gz", ) # For GSS we already have cuts so we read them directly. - # manifests_gss = read_manifests_if_cached( - # dataset_parts=["train", "dev"], - # output_dir=src_dir, - # prefix="icmcasr-gss", - # suffix="jsonl.gz", - # ) + manifests_gss = read_manifests_if_cached( + dataset_parts=["train", "dev"], + output_dir=src_dir, + prefix="icmcasr-gss", + suffix="jsonl.gz", + ) sampling_rate = 16000 @@ -84,6 +84,10 @@ def compute_fbank_icmcasr(num_mel_bins: int = 80, perturb_speed: bool = False): def _extract_feats( cuts: CutSet, storage_path: Path, manifest_path: Path, speed_perturb: bool ) -> None: + # check if the features have already been computed + if storage_path.exists() or storage_path.with_suffix(".lca").exists(): + logging.info(f"{storage_path} exists, skipping feature extraction") + return if speed_perturb: logging.info(f"Doing speed perturb") cuts = cuts + cuts.perturb_speed(0.9) + cuts.perturb_speed(1.1) @@ -136,17 +140,17 @@ def compute_fbank_icmcasr(num_mel_bins: int = 80, perturb_speed: bool = False): ) logging.info("Processing train split GSS") - # cuts_gss = ( - # CutSet.from_manifests(**manifests_gss["train"]) - # .trim_to_supervisions(keep_overlapping=False) - # .modify_ids(lambda x: x + "-gss") - # ) - # _extract_feats( - # cuts_gss, - # output_dir / "feats_train_gss", - # src_dir / "cuts_train_gss.jsonl.gz", - # perturb_speed, - # ) + cuts_gss = ( + CutSet.from_manifests(**manifests_gss["train"]) + .trim_to_supervisions(keep_overlapping=False) + .modify_ids(lambda x: x + "-gss") + ) + _extract_feats( + cuts_gss, + output_dir / "feats_train_gss", + src_dir / "cuts_train_gss.jsonl.gz", + perturb_speed, + ) logging.info("Preparing test cuts: IHM, SDM, GSS (optional)") for split in ["dev"]: @@ -176,19 +180,19 @@ def compute_fbank_icmcasr(num_mel_bins: int = 80, perturb_speed: bool = False): storage_type=LilcomChunkyWriter, ) ) - # logging.info(f"Processing {split} GSS") - # cuts_gss = ( - # CutSet.from_manifests(**manifests_gss[split]) - # .trim_to_supervisions(keep_overlapping=False) - # .compute_and_store_features_batch( - # extractor=extractor, - # storage_path=output_dir / f"feats_{split}_gss", - # manifest_path=src_dir / f"cuts_{split}_gss.jsonl.gz", - # batch_duration=500, - # num_workers=4, - # storage_type=LilcomChunkyWriter, - # ) - # ) + logging.info(f"Processing {split} GSS") + cuts_gss = ( + CutSet.from_manifests(**manifests_gss[split]) + .trim_to_supervisions(keep_overlapping=False) + .compute_and_store_features_batch( + extractor=extractor, + storage_path=output_dir / f"feats_{split}_gss", + manifest_path=src_dir / f"cuts_{split}_gss.jsonl.gz", + batch_duration=500, + num_workers=4, + storage_type=LilcomChunkyWriter, + ) + ) diff --git a/egs/icmcasr/ASR/local/prepare_icmc_enhanced.py b/egs/icmcasr/ASR/local/prepare_icmc_enhanced.py new file mode 100644 index 000000000..19f1fab72 --- /dev/null +++ b/egs/icmcasr/ASR/local/prepare_icmc_enhanced.py @@ -0,0 +1,163 @@ +#!/usr/local/bin/python +# -*- coding: utf-8 -*- +# Data preparation for AliMeeting GSS-enhanced dataset. + +import logging +from concurrent.futures import ThreadPoolExecutor +from pathlib import Path +import re + +from lhotse import Recording, RecordingSet, SupervisionSet +from lhotse.qa import fix_manifests +from lhotse.recipes.utils import read_manifests_if_cached +from lhotse.utils import fastcopy +from tqdm import tqdm + +logging.basicConfig( + format="%(asctime)s %(levelname)-8s %(message)s", + level=logging.INFO, + datefmt="%Y-%m-%d %H:%M:%S", +) + + +def get_args(): + import argparse + + parser = argparse.ArgumentParser(description="ICMC enhanced dataset preparation.") + parser.add_argument( + "manifests_dir", + type=Path, + help="Path to directory containing ICMC manifests.", + ) + parser.add_argument( + "enhanced_dir", + type=Path, + help="Path to enhanced data directory.", + ) + parser.add_argument( + "--num-jobs", + "-j", + type=int, + default=1, + help="Number of parallel jobs to run.", + ) + parser.add_argument( + "--min-segment-duration", + "-d", + type=float, + default=0.0, + help="Minimum duration of a segment in seconds.", + ) + return parser.parse_args() + + +def find_recording_and_create_new_supervision(enhanced_dir, supervision): + """ + Given a supervision (corresponding to original AMI recording), this function finds the + enhanced recording correspoding to the supervision, and returns this recording and + a new supervision whose start and end times are adjusted to match the enhanced recording. + """ + file_name = Path( + f"{supervision.recording_id}-{supervision.speaker}-{round(100*supervision.start):06d}_{round(100*supervision.end):06d}.flac" + ) + save_path = str(enhanced_dir / f"{supervision.recording_id}" / file_name) + # replace re template DX0*C with DXmixC + save_path = re.sub(r"DX0(\d)", r"DXmix", save_path) + # convert it to Path object + save_path = Path(save_path) + if save_path.exists(): + recording = Recording.from_file(save_path) + if recording.duration == 0: + logging.warning(f"Skipping {save_path} which has duration 0 seconds.") + return None + + # Old supervision is wrt to the original recording, we create new supervision + # wrt to the enhanced segment + new_supervision = fastcopy( + supervision, + recording_id=recording.id, + start=0, + duration=recording.duration, + ) + return recording, new_supervision + else: + logging.warning(f"{save_path} does not exist.") + return None + + +def main(args): + # Get arguments + manifests_dir = args.manifests_dir + enhanced_dir = args.enhanced_dir + + # Load manifests from cache if they exist (saves time) + manifests = read_manifests_if_cached( + dataset_parts=["train", "dev"], + output_dir=manifests_dir, + prefix="icmcasr-sdm", + suffix="jsonl.gz", + ) + if not manifests: + raise ValueError( + "AliMeeting SDM manifests not found in {}".format(manifests_dir) + ) + + with ThreadPoolExecutor(args.num_jobs) as ex: + for part in ["train", "dev",]: + logging.info(f"Processing {part}...") + supervisions_orig = manifests[part]["supervisions"].filter( + lambda s: s.duration >= args.min_segment_duration + ) + futures = [] + + for supervision in tqdm( + supervisions_orig, + desc="Distributing tasks", + ): + futures.append( + ex.submit( + find_recording_and_create_new_supervision, + enhanced_dir, + supervision, + ) + ) + + recordings = [] + supervisions = [] + for future in tqdm( + futures, + total=len(futures), + desc="Processing tasks", + ): + result = future.result() + if result is not None: + recording, new_supervision = result + recordings.append(recording) + supervisions.append(new_supervision) + + # Remove duplicates from the recordings + recordings_nodup = {} + for recording in recordings: + if recording.id not in recordings_nodup: + recordings_nodup[recording.id] = recording + else: + logging.warning("Recording {} is duplicated.".format(recording.id)) + recordings = RecordingSet.from_recordings(recordings_nodup.values()) + supervisions = SupervisionSet.from_segments(supervisions) + + recordings, supervisions = fix_manifests( + recordings=recordings, supervisions=supervisions + ) + + logging.info(f"Writing {part} enhanced manifests") + recordings.to_file( + manifests_dir / f"icmcasr-gss_recordings_{part}.jsonl.gz" + ) + supervisions.to_file( + manifests_dir / f"icmcasr-gss_supervisions_{part}.jsonl.gz" + ) + + +if __name__ == "__main__": + args = get_args() + main(args) diff --git a/egs/icmcasr/ASR/local/prepare_icmc_gss.sh b/egs/icmcasr/ASR/local/prepare_icmc_gss.sh new file mode 100644 index 000000000..b3490f9ab --- /dev/null +++ b/egs/icmcasr/ASR/local/prepare_icmc_gss.sh @@ -0,0 +1,99 @@ +#!