Support exporting LSTM with projection to ONNX (#621)

* Support exporting LSTM with projection to ONNX

* Add missing files

* small fixes
This commit is contained in:
Fangjun Kuang 2022-10-18 11:25:31 +08:00 committed by GitHub
parent d1f16a04bd
commit d69bb826ed
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 1002 additions and 15 deletions

View File

@ -42,7 +42,7 @@ for sym in 1 2 3; do
--lang-dir $repo/data/lang_char \
$repo/test_wavs/BAC009S0764W0121.wav \
$repo/test_wavs/BAC009S0764W0122.wav \
$rep/test_wavs/BAC009S0764W0123.wav
$repo/test_wavs/BAC009S0764W0123.wav
done
for method in modified_beam_search beam_search fast_beam_search; do
@ -55,7 +55,7 @@ for method in modified_beam_search beam_search fast_beam_search; do
--lang-dir $repo/data/lang_char \
$repo/test_wavs/BAC009S0764W0121.wav \
$repo/test_wavs/BAC009S0764W0122.wav \
$rep/test_wavs/BAC009S0764W0123.wav
$repo/test_wavs/BAC009S0764W0123.wav
done
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"

View File

@ -105,6 +105,47 @@ log "Decode with models exported by torch.jit.trace()"
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
log "Test exporting to ONNX"
./lstm_transducer_stateless2/export.py \
--exp-dir $repo/exp \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--epoch 99 \
--avg 1 \
--use-averaged-model 0 \
--onnx 1
log "Decode with ONNX models "
./lstm_transducer_stateless2/streaming-onnx-decode.py \
--bpe-model-filename $repo/data/lang_bpe_500/bpe.model \
--encoder-model-filename $repo//exp/encoder.onnx \
--decoder-model-filename $repo/exp/decoder.onnx \
--joiner-model-filename $repo/exp/joiner.onnx \
--joiner-encoder-proj-model-filename $repo/exp/joiner_encoder_proj.onnx \
--joiner-decoder-proj-model-filename $repo/exp/joiner_decoder_proj.onnx \
$repo/test_wavs/1089-134686-0001.wav
./lstm_transducer_stateless2/streaming-onnx-decode.py \
--bpe-model-filename $repo/data/lang_bpe_500/bpe.model \
--encoder-model-filename $repo//exp/encoder.onnx \
--decoder-model-filename $repo/exp/decoder.onnx \
--joiner-model-filename $repo/exp/joiner.onnx \
--joiner-encoder-proj-model-filename $repo/exp/joiner_encoder_proj.onnx \
--joiner-decoder-proj-model-filename $repo/exp/joiner_decoder_proj.onnx \
$repo/test_wavs/1221-135766-0001.wav
./lstm_transducer_stateless2/streaming-onnx-decode.py \
--bpe-model-filename $repo/data/lang_bpe_500/bpe.model \
--encoder-model-filename $repo//exp/encoder.onnx \
--decoder-model-filename $repo/exp/decoder.onnx \
--joiner-model-filename $repo/exp/joiner.onnx \
--joiner-encoder-proj-model-filename $repo/exp/joiner_encoder_proj.onnx \
--joiner-decoder-proj-model-filename $repo/exp/joiner_decoder_proj.onnx \
$repo/test_wavs/1221-135766-0002.wav
for sym in 1 2 3; do
log "Greedy search with --max-sym-per-frame $sym"
@ -133,7 +174,7 @@ done
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"ncnn" ]]; then
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" ]]; then
mkdir -p lstm_transducer_stateless2/exp
ln -s $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt
ln -s $PWD/$repo/data/lang_bpe_500 data/

View File

@ -13,10 +13,14 @@ cd egs/librispeech/ASR
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless2-2022-04-29
log "Downloading pre-trained model from $repo_url"
git lfs install
git clone $repo_url
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_bpe_500/bpe.model"
git lfs pull --include "exp/pretrained-epoch-38-avg-10.pt"
popd
log "Display test files"
tree $repo/
soxi $repo/test_wavs/*.wav

