diff --git a/egs/librispeech/ASR/transducer/decoder.py b/egs/librispeech/ASR/transducer/decoder.py index 7b529ac19..333fff300 100644 --- a/egs/librispeech/ASR/transducer/decoder.py +++ b/egs/librispeech/ASR/transducer/decoder.py @@ -89,9 +89,9 @@ class Decoder(nn.Module): - (h, c), containing the state information for LSTM layers. Both are of shape (num_layers, N, C) """ - embeding_out = self.embedding(y) - embeding_out = self.embedding_dropout(embeding_out) - rnn_out, (h, c) = self.rnn(embeding_out, states) + embedding_out = self.embedding(y) + embedding_out = self.embedding_dropout(embedding_out) + rnn_out, (h, c) = self.rnn(embedding_out, states) out = self.output_linear(rnn_out) return out, (h, c) diff --git a/egs/librispeech/ASR/transducer_lstm/decoder.py b/egs/librispeech/ASR/transducer_lstm/decoder.py index 2f6bf4c07..4d531bde1 100644 --- a/egs/librispeech/ASR/transducer_lstm/decoder.py +++ b/egs/librispeech/ASR/transducer_lstm/decoder.py @@ -93,9 +93,9 @@ class Decoder(nn.Module): - (h, c), containing the state information for LSTM layers. Both are of shape (num_layers, N, C) """ - embeding_out = self.embedding(y) - embeding_out = self.embedding_dropout(embeding_out) - rnn_out, (h, c) = self.rnn(embeding_out, states) + embedding_out = self.embedding(y) + embedding_out = self.embedding_dropout(embedding_out) + rnn_out, (h, c) = self.rnn(embedding_out, states) out = self.output_linear(rnn_out) return out, (h, c) diff --git a/egs/yesno/ASR/transducer/decoder.py b/egs/yesno/ASR/transducer/decoder.py index aa8a16845..7ae540d03 100644 --- a/egs/yesno/ASR/transducer/decoder.py +++ b/egs/yesno/ASR/transducer/decoder.py @@ -84,9 +84,9 @@ class Decoder(nn.Module): - (h, c), which contain the state information for RNN layers. Both are of shape (num_layers, N, C) """ - embeding_out = self.embedding(y) - embeding_out = self.embedding_dropout(embeding_out) - rnn_out, (h, c) = self.rnn(embeding_out, states) + embedding_out = self.embedding(y) + embedding_out = self.embedding_dropout(embedding_out) + rnn_out, (h, c) = self.rnn(embedding_out, states) out = self.output_linear(rnn_out) return out, (h, c)