/bin/bash +# This script is used to run GSS-based enhancement on AMI data. +set -euo pipefail +nj=1 +stage=0 +stop_stage=1 + +. shared/parse_options.sh || exit 1 + +if [ $# != 2 ]; then + echo "Wrong #arguments ($#, expected 2)" + echo "Usage: local/prepare_icmc_gss.sh [options] " + echo "e.g. local/prepare_icmc_gss.sh data/manifests exp/ami_gss" + echo "main options (for others, see top of script file)" + echo " --nj # number of parallel jobs" + echo " --stage # stage to start running from" + exit 1; +fi + +DATA_DIR=$1 +EXP_DIR=$2 + +mkdir -p $EXP_DIR + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then + log "Stage 1: Prepare cut sets" + for part in train dev; do + lhotse cut simple \ + -r $DATA_DIR/icmcasr-mdm_recordings_${part}.jsonl.gz \ + -s $DATA_DIR/icmcasr-mdm_supervisions_${part}.jsonl.gz \ + $EXP_DIR/cuts_${part}.jsonl.gz + done +fi + +if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then + log "Stage 2: Trim cuts to supervisions (1 cut per supervision segment)" + for part in train dev; do + lhotse cut trim-to-supervisions --discard-overlapping \ + $EXP_DIR/cuts_${part}.jsonl.gz $EXP_DIR/cuts_per_segment_${part}.jsonl.gz + done +fi + +if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then + log "Stage 3: Split manifests for multi-GPU processing (optional)" + for part in train dev; do + gss utils split $nj $EXP_DIR/cuts_per_segment_${part}.jsonl.gz \ + $EXP_DIR/cuts_per_segment_${part}_split$nj + done +fi + +if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then + log "Stage 4: Enhance train segments using GSS (requires GPU)" + # for train, we use smaller context and larger batches to speed-up processing + for JOB in $(seq $nj); do + gss enhance cuts $EXP_DIR/cuts_train.jsonl.gz \ + $EXP_DIR/cuts_per_segment_train_split$nj/cuts_per_segment_train.$JOB.jsonl.gz $EXP_DIR/enhanced \ + --bss-iterations 10 \ + --context-duration 5.0 \ + --use-garbage-class \ + --channels 0,1,2,3 \ + --min-segment-length 0.05 \ + --max-segment-length 25.0 \ + --max-batch-duration 60.0 \ + --num-buckets 4 \ + --num-workers 4 + done +fi + +if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then + log "Stage 5: Enhance eval/test segments using GSS (using GPU)" + # for eval/test, we use larger context and smaller batches to get better quality + for part in dev; do + for JOB in $(seq $nj); do + gss enhance cuts $EXP_DIR/cuts_${part}.jsonl.gz \ + $EXP_DIR/cuts_per_segment_${part}_split$nj/cuts_per_segment_${part}.$JOB.jsonl.gz \ + $EXP_DIR/enhanced \ + --bss-iterations 10 \ + --context-duration 15.0 \ + --use-garbage-class \ + --min-segment-length 0.05 \ + --max-segment-length 16.0 \ + --max-batch-duration 45.0 \ + --num-buckets 4 \ + --num-workers 4 + done + done +fi + + +if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then + log "Stage 6: Prepare manifests for GSS-enhanced data" + python3 local/prepare_icmc_enhanced.py $DATA_DIR $EXP_DIR/enhanced -j $nj --min-segment-duration 0.05 +fi diff --git a/egs/icmcasr/ASR/prepare.sh b/egs/icmcasr/ASR/prepare.sh index 0b8bbd676..9f1130a18 100755 --- a/egs/icmcasr/ASR/prepare.sh +++ b/egs/icmcasr/ASR/prepare.sh @@ -58,7 +58,7 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then # to $dl_dir/icmcasr if [ ! -f data/manifests/.icmcasr_manifests.done ]; then mkdir -p data/manifests - for part in ihm sdm; do + for part in ihm sdm mdm; do lhotse prepare icmcasr --mic ${part} $dl_dir/ICMC-ASR data/manifests done touch data/manifests/.icmcasr_manifests.done @@ -77,15 +77,24 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then + log "Stage 3: Apply GSS enhancement on MDM data (this stage requires a GPU)" + # We assume that you have installed the GSS package: https://github.com/desh2608/gss + local/prepare_icmc_gss.sh --stage 1 --stop_stage 6 data/manifests exp/icmc_gss +fi + +if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 3: Compute fbank for icmcasr" if [ ! -f data/fbank/.icmcasr.done ]; then mkdir -p data/fbank ./local/compute_fbank_icmcasr.py --perturb-speed True + echo "Combining manifests" + lhotse combine data/manifests/cuts_train_{ihm,ihm_rvb,sdm,gss}.jsonl.gz - | shuf |\ + gzip -c > data/manifests/cuts_train_all.jsonl.gz touch data/fbank/.icmcasr.done fi fi -if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then +if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 4: Compute fbank for musan" if [ ! -f data/fbank/.msuan.done ]; then mkdir -p data/fbank @@ -95,7 +104,7 @@ if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then fi lang_phone_dir=data/lang_phone -if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then +if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 5: Prepare phone based lang" mkdir -p $lang_phone_dir @@ -111,7 +120,7 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then fi lang_char_dir=data/lang_char -if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then +if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 6: Prepare char based lang" mkdir -p $lang_char_dir # We reuse words.txt from phone based lexicon @@ -142,7 +151,7 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then fi fi -if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then +if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 7: Prepare Byte BPE based lang" for vocab_size in ${vocab_sizes[@]}; do From eb79f1eceb986ee63a34e3206c90a3b3ccaa312b Mon Sep 17 00:00:00 2001 From: Yuekai Zhang Date: Tue, 19 Dec 2023 18:16:50 +0800 Subject: [PATCH 06/10] update eval data preparation --- .../ASR/local/compute_fbank_icmcasr.py | 8 +-- .../ASR/local/prepare_icmc_enhanced.py | 4 +- egs/icmcasr/ASR/local/prepare_icmc_gss.sh | 8 +-- egs/icmcasr/ASR/prepare.sh | 68 ++----------------- 4 files changed, 17 insertions(+), 71 deletions(-) diff --git a/egs/icmcasr/ASR/local/compute_fbank_icmcasr.py b/egs/icmcasr/ASR/local/compute_fbank_icmcasr.py index e5623634b..3e77f1c9e 100755 --- a/egs/icmcasr/ASR/local/compute_fbank_icmcasr.py +++ b/egs/icmcasr/ASR/local/compute_fbank_icmcasr.py @@ -58,14 +58,14 @@ def compute_fbank_icmcasr(num_mel_bins: int = 80, perturb_speed: bool = False): suffix="jsonl.gz", ) manifests_sdm = read_manifests_if_cached( - dataset_parts=["train", "dev"], + dataset_parts=["train", "dev", "eval_track1"], output_dir=src_dir, prefix="icmcasr-sdm", suffix="jsonl.gz", ) # For GSS we already have cuts so we read them directly. manifests_gss = read_manifests_if_cached( - dataset_parts=["train", "dev"], + dataset_parts=["train", "dev", "eval_track1"], output_dir=src_dir, prefix="icmcasr-gss", suffix="jsonl.gz", @@ -96,7 +96,7 @@ def compute_fbank_icmcasr(num_mel_bins: int = 80, perturb_speed: bool = False): storage_path=storage_path, manifest_path=manifest_path, batch_duration=5000, - num_workers=8, + num_workers=4, storage_type=LilcomChunkyWriter, ) @@ -153,7 +153,7 @@ def compute_fbank_icmcasr(num_mel_bins: int = 80, perturb_speed: bool = False): ) logging.info("Preparing test cuts: IHM, SDM, GSS (optional)") - for split in ["dev"]: + for split in ["dev", "eval_track1"]: logging.info(f"Processing {split} IHM") cuts_ihm = ( CutSet.from_manifests(**manifests_ihm[split]) diff --git a/egs/icmcasr/ASR/local/prepare_icmc_enhanced.py b/egs/icmcasr/ASR/local/prepare_icmc_enhanced.py index 19f1fab72..6845ce91e 100644 --- a/egs/icmcasr/ASR/local/prepare_icmc_enhanced.py +++ b/egs/icmcasr/ASR/local/prepare_icmc_enhanced.py @@ -92,7 +92,7 @@ def main(args): # Load manifests from cache if they exist (saves time) manifests = read_manifests_if_cached( - dataset_parts=["train", "dev"], + dataset_parts=["train", "dev", "eval_track1"], output_dir=manifests_dir, prefix="icmcasr-sdm", suffix="jsonl.gz", @@ -103,7 +103,7 @@ def main(args): ) with ThreadPoolExecutor(args.num_jobs) as ex: - for part in ["train", "dev",]: + for part in ["train", "dev", "eval_track1"]: logging.info(f"Processing {part}...") supervisions_orig = manifests[part]["supervisions"].filter( lambda s: s.duration >= args.min_segment_duration diff --git a/egs/icmcasr/ASR/local/prepare_icmc_gss.sh b/egs/icmcasr/ASR/local/prepare_icmc_gss.sh index b3490f9ab..69dd42dfa 100644 --- a/egs/icmcasr/ASR/local/prepare_icmc_gss.sh +++ b/egs/icmcasr/ASR/local/prepare_icmc_gss.sh @@ -30,7 +30,7 @@ log() { if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare cut sets" - for part in train dev; do + for part in train dev eval_track1; do lhotse cut simple \ -r $DATA_DIR/icmcasr-mdm_recordings_${part}.jsonl.gz \ -s $DATA_DIR/icmcasr-mdm_supervisions_${part}.jsonl.gz \ @@ -40,7 +40,7 @@ fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Trim cuts to supervisions (1 cut per supervision segment)" - for part in train dev; do + for part in train dev eval_track1; do lhotse cut trim-to-supervisions --discard-overlapping \ $EXP_DIR/cuts_${part}.jsonl.gz $EXP_DIR/cuts_per_segment_${part}.jsonl.gz done @@ -48,7 +48,7 @@ fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Split manifests for multi-GPU processing (optional)" - for part in train dev; do + for part in train dev eval_track1; do gss utils split $nj $EXP_DIR/cuts_per_segment_${part}.jsonl.gz \ $EXP_DIR/cuts_per_segment_${part}_split$nj done @@ -75,7 +75,7 @@ fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Enhance eval/test segments using GSS (using GPU)" # for eval/test, we use larger context and smaller batches to get better quality - for part in dev; do + for part in dev eval_track1; do for JOB in $(seq $nj); do gss enhance cuts $EXP_DIR/cuts_${part}.jsonl.gz \ $EXP_DIR/cuts_per_segment_${part}_split$nj/cuts_per_segment_${part}.