View File

@ -1,4 +1,4 @@
name: run-librispeech-lstm-transducer-2022-09-03
name: run-librispeech-lstm-transducer2-2022-09-03
on:
push:
@ -17,8 +17,8 @@ on:
- cron: "50 15 * * *"
jobs:
run_librispeech_pruned_transducer_stateless3_2022_05_13:
if: github.event.label.name == 'ncnn' || github.event_name == 'push' || github.event_name == 'schedule'
run_librispeech_lstm_transducer_stateless2_2022_09_03:
if: github.event.label.name == 'ready' || github.event.label.name == 'ncnn' || github.event.label.name == 'onnx' || github.event_name == 'push' || github.event_name == 'schedule'
runs-on: ${{ matrix.os }}
strategy:
matrix:
@ -110,7 +110,7 @@ jobs:
.github/scripts/run-librispeech-lstm-transducer-stateless2-2022-09-03.yml
- name: Display decoding results for lstm_transducer_stateless2
if: github.event_name == 'schedule' || github.event.label.name == 'ncnn'
if: github.event_name == 'schedule'
shell: bash
run: |
cd egs/librispeech/ASR
@ -130,7 +130,7 @@ jobs:
- name: Upload decoding results for lstm_transducer_stateless2
uses: actions/upload-artifact@v2
if: github.event_name == 'schedule' || github.event.label.name == 'ncnn'
if: github.event_name == 'schedule'
with:
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-lstm_transducer_stateless2-2022-09-03
path: egs/librispeech/ASR/lstm_transducer_stateless2/exp/

