mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Modification about random combine (#452)
* comment some lines, random combine from 1/3 layers, on linear layers in combiner * delete commented lines * minor change
This commit is contained in:
parent
c10aec5656
commit
d80f29e662
@ -87,10 +87,17 @@ class Conformer(EncoderInterface):
|
|||||||
layer_dropout,
|
layer_dropout,
|
||||||
cnn_module_kernel,
|
cnn_module_kernel,
|
||||||
)
|
)
|
||||||
|
# aux_layers from 1/3
|
||||||
self.encoder = ConformerEncoder(
|
self.encoder = ConformerEncoder(
|
||||||
encoder_layer,
|
encoder_layer,
|
||||||
num_encoder_layers,
|
num_encoder_layers,
|
||||||
aux_layers=list(range(0, num_encoder_layers - 1, aux_layer_period)),
|
aux_layers=list(
|
||||||
|
range(
|
||||||
|
num_encoder_layers // 3,
|
||||||
|
num_encoder_layers - 1,
|
||||||
|
aux_layer_period,
|
||||||
|
)
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
@ -295,10 +302,8 @@ class ConformerEncoder(nn.Module):
|
|||||||
assert num_layers - 1 not in aux_layers
|
assert num_layers - 1 not in aux_layers
|
||||||
self.aux_layers = aux_layers + [num_layers - 1]
|
self.aux_layers = aux_layers + [num_layers - 1]
|
||||||
|
|
||||||
num_channels = encoder_layer.norm_final.num_channels
|
|
||||||
self.combiner = RandomCombine(
|
self.combiner = RandomCombine(
|
||||||
num_inputs=len(self.aux_layers),
|
num_inputs=len(self.aux_layers),
|
||||||
num_channels=num_channels,
|
|
||||||
final_weight=0.5,
|
final_weight=0.5,
|
||||||
pure_prob=0.333,
|
pure_prob=0.333,
|
||||||
stddev=2.0,
|
stddev=2.0,
|
||||||
@ -1072,7 +1077,6 @@ class RandomCombine(nn.Module):
|
|||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
num_inputs: int,
|
num_inputs: int,
|
||||||
num_channels: int,
|
|
||||||
final_weight: float = 0.5,
|
final_weight: float = 0.5,
|
||||||
pure_prob: float = 0.5,
|
pure_prob: float = 0.5,
|
||||||
stddev: float = 2.0,
|
stddev: float = 2.0,
|
||||||
@ -1083,8 +1087,6 @@ class RandomCombine(nn.Module):
|
|||||||
The number of tensor inputs, which equals the number of layers'
|
The number of tensor inputs, which equals the number of layers'
|
||||||
outputs that are fed into this module. E.g. in an 18-layer neural
|
outputs that are fed into this module. E.g. in an 18-layer neural
|
||||||
net if we output layers 16, 12, 18, num_inputs would be 3.
|
net if we output layers 16, 12, 18, num_inputs would be 3.
|
||||||
num_channels:
|
|
||||||
The number of channels on the input, e.g. 512.
|
|
||||||
final_weight:
|
final_weight:
|
||||||
The amount of weight or probability we assign to the
|
The amount of weight or probability we assign to the
|
||||||
final layer when randomly choosing layers or when choosing
|
final layer when randomly choosing layers or when choosing
|
||||||
@ -1115,13 +1117,6 @@ class RandomCombine(nn.Module):
|
|||||||
assert 0 < final_weight < 1, final_weight
|
assert 0 < final_weight < 1, final_weight
|
||||||
assert num_inputs >= 1
|
assert num_inputs >= 1
|
||||||
|
|
||||||
self.linear = nn.ModuleList(
|
|
||||||
[
|
|
||||||
nn.Linear(num_channels, num_channels, bias=True)
|
|
||||||
for _ in range(num_inputs - 1)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
self.num_inputs = num_inputs
|
self.num_inputs = num_inputs
|
||||||
self.final_weight = final_weight
|
self.final_weight = final_weight
|
||||||
self.pure_prob = pure_prob
|
self.pure_prob = pure_prob
|
||||||
@ -1134,12 +1129,6 @@ class RandomCombine(nn.Module):
|
|||||||
.log()
|
.log()
|
||||||
.item()
|
.item()
|
||||||
)
|
)
|
||||||
self._reset_parameters()
|
|
||||||
|
|
||||||
def _reset_parameters(self):
|
|
||||||
for i in range(len(self.linear)):
|
|
||||||
nn.init.eye_(self.linear[i].weight)
|
|
||||||
nn.init.constant_(self.linear[i].bias, 0.0)
|
|
||||||
|
|
||||||
def forward(self, inputs: List[Tensor]) -> Tensor:
|
def forward(self, inputs: List[Tensor]) -> Tensor:
|
||||||
"""Forward function.
|
"""Forward function.
|
||||||
@ -1160,28 +1149,9 @@ class RandomCombine(nn.Module):
|
|||||||
num_channels = inputs[0].shape[-1]
|
num_channels = inputs[0].shape[-1]
|
||||||
num_frames = inputs[0].numel() // num_channels
|
num_frames = inputs[0].numel() // num_channels
|
||||||
|
|
||||||
mod_inputs = []
|
|
||||||
|
|
||||||
if False:
|
|
||||||
# It throws the following error for torch 1.6.0 when using
|
|
||||||
# torch script.
|
|
||||||
#
|
|
||||||
# Expected integer literal for index. ModuleList/Sequential
|
|
||||||
# indexing is only supported with integer literals. Enumeration is
|
|
||||||
# supported, e.g. 'for index, v in enumerate(self): ...':
|
|
||||||
# for i in range(num_inputs - 1):
|
|
||||||
# mod_inputs.append(self.linear[i](inputs[i]))
|
|
||||||
assert False
|
|
||||||
else:
|
|
||||||
for i, linear in enumerate(self.linear):
|
|
||||||
if i < num_inputs - 1:
|
|
||||||
mod_inputs.append(linear(inputs[i]))
|
|
||||||
|
|
||||||
mod_inputs.append(inputs[num_inputs - 1])
|
|
||||||
|
|
||||||
ndim = inputs[0].ndim
|
ndim = inputs[0].ndim
|
||||||
# stacked_inputs: (num_frames, num_channels, num_inputs)
|
# stacked_inputs: (num_frames, num_channels, num_inputs)
|
||||||
stacked_inputs = torch.stack(mod_inputs, dim=ndim).reshape(
|
stacked_inputs = torch.stack(inputs, dim=ndim).reshape(
|
||||||
(num_frames, num_channels, num_inputs)
|
(num_frames, num_channels, num_inputs)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user