$JOB.jsonl.gz \ diff --git a/egs/icmcasr/ASR/prepare.sh b/egs/icmcasr/ASR/prepare.sh index 9f1130a18..1de9562a9 100755 --- a/egs/icmcasr/ASR/prepare.sh +++ b/egs/icmcasr/ASR/prepare.sh @@ -6,8 +6,8 @@ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=15 -stage=3 -stop_stage=3 +stage=4 +stop_stage=4 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded @@ -83,19 +83,19 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then - log "Stage 3: Compute fbank for icmcasr" + log "Stage 4: Compute fbank for icmcasr" if [ ! -f data/fbank/.icmcasr.done ]; then mkdir -p data/fbank ./local/compute_fbank_icmcasr.py --perturb-speed True echo "Combining manifests" - lhotse combine data/manifests/cuts_train_{ihm,ihm_rvb,sdm,gss}.jsonl.gz - | shuf |\ - gzip -c > data/manifests/cuts_train_all.jsonl.gz + lhotse combine data/manifests/cuts_train_{ihm,ihm_rvb,sdm,gss}.jsonl.gz - | shuf |\ + gzip -c > data/manifests/cuts_train_all.jsonl.gz touch data/fbank/.icmcasr.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then - log "Stage 4: Compute fbank for musan" + log "Stage 5: Compute fbank for musan" if [ ! -f data/fbank/.msuan.done ]; then mkdir -p data/fbank ./local/compute_fbank_musan.py @@ -105,7 +105,7 @@ fi lang_phone_dir=data/lang_phone if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then - log "Stage 5: Prepare phone based lang" + log "Stage 6: Prepare G.fst" mkdir -p $lang_phone_dir (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | @@ -119,57 +119,3 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then fi fi -lang_char_dir=data/lang_char -if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then - log "Stage 6: Prepare char based lang" - mkdir -p $lang_char_dir - # We reuse words.txt from phone based lexicon - # so that the two can share G.pt later. - - # The transcripts in training set, generated in stage 5 - cp $lang_phone_dir/transcript_words.txt $lang_char_dir/transcript_words.txt - - cat $dl_dir/icmcasr/data_icmcasr/transcript/icmcasr_transcript_v0.8.txt | - cut -d " " -f 2- > $lang_char_dir/text - - (echo ' 0'; echo '!SIL 1'; echo ' 2'; echo ' 3';) \ - > $lang_char_dir/words.txt - - cat $lang_char_dir/text | sed 's/ /\n/g' | sort -u | sed '/^$/d' \ - | awk '{print $1" "NR+3}' >> $lang_char_dir/words.txt - - num_lines=$(< $lang_char_dir/words.txt wc -l) - (echo "#0 $num_lines"; echo " $(($num_lines + 1))"; echo " $(($num_lines + 2))";) \ - >> $lang_char_dir/words.txt - - if [ ! -f $lang_char_dir/L_disambig.pt ]; then - ./local/prepare_char.py --lang-dir $lang_char_dir - fi - - if [ ! -f $lang_char_dir/HLG.fst ]; then - ./local/prepare_lang_fst.py --lang-dir $lang_phone_dir --ngram-G ./data/lm/G_3_gram.fst.txt - fi -fi - -if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then - log "Stage 7: Prepare Byte BPE based lang" - - for vocab_size in ${vocab_sizes[@]}; do - lang_dir=data/lang_bbpe_${vocab_size} - mkdir -p $lang_dir - - cp $lang_char_dir/words.txt $lang_dir - cp $lang_char_dir/text $lang_dir - - if [ ! -f $lang_dir/bbpe.model ]; then - ./local/train_bbpe_model.py \ - --lang-dir $lang_dir \ - --vocab-size $vocab_size \ - --transcript $lang_dir/text - fi - - if [ ! -f $lang_dir/L_disambig.pt ]; then - ./local/prepare_lang_bbpe.py --lang-dir $lang_dir - fi - done -fi From 77d8a152888fff73b0107d0e25f91e513b8e8539 Mon Sep 17 00:00:00 2001 From: Yuekai Zhang Date: Tue, 19 Dec 2023 19:05:48 +0800 Subject: [PATCH 07/10] add lm preparation --- egs/icmcasr/ASR/local/compile_lg.py | 147 +++++++++++++++++++++++++ egs/icmcasr/ASR/local/text2segments.py | 1 + egs/icmcasr/ASR/local/text2token.py | 1 + egs/icmcasr/ASR/prepare.sh | 100 ++++++++++++++--- 4 files changed, 235 insertions(+), 14 deletions(-) create mode 100644 egs/icmcasr/ASR/local/compile_lg.py create mode 120000 egs/icmcasr/ASR/local/text2segments.py create mode 120000 egs/icmcasr/ASR/local/text2token.py diff --git a/egs/icmcasr/ASR/local/compile_lg.py b/egs/icmcasr/ASR/local/compile_lg.py new file mode 100644 index 000000000..709b14070 --- /dev/null +++ b/egs/icmcasr/ASR/local/compile_lg.py @@ -0,0 +1,147 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This script takes as input lang_dir and generates LG from + + - L, the lexicon, built from lang_dir/L_disambig.pt + + Caution: We use a lexicon that contains disambiguation symbols + + - G, the LM, built from data/lm/G_3_gram.fst.txt + +The generated LG is saved in $lang_dir/LG.pt +""" +import argparse +import logging +from pathlib import Path + +import k2 +import torch + +from icefall.lexicon import Lexicon + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--lang-dir", + type=str, + help="""Input and output directory. + """, + ) + parser.add_argument( + "--lm", + type=str, + default="G_3_gram", + help="""Stem name for LM used in HLG compiling. + """, + ) + + return parser.parse_args() + + +def compile_LG(lang_dir: str, lm: str = "G_3_gram") -> k2.Fsa: + """ + Args: + lang_dir: + The language directory, e.g., data/lang_phone or data/lang_bpe_5000. + + Return: + An FSA representing LG. + """ + lexicon = Lexicon(lang_dir) + L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt")) + + if Path(f"data/lm/{lm}.pt").is_file(): + logging.info(f"Loading pre-compiled {lm}") + d = torch.load(f"data/lm/{lm}.pt") + G = k2.Fsa.from_dict(d) + else: + logging.info(f"Loading {lm}.fst.txt") + with open(f"data/lm/{lm}.fst.txt") as f: + G = k2.Fsa.from_openfst(f.read(), acceptor=False) + torch.save(G.as_dict(), f"data/lm/{lm}.pt") + + first_token_disambig_id = lexicon.token_table["#0"] + first_word_disambig_id = lexicon.word_table["#0"] + + L = k2.arc_sort(L) + G = k2.arc_sort(G) + + logging.info("Intersecting L and G") + LG = k2.compose(L, G) + logging.info(f"LG shape: {LG.shape}") + + logging.info("Connecting LG") + LG = k2.connect(LG) + logging.info(f"LG shape after k2.connect: {LG.shape}") + + logging.info(type(LG.aux_labels)) + logging.info("Determinizing LG") + + LG = k2.determinize(LG, k2.DeterminizeWeightPushingType.kLogWeightPushing) + logging.info(type(LG.aux_labels)) + + logging.info("Connecting LG after k2.determinize") + LG = k2.connect(LG) + + logging.info("Removing disambiguation symbols on LG") + + # LG.labels[LG.labels >= first_token_disambig_id] = 0 + # see https://github.com/k2-fsa/k2/pull/1140 + labels = LG.labels + labels[labels >= first_token_disambig_id] = 0 + LG.labels = labels + + assert isinstance(LG.aux_labels, k2.RaggedTensor) + LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0 + + LG = k2.remove_epsilon(LG) + logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}") + + LG = k2.connect(LG) + LG.aux_labels = LG.aux_labels.remove_values_eq(0) + + logging.info("Arc sorting LG") + LG = k2.arc_sort(LG) + + return LG + + +def main(): + args = get_args() + lang_dir = Path(args.lang_dir) + + if (lang_dir / "LG.pt").is_file(): + logging.info(f"{lang_dir}/LG.pt already exists - skipping") + return + + logging.info(f"Processing {lang_dir}") + + LG = compile_LG(lang_dir, args.lm) + logging.info(f"Saving LG.pt to {lang_dir}") + torch.save(LG.as_dict(), f"{lang_dir}/LG.pt") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + + main() diff --git a/egs/icmcasr/ASR/local/text2segments.py b/egs/icmcasr/ASR/local/text2segments.py new file mode 120000 index 000000000..7d68a39c3 --- /dev/null +++ b/egs/icmcasr/ASR/local/text2segments.py @@ -0,0 +1 @@ +../../../wenetspeech/ASR/local/text2segments.py \ No newline at end of file diff --git a/egs/icmcasr/ASR/local/text2token.py b/egs/icmcasr/ASR/local/text2token.py new file mode 120000 index 000000000..ce5cfd537 --- /dev/null +++ b/egs/icmcasr/ASR/local/text2token.py @@ -0,0 +1 @@ +../../../wenetspeech/ASR/local/text2token.py \ No newline at end of file diff --git a/egs/icmcasr/ASR/prepare.sh b/egs/icmcasr/ASR/prepare.sh index 1de9562a9..77bad4adb 100755 --- a/egs/icmcasr/ASR/prepare.sh +++ b/egs/icmcasr/ASR/prepare.sh @@ -6,8 +6,8 @@ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=15 -stage=4 -stop_stage=4 +stage=8 +stop_stage=8 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded @@ -34,9 +34,9 @@ dl_dir=$PWD/download # It will generate data/lang_bbpe_xxx, # data/lang_bbpe_yyy if the array contains xxx, yyy vocab_sizes=( - # 2000 + 2000 # 1000 - 500 + # 500 ) # All files generated by this script are saved in "data". @@ -103,19 +103,91 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then fi fi -lang_phone_dir=data/lang_phone +lang_char_dir=data/lang_char if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then - log "Stage 6: Prepare G.fst" - mkdir -p $lang_phone_dir + log "Stage 6: Prepare char based lang" + mkdir -p $lang_char_dir - (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | - cat - $dl_dir/icmcasr/resource_icmcasr/lexicon.txt | - sort | uniq > $lang_phone_dir/lexicon.txt + if ! which jq; then + echo "This script is intended to be used with jq but you have not installed jq + Note: in Linux, you can install jq with the following command: + 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 + 2. chmod +x ./jq + 3. cp jq /usr/bin" && exit 1 + fi + if [ ! -f $lang_char_dir/text ] || [ ! -s $lang_char_dir/text ]; then + log "Prepare text." + gunzip -c data/manifests/icmcasr-ihm_supervisions_train.jsonl.gz \ + | jq '.text' | sed 's/"//g' \ + | ./local/text2token.py -t "char" > $lang_char_dir/text + fi - ./local/generate_unique_lexicon.py --lang-dir $lang_phone_dir - - if [ ! -f $lang_phone_dir/L_disambig.pt ]; then - ./local/prepare_lang.py --lang-dir $lang_phone_dir + # The implementation of chinese word segmentation for text, + # and it will take about 15 minutes. + if [ ! -f $lang_char_dir/text_words_segmentation ]; then + python3 ./local/text2segments.py \ + --num-process $nj \ + --input-file $lang_char_dir/text \ + --output-file $lang_char_dir/text_words_segmentation + fi + if [ -f $lang_char_dir/words.txt ]; then + cd $lang_char_dir + ln -s ../../../../wenetspeech/ASR/data/lang_char/words.txt . + cd .. + else + log "Abort! Please run ../../wenetspeech/ASR/prepare.sh" + exit 1 fi fi +if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then + log "Stage 7: Prepare G" + if [ ! -f $lang_char_dir/3-gram.unpruned.arpa ]; then + python3 ./shared/make_kn_lm.py \ + -ngram-order 3 \ + -text $lang_char_dir/text_words_segmentation \ + -lm $lang_char_dir/3-gram.unpruned.arpa + fi + + mkdir -p data/lm + if [ ! -f data/lm/G_3_gram.fst.txt ]; then + # It is used in building LG + python3 -m kaldilm \ + --read-symbol-table="$lang_char_dir/words.txt" \ + --disambig-symbol='#0' \ + --max-order=3 \ + $lang_char_dir/3-gram.unpruned.arpa > data/lm/G_3_gram.fst.txt + fi + + if [ ! -f $lang_char_dir/5-gram.unpruned.arpa ]; then + python3 ./shared/make_kn_lm.py \ + -ngram-order 5 \ + -text $lang_char_dir/text_words_segmentation \ + -lm $lang_char_dir/5-gram.unpruned.arpa + fi + + if [ ! -f data/lm/G_5_gram.fst.txt ]; then + # It is used in building LG + python3 -m kaldilm \ + --read-symbol-table="$lang_char_dir/words.txt" \ + --disambig-symbol='#0' \ + --max-order=5 \ + $lang_char_dir/5-gram.unpruned.arpa > data/lm/G_5_gram.fst.txt + fi +fi + +if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then + log "Stage 15: Compile LG" + if [ ! -d data/lang_bpe_2000/ ]; then + log "Abort! Please run ../../multi_zh-hans/ASR/prepare.sh" + exit 1 + cd data + ln -s ../../../../multi_zh-hans/ASR/data/lang_bpe_2000 . + cd .. + else + log "data/lang_bpe_2000/ exists" + fi + lang_dir=data/lang_bpe_2000 + python3 ./local/compile_lg.py --lang-dir $lang_dir + #python3 ./local/compile_lg.py --lang-dir $lang_dir --lm G_5_gram +fi \ No newline at end of file From 7310489dc94b9a120120492dfe1c13ed5c9b8f50 Mon Sep 17 00:00:00 2001 From: wd929 Date: Wed, 27 Dec 2023 17:00:45 +0800 Subject: [PATCH 08/10] Support training for aec-iva and gss data --- egs/icmcasr/ASR/zipformer/asr_datamodule.py | 58 ++++++++++++++------- egs/icmcasr/ASR/zipformer/train.py | 5 +- 2 files changed, 44 insertions(+), 19 deletions(-) diff --git a/egs/icmcasr/ASR/zipformer/asr_datamodule.py b/egs/icmcasr/ASR/zipformer/asr_datamodule.py index cd6d8ea7f..c935cf7a8 100644 --- a/egs/icmcasr/ASR/zipformer/asr_datamodule.py +++ b/egs/icmcasr/ASR/zipformer/asr_datamodule.py @@ -101,6 +101,12 @@ class ICMCAsrDataModule: default=Path("data/fbank"), help="Path to directory with train/valid/test cuts.", ) + group.add_argument( + "--manifest-aec-iva-dir", + type=Path, + default=Path("data/fbank"), + help="Path to directory with aec iva data train/valid/test cuts.", + ) group.add_argument( "--max-duration", type=int, @@ -400,51 +406,67 @@ class ICMCAsrDataModule: ) return test_dl - @lru_cache() def train_ihm_cuts(self) -> CutSet: logging.info("About to get train-ihm cuts") return load_manifest_lazy( self.args.manifest_dir / "cuts_train_ihm.jsonl.gz" ) - @lru_cache() def train_ihm_rvb_cuts(self) -> CutSet: logging.info("About to get train-ihm-rvb cuts") return load_manifest_lazy( self.args.manifest_dir / "cuts_train_ihm_rvb.jsonl.gz" ) - @lru_cache() def train_shm_cuts(self) -> CutSet: logging.info("About to get train-shm cuts") return load_manifest_lazy( self.args.manifest_dir / "cuts_train_sdm.jsonl.gz" ) + def train_gss_cuts(self) -> CutSet: + logging.info("About to get train-gss cuts") + return load_manifest_lazy( + self.args.manifest_dir / "cuts_train_gss.jsonl.gz" + ) + + def train_aec_iva_cuts(self) -> CutSet: + logging.info("About to get train-aec_iva cuts") + return load_manifest_lazy( + self.args.manifest_aec_iva_dir / "icmcasr-aec-iva_cuts_train_aec_iva.jsonl.gz" - @lru_cache() def dev_ihm_cuts(self) -> CutSet: logging.info("About to get dev-ihm cuts") return load_manifest_lazy( self.args.manifest_dir / "cuts_dev_ihm.jsonl.gz" ) - @lru_cache() def dev_shm_cuts(self) -> CutSet: logging.info("About to get dev-other cuts") return load_manifest_lazy( self.args.manifest_dir / "cuts_dev_sdm.jsonl.gz" ) + def dev_aec_iva_cuts(self) -> CutSet: + logging.info("About to get aec iva dev cuts") + return load_manifest_lazy( + self.args.manifest_aec_iva_dir / "icmcasr-aec-iva_cuts_train_aec_iva.jsonl.gz" + ) + def dev_gss_cuts(self) -> CutSet: + logging.info("About to get dev-gss cuts") + return load_manifest_lazy( + self.args.manifest_dir / "cuts_dev_gss.jsonl.gz" + ) + def test_eval_track1_gss(self) -> CutSet: + logging.info("About to get eval1-gss cuts") + return load_manifest_lazy( + self.args.manifest_dir / "cuts_eval_track1_gss.jsonl.gz" + ) + def test_eval_track1_sdm(self) -> CutSet: + logging.info("About to get eval1-sdm cuts") + return load_manifest_lazy( + self.args.manifest_dir / "cuts_eval_track1_sdm.jsonl.gz" + ) + def test_eval_track1_aec_iva(self) -> CutSet: + logging.info("About to get aec iva dev cuts") + return load_manifest_lazy( + self.args.manifest_aec_iva_dir / "cuts.jsonl.gz" - # @lru_cache() - # def test_clean_cuts(self) -> CutSet: - # logging.info("About to get test-clean cuts") - # return load_manifest_lazy( - # self.args.manifest_dir / "librispeech_cuts_test-clean.jsonl.gz" - # ) - - # @lru_cache() - # def test_other_cuts(self) -> CutSet: - # logging.info("About to get