View File

@ -0,0 +1 @@
../lstm_transducer_stateless2/lstmp.py

View File

@ -74,6 +74,29 @@ with the following commands:
git lfs install
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03
# You will find the pre-trained models in icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/exp
(3) Export to ONNX format
./lstm_transducer_stateless2/export.py \
--exp-dir ./lstm_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 20 \
--avg 10 \
--onnx 1
It will generate the following files in the given `exp_dir`.
- encoder.onnx
- decoder.onnx
- joiner.onnx
- joiner_encoder_proj.onnx
- joiner_decoder_proj.onnx
Please see ./streaming-onnx-decode.py for usage of the generated files
Check
https://github.com/k2-fsa/sherpa-onnx
for how to use the exported models outside of icefall.
"""
import argparse
@ -181,6 +204,23 @@ def get_parser():
""",
)
parser.add_argument(
"--onnx",
type=str2bool,
default=False,
help="""If True, --jit and --pnnx are ignored and it exports the model
to onnx format. It will generate the following files:
- encoder.onnx
- decoder.onnx
- joiner.onnx
- joiner_encoder_proj.onnx
- joiner_decoder_proj.onnx
Refer to ./onnx_check.py and ./onnx_pretrained.py for how to use them.
""",
)
parser.add_argument(
"--context-size",
type=int,
@ -266,6 +306,215 @@ def export_joiner_model_jit_trace(
logging.info(f"Saved to {joiner_filename}")
def export_encoder_model_onnx(
encoder_model: nn.Module,
encoder_filename: str,
opset_version: int = 11,
) -> None:
"""Export the given encoder model to ONNX format.
The exported model has 3 inputs:
- x, a tensor of shape (N, T, C); dtype is torch.float32
- x_lens, a tensor of shape (N,); dtype is torch.int64
- states: a tuple containing:
- h0: a tensor of shape (num_layers, N, proj_size)
- c0: a tensor of shape (num_layers, N, hidden_size)
and it has 3 outputs:
- encoder_out, a tensor of shape (N, T, C)
- encoder_out_lens, a tensor of shape (N,)
- states: a tuple containing:
- next_h0: a tensor of shape (num_layers, N, proj_size)
- next_c0: a tensor of shape (num_layers, N, hidden_size)
Note: The warmup argument is fixed to 1.
Args:
encoder_model:
The input encoder model
encoder_filename:
The filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
N = 1
x = torch.zeros(N, 9, 80, dtype=torch.float32)
x_lens = torch.tensor([9], dtype=torch.int64)
h = torch.rand(encoder_model.num_encoder_layers, N, encoder_model.d_model)
c = torch.rand(
encoder_model.num_encoder_layers, N, encoder_model.rnn_hidden_size
)
warmup = 1.0
torch.onnx.export(
encoder_model, # use torch.jit.trace() internally
(x, x_lens, (h, c), warmup),
encoder_filename,
verbose=False,
opset_version=opset_version,
input_names=["x", "x_lens", "h", "c", "warmup"],
output_names=["encoder_out", "encoder_out_lens", "next_h", "next_c"],
dynamic_axes={
"x": {0: "N", 1: "T"},
"x_lens": {0: "N"},
"h": {1: "N"},
"c": {1: "N"},
"encoder_out": {0: "N", 1: "T"},
"encoder_out_lens": {0: "N"},
"next_h": {1: "N"},
"next_c": {1: "N"},
},
)
logging.info(f"Saved to {encoder_filename}")
def export_decoder_model_onnx(
decoder_model: nn.Module,
decoder_filename: str,
opset_version: int = 11,
) -> None:
"""Export the decoder model to ONNX format.
The exported model has one input:
- y: a torch.int64 tensor of shape (N, decoder_model.context_size)
and has one output:
- decoder_out: a torch.float32 tensor of shape (N, 1, C)
Note: The argument need_pad is fixed to False.
Args:
decoder_model:
The decoder model to be exported.
decoder_filename:
Filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
need_pad = False # Always False, so we can use torch.jit.trace() here