test-other cuts") - # return load_manifest_lazy( - # self.args.manifest_dir / "librispeech_cuts_test-other.jsonl.gz" - # ) diff --git a/egs/icmcasr/ASR/zipformer/train.py b/egs/icmcasr/ASR/zipformer/train.py index 413b3c661..916ae441b 100755 --- a/egs/icmcasr/ASR/zipformer/train.py +++ b/egs/icmcasr/ASR/zipformer/train.py @@ -1179,6 +1179,8 @@ def run(rank, world_size, args): if params.full_data: train_cuts += icmc.train_ihm_rvb_cuts() train_cuts += icmc.train_shm_cuts() + train_cuts += icmc.train_aec_iva_cuts() + train_cuts += icmc.train_gss_cuts() def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 1 second and 20 seconds @@ -1231,7 +1233,8 @@ def run(rank, world_size, args): ) valid_cuts = icmc.dev_ihm_cuts() - # valid_cuts += librispeech.dev_other_cuts() + valid_cuts += icmc.dev_gss_cuts() + valid_cuts += icmc.dev_aec_iva_cuts() valid_dl = icmc.valid_dataloaders(valid_cuts) if not params.print_diagnostics: From e1de397dbcf8f857836965d6a2fb063887439e3c Mon Sep 17 00:00:00 2001 From: wd929 Date: Wed, 27 Dec 2023 17:11:11 +0800 Subject: [PATCH 09/10] Support finetuning the multi_zh model with icmc data --- egs/icmcasr/ASR/zipformer/finetune.py | 1486 +++++++++++++++++++++++++ 1 file changed, 1486 insertions(+) create mode 100755 egs/icmcasr/ASR/zipformer/finetune.py diff --git a/egs/icmcasr/ASR/zipformer/finetune.py b/egs/icmcasr/ASR/zipformer/finetune.py new file mode 100755 index 000000000..4278a1dc8 --- /dev/null +++ b/egs/icmcasr/ASR/zipformer/finetune.py @@ -0,0 +1,1486 @@ +#!/usr/bin/env python3 +# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang, +# Mingshuang Luo, +# Zengwei Yao, +# Daniel Povey) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +# For model finetuning: +./zipformer/finetune.py \ + --world-size 4 \ + --num-epochs 5 \ + --exp-dir zipformer/exp_finetune \ + --manifest-dir '/mnt/samsung-t7/yuekai/asr/icefall-icmcasr/egs/icmcasr/ASR/data/manifests' \ + --max-duration 1000 \ + --bpe-model /raid/wend/asr/icmc/multi_zh/icefall-asr-multi-zh-hans-zipformer-2023-9-2/data/lang_bpe_2000/bpe.model \ + --pretrained-ckpt /raid/wend/asr/icmc/multi_zh/icefall-asr-multi-zh-hans-zipformer-ctc-2023-10-24/exp/epoch-20.pt \ + --use-ctc 1 + +""" + + +import argparse +import copy +import logging +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, Optional, Tuple, Union, List + +import k2 +import optim +import sentencepiece as spm +import torch +import torch.multiprocessing as mp +import torch.nn as nn +from asr_datamodule import ICMCAsrDataModule +from decoder import Decoder +from joiner import Joiner +from lhotse.cut import Cut +from lhotse.dataset.sampling.base import CutSampler +from lhotse.utils import fix_random_seed +from model import AsrModel +from optim import Eden, ScaledAdam +from scaling import ScheduledFloat +from subsampling import Conv2dSubsampling +from torch import Tensor +from torch.cuda.amp import GradScaler +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.utils.tensorboard import SummaryWriter +from zipformer import Zipformer2 + +from icefall import diagnostics +from icefall.checkpoint import load_checkpoint, remove_checkpoints +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.checkpoint import ( + save_checkpoint_with_global_batch_idx, + update_averaged_model, +) +from icefall.dist import cleanup_dist, setup_dist +from icefall.env import get_env_info +from icefall.hooks import register_inf_check_hooks +from icefall.utils import ( + AttributeDict, + MetricsTracker, + get_parameter_groups_with_lrs, + setup_logger, + str2bool, +) + +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] + + +def get_adjusted_batch_count(params: AttributeDict) -> float: + # returns the number of batches we would have used so far if we had used the reference + # duration. This is for purposes of set_batch_count(). + return ( + params.batch_idx_train + * (params.max_duration * params.world_size) + / params.ref_duration + ) + + +def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None: + if isinstance(model, DDP): + # get underlying nn.Module + model = model.module + for name, module in model.named_modules(): + if hasattr(module, "batch_count"): + module.batch_count = batch_count + if hasattr(module, "name"): + module.name = name + + +def add_model_arguments(parser: argparse.ArgumentParser): + parser.add_argument( + "--num-encoder-layers", + type=str, + default="2,2,3,4,3,2", + help="Number of zipformer encoder layers per stack, comma separated.", + ) + + parser.add_argument( + "--downsampling-factor", + type=str, + default="1,2,4,8,4,2", + help="Downsampling factor for each stack of encoder layers.", + ) + + parser.add_argument( + "--feedforward-dim", + type=str, + default="512,768,1024,1536,1024,768", + help="Feedforward dimension of the zipformer encoder layers, per stack, comma separated.", + ) + + parser.add_argument( + "--num-heads", + type=str, + default="4,4,4,8,4,4", + help="Number of attention heads in the zipformer encoder layers: a single int or comma-separated list.", + ) + + parser.add_argument( + "--encoder-dim", + type=str, + default="192,256,384,512,384,256", + help="Embedding dimension in encoder stacks: a single int or comma-separated list.", + ) + + parser.add_argument( + "--query-head-dim", + type=str, + default="32", + help="Query/key dimension per head in encoder stacks: a single int or comma-separated list.", + ) + + parser.add_argument( + "--value-head-dim", + type=str, + default="12", + help="Value dimension per head in encoder stacks: a single int or comma-separated list.", + ) + + parser.add_argument( + "--pos-head-dim", + type=str, + default="4", + help="Positional-encoding dimension per head in encoder stacks: a single int or comma-separated list.", + ) + + parser.add_argument( + "--pos-dim", + type=int, + default="48", + help="Positional-encoding embedding dimension", + ) + + parser.add_argument( + "--encoder-unmasked-dim", + type=str, + default="192,192,256,256,256,192", + help="Unmasked dimensions in the encoders, relates to augmentation during training. " + "A single int or comma-separated list. Must be <= each corresponding encoder_dim.", + ) + + parser.add_argument( + "--cnn-module-kernel", + type=str, + default="31,31,15,15,15,31", + help="Sizes of convolutional kernels in convolution modules in each encoder stack: " + "a single int or comma-separated list.", + ) + + parser.add_argument( + "--decoder-dim", + type=int, + default=512, + help="Embedding dimension in the decoder model.", + ) + + parser.add_argument( + "--joiner-dim", + type=int, + default=512, + help="""Dimension used in the joiner model. + Outputs from the encoder and decoder model are projected + to this dimension before adding. + """, + ) + + parser.add_argument( + "--causal", + type=str2bool, + default=False, + help="If True, use causal version of model.", + ) + + parser.add_argument( + "--chunk-size", + type=str, + default="16,32,64,-1", + help="Chunk sizes (at 50Hz frame rate) will be chosen randomly from this list during training. " + " Must be just -1 if --causal=False", + ) + + parser.add_argument( + "--left-context-frames", + type=str, + default="64,128,256,-1", + help="Maximum left-contexts for causal training, measured in frames which will " + "be converted to a number of chunks. If splitting into chunks, " + "chunk left-context frames will be chosen randomly from this list; else not relevant.", + ) + + parser.add_argument( + "--use-transducer", + type=str2bool, + default=True, + help="If True, use Transducer head.", + ) + + parser.add_argument( + "--use-ctc", + type=str2bool, + default=False, + help="If True, use CTC head.", + ) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=30, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=1, + help="""Resume training from this epoch. It should be positive. + If larger than 1, it will load checkpoint from + exp-dir/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--start-batch", + type=int, + default=0, + help="""If positive, --start-epoch is ignored and + it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt + """, + ) + parser.add_argument( + "--do-finetune", + type=str2bool, + default=True, + help="Whether to fine-tune.", + ) + parser.add_argument( + "--finetune-ckpt", + type=str, + default=None, + help="""pretrained checkpoints + """, + ) + + parser.add_argument( + "--init-modules", + type=str, + default=None, + help=""" + Modules to be initialized. It matches all parameters starting with + a specific key. The keys are given with Comma seperated. If None, + all modules will be initialised. For example, if you only want to + initialise all parameters staring with "encoder", use "encoder"; + if you want to initialise parameters starting with encoder or decoder, + use "encoder,joiner". + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="zipformer/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--base-lr", type=float, default=0.045, help="The base learning rate." + ) + + parser.add_argument( + "--lr-batches", + type=float, + default=7500, + help="""Number of steps that affects how rapidly the learning rate + decreases. We suggest not to change this.""", + ) + + parser.add_argument( + "--lr-epochs", + type=float, + default=3.5, + help="""Number of epochs that affects how rapidly the learning rate decreases. + """, + ) + + parser.add_argument( + "--ref-duration", + type=float, + default=600, + help="Reference batch duration for purposes of adjusting batch counts for setting various " + "schedules inside the model", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; " "2 means tri-gram", + ) + + parser.add_argument( + "--prune-range", + type=int, + default=5, + help="The prune range for rnnt loss, it means how many symbols(context)" + "we are using to compute the loss", + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.25, + help="The scale to smooth the loss with lm " + "(output of prediction network) part.", + ) + + parser.add_argument( + "--am-scale", + type=float, + default=0.0, + help="The scale to smooth the loss with am (output of encoder network)" "part.", + ) + + parser.add_argument( + "--simple-loss-scale", + type=float, + default=0.5, + help="To get pruning ranges, we will calculate a simple version" + "loss(joiner is just addition), this simple loss also uses for" + "training (as a regularization item). We will scale the simple loss" + "with this parameter before adding to the final loss.", + ) + + parser.add_argument( + "--ctc-loss-scale", + type=float, + default=0.2, + help="Scale for CTC loss.", + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--print-diagnostics", + type=str2bool, + default=False, + help="Accumulate stats on activations, print them and exit.", + ) + + parser.add_argument( + "--inf-check", + type=str2bool, + default=False, + help="Add hooks to check for infinite module outputs and gradients.", + ) + + parser.add_argument( + "--save-every-n", + type=int, + default=4000, + help="""Save checkpoint after processing this number of batches" + periodically. We save checkpoint to exp-dir/ whenever + params.batch_idx_train % save_every_n == 0. The checkpoint filename + has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt' + Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the + end of each epoch where `xxx` is the epoch number counting from 1. + """, + ) + + parser.add_argument( + "--keep-last-k", + type=int, + default=30, + help="""Only keep this number of checkpoints on disk. + For instance, if it is 3, there are only 3 checkpoints + in the exp-dir with filenames `checkpoint-xxx.pt`. + It does not affect checkpoints with name `epoch-xxx.pt`. + """, + ) + + parser.add_argument( + "--average-period", + type=int, + default=200, + help="""Update the averaged model, namely `model_avg`, after processing + this number of batches. `model_avg` is a separate version of model, + in which each floating-point parameter is the average of all the + parameters from the start of training. Each time we take the average, + we do: `model_avg = model * (average_period / batch_idx_train) + + model_avg * ((batch_idx_train - average_period) / batch_idx_train)`. + """, + ) + + parser.add_argument( + "--use-fp16", + type=str2bool, + default=False, + help="Whether to use half precision training.", + ) + + add_model_arguments(parser) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval is 0 + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - subsampling_factor: The subsampling factor for the model. + + - encoder_dim: Hidden dim for multi-head attention model. + + - num_decoder_layers: Number of decoder layer of transformer decoder. + + - warm_step: The warmup period that dictates the decay of the + scale on "simple" (un-pruned) loss. + """ + params = AttributeDict( + { + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 50, + "reset_interval": 200, + "valid_interval": 3000, # For the 100h subset, use 800 + # parameters for zipformer + "feature_dim": 80, + "subsampling_factor": 4, # not passed in, this is fixed. + "warm_step": 2000, + "env_info": get_env_info(), + } + ) + + return params + + +def _to_int_tuple(s: str): + return tuple(map(int, s.split(","))) + + +def get_encoder_embed(params: AttributeDict) -> nn.Module: + # encoder_embed converts the input of shape (N, T, num_features) + # to the shape (N, (T - 7) // 2, encoder_dims). + # That is, it does two things simultaneously: + # (1) subsampling: T -> (T - 7) // 2 + # (2) embedding: num_features -> encoder_dims + # In the normal configuration, we will downsample once more at the end + # by a factor of 2, and most of the encoder stacks will run at a lower + # sampling rate. + encoder_embed = Conv2dSubsampling( + in_channels=params.feature_dim, + out_channels=_to_int_tuple(params.encoder_dim)[0], + dropout=ScheduledFloat((0.0, 0.3), (20000.0, 0.1)), + ) + return encoder_embed + + +def get_encoder_model(params: AttributeDict) -> nn.Module: + encoder = Zipformer2( + output_downsampling_factor=2, + downsampling_factor=_to_int_tuple(params.downsampling_factor), + num_encoder_layers=_to_int_tuple(params.num_encoder_layers), + encoder_dim=_to_int_tuple(params.encoder_dim), + encoder_unmasked_dim=_to_int_tuple(params.encoder_unmasked_dim), + query_head_dim=_to_int_tuple(params.query_head_dim), + pos_head_dim=_to_int_tuple(params.pos_head_dim), + value_head_dim=_to_int_tuple(params.value_head_dim), + pos_dim=params.pos_dim, + num_heads=_to_int_tuple(params.num_heads), + feedforward_dim=_to_int_tuple(params.feedforward_dim), + cnn_module_kernel=_to_int_tuple(params.cnn_module_kernel), + dropout=ScheduledFloat((0.0, 0.3), (20000.0, 0.1)), + warmup_batches=4000.0, + causal=params.causal, + chunk_size=_to_int_tuple(params.chunk_size), + left_context_frames=_to_int_tuple(params.left_context_frames), + ) + return encoder + + +def get_decoder_model(params: AttributeDict) -> nn.Module: + decoder = Decoder( + vocab_size=params.vocab_size, + decoder_dim=params.decoder_dim, + blank_id=params.blank_id, + context_size=params.context_size, + ) + return decoder + + +def get_joiner_model(params: AttributeDict) -> nn.Module: + joiner = Joiner( + encoder_dim=max(_to_int_tuple(params.encoder_dim)), + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return joiner + + +def get_model(params: AttributeDict) -> nn.Module: + assert params.use_transducer or params.use_ctc, ( + f"At least one of them should be True, " + f"but got params.use_transducer={params.use_transducer}, " + f"params.use_ctc={params.use_ctc}" + ) + + encoder_embed = get_encoder_embed(params) + encoder = get_encoder_model(params) + + if params.use_transducer: + decoder = get_decoder_model(params) + joiner = get_joiner_model(params) + else: + decoder = None + joiner = None + + model = AsrModel( + encoder_embed=encoder_embed, + encoder=encoder, + decoder=decoder, + joiner=joiner, + encoder_dim=max(_to_int_tuple(params.encoder_dim)), + decoder_dim=params.decoder_dim, + vocab_size=params.vocab_size, + use_transducer=params.use_transducer, + use_ctc=params.use_ctc, + ) + return model + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + model_avg: nn.Module = None, + optimizer: Optional[torch.optim.Optimizer] = None, +) -> Optional[Dict[str, Any]]: + """Load checkpoint from file. + + If params.start_batch is positive, it will load the checkpoint from + `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if + params.start_epoch is larger than 1, it will load the checkpoint from + `params.start_epoch - 1`. + + Apart from loading state dict for `model` and `optimizer` it also updates + `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer that we are using. + scheduler: + The scheduler that we are using. + Returns: + Return a dict containing previously saved training info. + """ + if params.start_batch > 0: + filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" + elif params.start_epoch > 1: + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + else: + return None + + assert filename.is_file(), f"{filename} does not exist!" + + saved_params = load_checkpoint( + filename, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + if params.start_batch > 0: + if "cur_epoch" in saved_params: + params["start_epoch"] = saved_params["cur_epoch"] + + return saved_params + +def load_model_params( + ckpt: str, model: nn.Module, init_modules: List[str] = None, strict: bool = True +): + """Load model params from checkpoint + + Args: + ckpt (str): Path to the checkpoint + model (nn.Module): model to be loaded + + """ + logging.info(f"Loading checkpoint from {ckpt}") + checkpoint = torch.load(ckpt, map_location="cpu") + + # if module list is empty, load the whole model from ckpt + if not init_modules: + if next(iter(checkpoint["model"])).startswith("module."): + logging.info("Loading checkpoint saved by DDP") + + dst_state_dict = model.state_dict() + src_state_dict = checkpoint["model"] + for key in dst_state_dict.keys(): + src_key = "{}.{}".format("module", key) + dst_state_dict[key] = src_state_dict.pop(src_key) + assert len(src_state_dict) == 0 + model.load_state_dict(dst_state_dict, strict=strict) + else: + model.load_state_dict(checkpoint["model"], strict=strict) + else: + src_state_dict = checkpoint["model"] + dst_state_dict = model.state_dict() + for module in init_modules: + logging.info(f"Loading parameters starting with prefix {module}") + src_keys = [ + k for k in src_state_dict.keys() if k.startswith(module.strip() + ".") + ] + dst_keys = [ + k for k in dst_state_dict.keys() if k.startswith(module.strip() + ".") + ] + assert set(src_keys) == set(dst_keys) # two sets should match exactly + for key in src_keys: + dst_state_dict[key] = src_state_dict.pop(key) + + model.load_state_dict(dst_state_dict, strict=strict) + + return None + +def save_checkpoint( + params: AttributeDict, + model: Union[nn.Module, DDP], + model_avg: Optional[nn.Module] = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, + sampler: Optional[CutSampler] = None, + scaler: Optional[GradScaler] = None, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer used in the training. + sampler: + The sampler for the training dataset. + scaler: + The scaler used for mix precision training. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=sampler, + scaler=scaler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + batch: dict, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of Zipformer in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + warmup: a floating point value which increases throughout training; + values >= 1.0 are fully warmed up and have all modules present. + """ + device = model.device if isinstance(model, DDP) else next(model.parameters()).device + feature = batch["inputs"] + # at entry, feature is (N, T, C) + assert feature.ndim == 3 + feature = feature.to(device) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + batch_idx_train = params.batch_idx_train + warm_step = params.warm_step + + texts = batch["supervisions"]["text"] + y = sp.encode(texts, out_type=int) + y = k2.RaggedTensor(y) + + with torch.set_grad_enabled(is_training): + simple_loss, pruned_loss, ctc_loss = model( + x=feature, + x_lens=feature_lens, + y=y, + prune_range=params.prune_range, + am_scale=params.am_scale, + lm_scale=params.lm_scale, + ) + + loss = 0.0 + + if params.use_transducer: + s = params.simple_loss_scale + # take down the scale on the simple loss from 1.0 at the start + # to params.simple_loss scale by warm_step. + simple_loss_scale = ( + s + if batch_idx_train >= warm_step + else 1.0 - (batch_idx_train / warm_step) * (1.0 - s) + ) + pruned_loss_scale = ( + 1.0 + if batch_idx_train >= warm_step + else 0.1 + 0.9 * (batch_idx_train / warm_step) + ) + loss += simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss + + #if params.use_ctc: + if False: + loss += params.ctc_loss_scale * ctc_loss + + assert loss.requires_grad == is_training + + info = MetricsTracker() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + if params.use_transducer: + info["simple_loss"] = simple_loss.detach().cpu().item() + info["pruned_loss"] = pruned_loss.detach().cpu().item() + if params.use_ctc: + info["ctc_loss"] = ctc_loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: Union[nn.Module, DDP], + optimizer: torch.optim.Optimizer, + scheduler: LRSchedulerType, + sp: spm.SentencePieceProcessor, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + scaler: GradScaler, + model_avg: Optional[nn.Module] = None, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + scheduler: + The learning rate scheduler, we call step() every step. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + scaler: + The scaler used for mix precision training. + model_avg: + The stored model averaged from the start of training. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + + tot_loss = MetricsTracker() + + saved_bad_model = False + + def save_bad_model(suffix: str = ""): + save_checkpoint_impl( + filename=params.exp_dir / f"bad-model{suffix}-{rank}.pt", + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=0, + ) + + for batch_idx, batch in enumerate(train_dl): + if batch_idx % 10 == 0: + set_batch_count(model, get_adjusted_batch_count(params)) + + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + scaler.scale(loss).backward() + scheduler.step_batch(params.batch_idx_train) + + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + except: # noqa + save_bad_model() + display_and_save_batch(batch, params=params, sp=sp) + raise + + if params.print_diagnostics and batch_idx == 5: + return + + if ( + rank == 0 + and params.batch_idx_train > 0 + and params.batch_idx_train % params.average_period == 0 + ): + update_averaged_model( + params=params, + model_cur=model, + model_avg=model_avg, + ) + + if ( + params.batch_idx_train > 0 + and params.batch_idx_train % params.save_every_n == 0 + ): + save_checkpoint_with_global_batch_idx( + out_dir=params.exp_dir, + global_batch_idx=params.batch_idx_train, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + remove_checkpoints( + out_dir=params.exp_dir, + topk=params.keep_last_k, + rank=rank, + ) + + if batch_idx % 100 == 0 and params.use_fp16: + # If the grad scale was less than 1, try increasing it. The _growth_interval + # of the grad scaler is configurable, but we can't configure it to have different + # behavior depending on the current grad scale. + cur_grad_scale = scaler._scale.item() + + if cur_grad_scale < 8.0 or (cur_grad_scale < 32.0 and batch_idx % 400 == 0): + scaler.update(cur_grad_scale * 2.0) + if cur_grad_scale < 0.01: + if not saved_bad_model: + save_bad_model(suffix="-first-warning") + saved_bad_model = True + logging.warning(f"Grad scale is small: {cur_grad_scale}") + if cur_grad_scale < 1.0e-05: + save_bad_model() + raise RuntimeError( + f"grad_scale is too small, exiting: {cur_grad_scale}" + ) + + if batch_idx % params.log_interval == 0: + cur_lr = max(scheduler.get_last_lr()) + cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0 + + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}, " + f"lr: {cur_lr:.2e}, " + + (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "") + ) + + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) + if