# Note(fangjun): torch.jit.trace() is more efficient than torch.jit.script()
# in this case
torch.onnx.export(
decoder_model,
(y, need_pad),
decoder_filename,
verbose=False,
opset_version=opset_version,
input_names=["y", "need_pad"],
output_names=["decoder_out"],
dynamic_axes={
"y": {0: "N"},
"decoder_out": {0: "N"},
},
)
logging.info(f"Saved to {decoder_filename}")
def export_joiner_model_onnx(
joiner_model: nn.Module,
joiner_filename: str,
opset_version: int = 11,
) -> None:
"""Export the joiner model to ONNX format.
The exported joiner model has two inputs:
- projected_encoder_out: a tensor of shape (N, joiner_dim)
- projected_decoder_out: a tensor of shape (N, joiner_dim)
and produces one output:
- logit: a tensor of shape (N, vocab_size)
The exported encoder_proj model has one input:
- encoder_out: a tensor of shape (N, encoder_out_dim)
and produces one output:
- projected_encoder_out: a tensor of shape (N, joiner_dim)
The exported decoder_proj model has one input:
- decoder_out: a tensor of shape (N, decoder_out_dim)
and produces one output:
- projected_decoder_out: a tensor of shape (N, joiner_dim)
"""
encoder_proj_filename = str(joiner_filename).replace(
".onnx", "_encoder_proj.onnx"
)
decoder_proj_filename = str(joiner_filename).replace(
".onnx", "_decoder_proj.onnx"
)
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
joiner_dim = joiner_model.decoder_proj.weight.shape[0]
projected_encoder_out = torch.rand(1, joiner_dim, dtype=torch.float32)
projected_decoder_out = torch.rand(1, joiner_dim, dtype=torch.float32)
project_input = False
# Note: It uses torch.jit.trace() internally
torch.onnx.export(
joiner_model,
(projected_encoder_out, projected_decoder_out, project_input),
joiner_filename,
verbose=False,
opset_version=opset_version,
input_names=[
"projected_encoder_out",
"projected_decoder_out",
"project_input",
],
output_names=["logit"],
dynamic_axes={
"projected_encoder_out": {0: "N"},
"projected_decoder_out": {0: "N"},
"logit": {0: "N"},
},
)
logging.info(f"Saved to {joiner_filename}")
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
torch.onnx.export(
joiner_model.encoder_proj,
encoder_out,
encoder_proj_filename,
verbose=False,
opset_version=opset_version,
input_names=["encoder_out"],
output_names=["projected_encoder_out"],
dynamic_axes={
"encoder_out": {0: "N"},
"projected_encoder_out": {0: "N"},
},
)
logging.info(f"Saved to {encoder_proj_filename}")
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
torch.onnx.export(
joiner_model.decoder_proj,
decoder_out,
decoder_proj_filename,
verbose=False,
opset_version=opset_version,
input_names=["decoder_out"],
output_names=["projected_decoder_out"],
dynamic_axes={
"decoder_out": {0: "N"},
"projected_decoder_out": {0: "N"},
},
)
logging.info(f"Saved to {decoder_proj_filename}")
@torch.no_grad()
def main():
args = get_parser().parse_args()
@ -387,7 +636,33 @@ def main():
model.to("cpu")
model.eval()
if params.pnnx:
if params.onnx:
logging.info("Export model to ONNX format")
convert_scaled_to_non_scaled(model, inplace=True, is_onnx=True)
opset_version = 11
encoder_filename = params.exp_dir / "encoder.onnx"
export_encoder_model_onnx(
model.encoder,
encoder_filename,
opset_version=opset_version,
)
decoder_filename = params.exp_dir / "decoder.onnx"
export_decoder_model_onnx(
model.decoder,
decoder_filename,
opset_version=opset_version,
)
joiner_filename = params.exp_dir / "joiner.onnx"
export_joiner_model_onnx(
model.joiner,
joiner_filename,
opset_version=opset_version,
)
elif params.pnnx:
convert_scaled_to_non_scaled(model, inplace=True)
logging.info("Using torch.jit.trace()")
encoder_filename = params.exp_dir / "encoder_jit_trace-pnnx.pt"