params.use_fp16: + tb_writer.add_scalar( + "train/grad_scale", cur_grad_scale, params.batch_idx_train + ) + + if batch_idx % params.valid_interval == 0 and not params.print_diagnostics: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + model=model, + sp=sp, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + + fix_random_seed(params.seed) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + if not params.use_transducer: + params.ctc_loss_scale = 1.0 + + logging.info(params) + + logging.info("About to create model") + model = get_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + assert params.save_every_n >= params.average_period + model_avg: Optional[nn.Module] = None + if rank == 0: + # model_avg is only used with rank 0 + model_avg = copy.deepcopy(model).to(torch.float64) + + if params.do_finetune: + modules = params.init_modules.split(",") if params.init_modules else None + checkpoints = load_model_params( + ckpt=params.finetune_ckpt, model=model, init_modules=modules + ) + if rank == 0: + # model_avg is only used with rank 0 + model_avg = copy.deepcopy(model).to(torch.float64) + else: + assert params.start_epoch > 0, params.start_epoch + checkpoints = load_checkpoint_if_available( + params=params, model=model, model_avg=model_avg + ) + + model.to(device) + if world_size > 1: + logging.info("Using DDP") + model = DDP(model, device_ids=[rank], find_unused_parameters=True) + + optimizer = ScaledAdam( + get_parameter_groups_with_lrs(model, lr=params.base_lr, include_names=True), + lr=params.base_lr, # should have no effect + clipping_scale=2.0, + ) + + scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) + + if checkpoints and "optimizer" in checkpoints: + logging.info("Loading optimizer state dict") + optimizer.load_state_dict(checkpoints["optimizer"]) + + if ( + checkpoints + and "scheduler" in checkpoints + and checkpoints["scheduler"] is not None + ): + logging.info("Loading scheduler state dict") + scheduler.load_state_dict(checkpoints["scheduler"]) + + if params.print_diagnostics: + opts = diagnostics.TensorDiagnosticOptions( + 512 + ) # allow 4 megabytes per sub-module + diagnostic = diagnostics.attach_diagnostics(model, opts) + + if params.inf_check: + register_inf_check_hooks(model) + + icmc = ICMCAsrDataModule(args) + + train_cuts = icmc.train_gss_cuts() + if params.full_data: + logging.info('Using full data...') + train_cuts += icmc.train_aec_iva_cuts() + train_cuts += icmc.train_aec_iva_cuts() + train_cuts += icmc.train_ihm_cuts() + train_cuts += icmc.train_ihm_rvb_cuts() + train_cuts += icmc.train_shm_cuts() + train_cuts = icmc.train_all_cuts() + + def remove_short_and_long_utt(c: Cut): + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ../local/display_manifest_statistics.py + # + # You should use ../local/display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + if c.duration < 1.0 or c.duration > 20.0: + # logging.warning( + # f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + # ) + return False + + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./zipformer.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 7) // 2 + 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True + + def remove_short_utt_dev(c: Cut): + # In pruned RNN-T, we require that T >= S + # where T is the number of feature frames after subsampling + # and S is the number of tokens in the utterance + + # In ./zipformer.py, the conv module uses the following expression + # for subsampling + T = ((c.num_frames - 7) // 2 + 1) // 2 + tokens = sp.encode(c.supervisions[0].text, out_type=str) + + if T < len(tokens): + logging.warning( + f"Exclude cut with ID {c.id} from training. " + f"Number of frames (before subsampling): {c.num_frames}. " + f"Number of frames (after subsampling): {T}. " + f"Text: {c.supervisions[0].text}. " + f"Tokens: {tokens}. " + f"Number of tokens: {len(tokens)}" + ) + return False + + return True + + + train_cuts = train_cuts.filter(remove_short_and_long_utt) + + if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: + # We only load the sampler's state dict when it loads a checkpoint + # saved in the middle of an epoch + sampler_state_dict = checkpoints["sampler"] + else: + sampler_state_dict = None + + train_dl = icmc.train_dataloaders( + train_cuts, sampler_state_dict=sampler_state_dict + ) + + valid_cuts = icmc.dev_aec_iva_cuts() + valid_cuts += icmc.dev_gss_cuts() + valid_cuts = valid_cuts.filter(remove_short_utt_dev) + valid_dl = icmc.valid_dataloaders(valid_cuts) + + if not params.print_diagnostics: + scan_pessimistic_batches_for_oom( + model=model, + train_dl=train_dl, + optimizer=optimizer, + sp=sp, + params=params, + ) + + scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0) + if checkpoints and "grad_scaler" in checkpoints: + logging.info("Loading grad scaler state dict") + scaler.load_state_dict(checkpoints["grad_scaler"]) + + for epoch in range(params.start_epoch, params.num_epochs + 1): + scheduler.step_epoch(epoch - 1) + fix_random_seed(params.seed + epoch - 1) + train_dl.sampler.set_epoch(epoch - 1) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sp=sp, + train_dl=train_dl, + valid_dl=valid_dl, + scaler=scaler, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + if params.print_diagnostics: + diagnostic.print_diagnostics() + break + + save_checkpoint( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + + logging.info("Done!") + + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def display_and_save_batch( + batch: dict, + params: AttributeDict, + sp: spm.SentencePieceProcessor, +) -> None: + """Display the batch statistics and save the batch into disk. + + Args: + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + params: + Parameters for training. See :func:`get_params`. + sp: + The BPE model. + """ + from lhotse.utils import uuid4 + + filename = f"{params.exp_dir}/batch-{uuid4()}.pt" + logging.info(f"Saving batch to {filename}") + torch.save(batch, filename) + + supervisions = batch["supervisions"] + features = batch["inputs"] + + logging.info(f"features shape: {features.shape}") + + y = sp.encode(supervisions["text"], out_type=int) + num_tokens = sum(len(i) for i in y) + logging.info(f"num tokens: {num_tokens}") + + +def scan_pessimistic_batches_for_oom( + model: Union[nn.Module, DDP], + train_dl: torch.utils.data.DataLoader, + optimizer: torch.optim.Optimizer, + sp: spm.SentencePieceProcessor, + params: AttributeDict, +): + from lhotse.dataset import find_pessimistic_batches + + logging.info( + "Sanity check -- see if any of the batches in epoch 1 would cause OOM." + ) + batches, crit_values = find_pessimistic_batches(train_dl.sampler) + for criterion, cuts in batches.items(): + batch = train_dl.dataset[cuts] + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, _ = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + ) + loss.backward() + optimizer.zero_grad() + except Exception as e: + if "CUDA out of memory" in str(e): + logging.error( + "Your GPU ran out of memory with the current " + "max_duration setting. We recommend decreasing " + "max_duration and trying again.\n" + f"Failing criterion: {criterion} " + f"(={crit_values[criterion]}) ..." + ) + display_and_save_batch(batch, params=params, sp=sp) + raise + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + + +def main(): + parser = get_parser() + ICMCAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() From 3954dfeaba6809f25fe16324cce899f55e02c2e2 Mon Sep 17 00:00:00 2001 From: zr_jin Date: Tue, 20 Feb 2024 15:04:05 +0800 Subject: [PATCH 10/10] Update finetune.py --- egs/icmcasr/ASR/zipformer/finetune.py | 1 - 1 file changed, 1 deletion(-) diff --git a/egs/icmcasr/ASR/zipformer/finetune.py b/egs/icmcasr/ASR/zipformer/finetune.py index 4278a1dc8..f05ed3636 100755 --- a/egs/icmcasr/ASR/zipformer/finetune.py +++ b/egs/icmcasr/ASR/zipformer/finetune.py @@ -692,7 +692,6 @@ def load_checkpoint_if_available( model=model, model_avg=model_avg, optimizer=optimizer, - scheduler=scheduler, ) keys = [