View File

@ -0,0 +1,102 @@
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
class LSTMP(nn.Module):
"""LSTM with projection.
PyTorch does not support exporting LSTM with projection to ONNX.
This class reimplements LSTM with projection using basic matrix-matrix
and matrix-vector operations. It is not intended for training.
"""
def __init__(self, lstm: nn.LSTM):
"""
Args:
lstm:
LSTM with proj_size. We support only uni-directional,
1-layer LSTM with projection at present.
"""
super().__init__()
assert lstm.bidirectional is False, lstm.bidirectional
assert lstm.num_layers == 1, lstm.num_layers
assert 0 < lstm.proj_size < lstm.hidden_size, (
lstm.proj_size,
lstm.hidden_size,
)
assert lstm.batch_first is False, lstm.batch_first
state_dict = lstm.state_dict()
w_ih = state_dict["weight_ih_l0"]
w_hh = state_dict["weight_hh_l0"]
b_ih = state_dict["bias_ih_l0"]
b_hh = state_dict["bias_hh_l0"]
w_hr = state_dict["weight_hr_l0"]
self.input_size = lstm.input_size
self.proj_size = lstm.proj_size
self.hidden_size = lstm.hidden_size
self.w_ih = w_ih
self.w_hh = w_hh
self.b = b_ih + b_hh
self.w_hr = w_hr
def forward(
self,
input: torch.Tensor,
hx: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
Args:
input:
A tensor of shape [T, N, hidden_size]
hx:
A tuple containing:
- h0: a tensor of shape (1, N, proj_size)
- c0: a tensor of shape (1, N, hidden_size)
Returns:
Return a tuple containing:
- output: a tensor of shape (T, N, proj_size).
- A tuple containing:
- h: a tensor of shape (1, N, proj_size)
- c: a tensor of shape (1, N, hidden_size)
"""
x_list = input.unbind(dim=0) # We use batch_first=False
if hx is not None:
h0, c0 = hx
else:
h0 = torch.zeros(1, input.size(1), self.proj_size)
c0 = torch.zeros(1, input.size(1), self.hidden_size)
h0 = h0.squeeze(0)
c0 = c0.squeeze(0)
y_list = []
for x in x_list:
gates = F.linear(x, self.w_ih, self.b) + F.linear(h0, self.w_hh)
i, f, g, o = gates.chunk(4, dim=1)
i = i.sigmoid()
f = f.sigmoid()
g = g.tanh()
o = o.sigmoid()
c = f * c0 + i * g
h = o * c.tanh()
h = F.linear(h, self.w_hr)
y_list.append(h)
c0 = c
h0 = h
y = torch.stack(y_list, dim=0)
return y, (h0.unsqueeze(0), c0.unsqueeze(0))

View File

@ -233,13 +233,12 @@ def greedy_search(
hyp, dtype=torch.int32
) # (1, context_size)
decoder_out = model.run_decoder(decoder_input).squeeze(0)
else:
assert decoder_out.ndim == 1
assert hyp is not None, hyp
joiner_out = model.run_joiner(encoder_out, decoder_out)
y = joiner_out.argmax(dim=0).tolist()
y = joiner_out.argmax(dim=0).item()
if y != blank_id:
hyp.append(y)
decoder_input = hyp[-context_size:]

View File

@ -0,0 +1,478 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads ONNX models and uses them to decode waves.
You can use the following command to get the exported models:
./lstm_transducer_stateless2/export.py \
--exp-dir ./lstm_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 20 \
--avg 10 \
--onnx 1
Usage of this script:
./lstm_transducer_stateless2/onnx-streaming-decode.py \
--encoder-model-filename ./lstm_transducer_stateless2/exp/encoder.onnx \
--decoder-model-filename ./lstm_transducer_stateless2/exp/decoder.onnx \
--joiner-model-filename ./lstm_transducer_stateless2/exp/joiner.onnx \
--joiner-encoder-proj-model-filename ./lstm_transducer_stateless2/exp/joiner_encoder_proj.onnx \
--joiner-decoder-proj-model-filename ./lstm_transducer_stateless2/exp/joiner_decoder_proj.onnx \
--bpe-model ./data/lang_bpe_500/bpe.model \
/path/to/foo.wav \
/path/to/bar.wav
"""
import argparse
import logging
from typing import List, Optional, Tuple
import onnxruntime as ort
import sentencepiece as spm
import torch
import torchaudio
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--bpe-model-filename",
type=str,
help="Path to bpe.model",
)
parser.add_argument(
"--encoder-model-filename",
type=str,
required=True,
help="Path to the encoder onnx model. ",
)
parser.add_argument(
"--decoder-model-filename",
type=str,
required=True,
help="Path to the decoder onnx model. ",
)
parser.add_argument(
"--joiner-model-filename",
type=str,
required=True,
help="Path to the joiner onnx model. ",
)
parser.add_argument(
"--joiner-encoder-proj-model-filename",
type=str,
required=True,
help="Path to the joiner encoder_proj onnx model. ",
)
parser.add_argument(
"--joiner-decoder-proj-model-filename",
type=str,
required=True,
help="Path to the joiner decoder_proj onnx model. ",
)
parser.add_argument(
"--bpe-model",
type=str,
help="""Path to bpe.model.""",
)
parser.add_argument(
"sound_filename",
type=str,
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="Context size of the decoder model",
)
return parser.parse_args()
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert sample_rate == expected_sample_rate, (
f"expected sample rate: {expected_sample_rate}. "
f"Given: {sample_rate}"
)
# We use only the first channel
ans.append(wave[0])
return ans
class Model:
def __init__(self, args):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 5
session_opts.intra_op_num_threads = 5
self.session_opts = session_opts
self.init_encoder(args)
self.init_decoder(args)
self.init_joiner(args)
self.init_joiner_encoder_proj(args)
self.init_joiner_decoder_proj(args)
def init_encoder(self, args):
self.encoder = ort.InferenceSession(
args.encoder_model_filename,
sess_options=self.session_opts,
)
def init_decoder(self, args):
self.decoder = ort.InferenceSession(
args.decoder_model_filename,
sess_options=self.session_opts,
)
def init_joiner(self, args):
self.joiner = ort.InferenceSession(
args.joiner_model_filename,
sess_options=self.session_opts,
)
def init_joiner_encoder_proj(self, args):
self.joiner_encoder_proj = ort.InferenceSession(
args.joiner_encoder_proj_model_filename,
sess_options=self.session_opts,
)
def init_joiner_decoder_proj(self, args):
self.joiner_decoder_proj = ort.InferenceSession(
args.joiner_decoder_proj_model_filename,
sess_options=self.session_opts,
)
def run_encoder(
self, x, h0, c0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Args:
x:
A tensor of shape (N, T, C)
h0:
A tensor of shape (num_layers, N, proj_size)
c0:
A tensor of shape (num_layers, N, hidden_size)
Returns:
Return a tuple containing:
- encoder_out: A tensor of shape (N, T', C')
- next_h0: A tensor of shape (num_layers, N, proj_size)
- next_c0: A tensor of shape (num_layers, N, hidden_size)
"""
encoder_input_nodes = self.encoder.get_inputs()
encoder_out_nodes = self.encoder.get_outputs()
x_lens = torch.tensor([x.size(1)], dtype=torch.int64)
encoder_out, encoder_out_lens, next_h0, next_c0 = self.encoder.run(
[
encoder_out_nodes[0].name,
encoder_out_nodes[1].name,
encoder_out_nodes[2].name,
encoder_out_nodes[3].name,
],
{
encoder_input_nodes[0].name: x.numpy(),
encoder_input_nodes[1].name: x_lens.numpy(),
encoder_input_nodes[2].name: h0.numpy(),
encoder_input_nodes[3].name: c0.numpy(),
},
)
return (
torch.from_numpy(encoder_out),
torch.from_numpy(next_h0),
torch.from_numpy(next_c0),
)
def run_decoder(self, decoder_input: torch.Tensor) -> torch.Tensor:
"""
Args:
decoder_input:
A tensor of shape (N, context_size). Its dtype is torch.int64.
Returns:
Return a tensor of shape (N, 1, decoder_out_dim).
"""
decoder_input_nodes = self.decoder.get_inputs()
decoder_output_nodes = self.decoder.get_outputs()
decoder_out = self.decoder.run(
[decoder_output_nodes[0].name],
{
decoder_input_nodes[0].name: decoder_input.numpy(),
},
)[0]
return self.run_joiner_decoder_proj(
torch.from_numpy(decoder_out).squeeze(1)
)
def run_joiner(
self,
projected_encoder_out: torch.Tensor,
projected_decoder_out: torch.Tensor,
) -> torch.Tensor:
"""
Args:
projected_encoder_out:
A tensor of shape (N, joiner_dim)
projected_decoder_out:
A tensor of shape (N, joiner_dim)
Returns:
Return a tensor of shape (N, vocab_size)
"""
joiner_input_nodes = self.joiner.get_inputs()
joiner_output_nodes = self.joiner.get_outputs()
logits = self.joiner.run(
[joiner_output_nodes[0].name],
{
joiner_input_nodes[0].name: projected_encoder_out.numpy(),
joiner_input_nodes[1].name: projected_decoder_out.numpy(),
},
)[0]
return torch.from_numpy(logits)
def run_joiner_encoder_proj(
self,
encoder_out: torch.Tensor,
) -> torch.Tensor:
"""
Args:
encoder_out:
A tensor of shape (N, encoder_out_dim)
Returns:
A tensor of shape (N, joiner_dim)
"""
projected_encoder_out = self.joiner_encoder_proj.run(
[self.joiner_encoder_proj.get_outputs()[0].name],
{
self.joiner_encoder_proj.get_inputs()[
0
].name: encoder_out.numpy()
},
)[0]
return torch.from_numpy(projected_encoder_out)
def run_joiner_decoder_proj(
self,
decoder_out: torch.Tensor,
) -> torch.Tensor:
"""
Args:
decoder_out:
A tensor of shape (N, decoder_out_dim)
Returns:
A tensor of shape (N, joiner_dim)
"""
projected_decoder_out = self.joiner_decoder_proj.run(
[self.joiner_decoder_proj.get_outputs()[0].name],
{
self.joiner_decoder_proj.get_inputs()[
0
].name: decoder_out.numpy()
},
)[0]
return torch.from_numpy(projected_decoder_out)
def create_streaming_feature_extractor() -> OnlineFeature:
"""Create a CPU streaming feature extractor.
At present, we assume it returns a fbank feature extractor with
fixed options. In the future, we will support passing in the options
from outside.
Returns:
Return a CPU streaming feature extractor.
"""
opts = FbankOptions()
opts.device = "cpu"
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = 16000
opts.mel_opts.num_bins = 80
return OnlineFbank(opts)
def greedy_search(
model: Model,
encoder_out: torch.Tensor,
decoder_out: Optional[torch.Tensor] = None,
hyp: Optional[List[int]] = None,
):
assert encoder_out.ndim == 2
assert encoder_out.shape[0] == 1, "TODO: support batch_size > 1"
context_size = 2
blank_id = 0
if decoder_out is None:
assert hyp is None, hyp
hyp = [blank_id] * context_size
decoder_input = torch.tensor(
[hyp], dtype=torch.int64
) # (1, context_size)
decoder_out = model.run_decoder(decoder_input)
else:
assert decoder_out.shape[0] == 1
assert hyp is not None, hyp
projected_encoder_out = model.run_joiner_encoder_proj(encoder_out)
joiner_out = model.run_joiner(projected_encoder_out, decoder_out)
y = joiner_out.squeeze(0).argmax(dim=0).item()
if y != blank_id:
hyp.append(y)
decoder_input = hyp[-context_size:]
decoder_input = torch.tensor([decoder_input], dtype=torch.int64)
decoder_out = model.run_decoder(decoder_input)
return hyp, decoder_out
def main():
args = get_args()
logging.info(vars(args))
model = Model(args)
sound_file = args.sound_filename
sample_rate = 16000
sp = spm.SentencePieceProcessor()
sp.load(args.bpe_model_filename)
logging.info("Constructing Fbank computer")
online_fbank = create_streaming_feature_extractor()
logging.info(f"Reading sound files: {sound_file}")
wave_samples = read_sound_files(
filenames=[sound_file],
expected_sample_rate=sample_rate,
)[0]
logging.info(wave_samples.shape)
num_encoder_layers = 12
batch_size = 1
d_model = 512
rnn_hidden_size = 1024
h0 = torch.zeros(num_encoder_layers, batch_size, d_model)
c0 = torch.zeros(num_encoder_layers, batch_size, rnn_hidden_size)
hyp = None
decoder_out = None
num_processed_frames = 0
segment = 9
offset = 4
chunk = 3200 # 0.2 second
start = 0
while start < wave_samples.numel():
end = min(start + chunk, wave_samples.numel())
samples = wave_samples[start:end]
start += chunk
online_fbank.accept_waveform(
sampling_rate=sample_rate,
waveform=samples,
)
while online_fbank.num_frames_ready - num_processed_frames >= segment:
frames = []
for i in range(segment):
frames.append(online_fbank.get_frame(num_processed_frames + i))
num_processed_frames += offset
frames = torch.cat(frames, dim=0).unsqueeze(0)
encoder_out, h0, c0 = model.run_encoder(frames, h0, c0)
hyp, decoder_out = greedy_search(
model, encoder_out.squeeze(0), decoder_out, hyp
)
online_fbank.accept_waveform(
sampling_rate=sample_rate, waveform=torch.zeros(5000, dtype=torch.float)
)
online_fbank.input_finished()
while online_fbank.num_frames_ready - num_processed_frames >= segment:
frames = []
for i in range(segment):
frames.append(online_fbank.get_frame(num_processed_frames + i))
num_processed_frames += offset
frames = torch.cat(frames, dim=0).unsqueeze(0)
encoder_out, h0, c0 = model.run_encoder(frames, h0, c0)
hyp, decoder_out = greedy_search(
model, encoder_out.squeeze(0), decoder_out, hyp
)
context_size = 2
logging.info(sound_file)
logging.info(sp.decode(hyp[context_size:]))
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1,70 @@
#!/usr/bin/env python3
import torch
import torch.nn as nn
from lstmp import LSTMP
def test():
input_size = torch.randint(low=10, high=1024, size=(1,)).item()
hidden_size = torch.randint(low=10, high=1024, size=(1,)).item()
proj_size = hidden_size - 1
lstm = nn.LSTM(
input_size=input_size,
hidden_size=hidden_size,
num_layers=1,
bias=True,
proj_size=proj_size,
)
lstmp = LSTMP(lstm)
N = torch.randint(low=1, high=10, size=(1,)).item()
T = torch.randint(low=1, high=20, size=(1,)).item()
x = torch.rand(T, N, input_size)
h0 = torch.rand(1, N, proj_size)
c0 = torch.rand(1, N, hidden_size)
y1, (h1, c1) = lstm(x, (h0, c0))
y2, (h2, c2) = lstmp(x, (h0, c0))
assert torch.allclose(y1, y2, atol=1e-5), (y1 - y2).abs().max()
assert torch.allclose(h1, h2, atol=1e-5), (h1 - h2).abs().max()
assert torch.allclose(c1, c2, atol=1e-5), (c1 - c2).abs().max()
# lstm_script = torch.jit.script(lstm) # pytorch does not support it
lstm_script = lstm
lstmp_script = torch.jit.script(lstmp)
y3, (h3, c3) = lstm_script(x, (h0, c0))
y4, (h4, c4) = lstmp_script(x, (h0, c0))
assert torch.allclose(y3, y4, atol=1e-5), (y3 - y4).abs().max()
assert torch.allclose(h3, h4, atol=1e-5), (h3 - h4).abs().max()
assert torch.allclose(c3, c4, atol=1e-5), (c3 - c4).abs().max()
assert torch.allclose(y3, y1, atol=1e-5), (y3 - y1).abs().max()
assert torch.allclose(h3, h1, atol=1e-5), (h3 - h1).abs().max()
assert torch.allclose(c3, c1, atol=1e-5), (c3 - c1).abs().max()
lstm_trace = torch.jit.trace(lstm, (x, (h0, c0)))
lstmp_trace = torch.jit.trace(lstmp, (x, (h0, c0)))
y5, (h5, c5) = lstm_trace(x, (h0, c0))
y6, (h6, c6) = lstmp_trace(x, (h0, c0))
assert torch.allclose(y5, y6, atol=1e-5), (y5 - y6).abs().max()
assert torch.allclose(h5, h6, atol=1e-5), (h5 - h6).abs().max()
assert torch.allclose(c5, c6, atol=1e-5), (c5 - c6).abs().max()
assert torch.allclose(y5, y1, atol=1e-5), (y5 - y1).abs().max()
assert torch.allclose(h5, h1, atol=1e-5), (h5 - h1).abs().max()
assert torch.allclose(c5, c1, atol=1e-5), (c5 - c1).abs().max()
@torch.no_grad()
def main():
test()
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../lstm_transducer_stateless2/lstmp.py

View File

@ -0,0 +1 @@
../lstm_transducer_stateless2/lstmp.py

View File

@ -29,6 +29,7 @@ from typing import List
import torch
import torch.nn as nn
from lstmp import LSTMP
from scaling import (
ActivationBalancer,
BasicNorm,
@ -259,7 +260,11 @@ def get_submodule(model, target):
return mod
def convert_scaled_to_non_scaled(model: nn.Module, inplace: bool = False):
def convert_scaled_to_non_scaled(
model: nn.Module,
inplace: bool = False,
is_onnx: bool = False,
):
"""Convert `ScaledLinear`, `ScaledConv1d`, and `ScaledConv2d`
in the given modle to their unscaled version `nn.Linear`, `nn.Conv1d`,
and `nn.Conv2d`.
@ -270,6 +275,9 @@ def convert_scaled_to_non_scaled(model: nn.Module, inplace: bool = False):
inplace:
If True, the input model is modified inplace.
If False, the input model is copied and we modify the copied version.
is_onnx:
If True, we are going to export the model to ONNX. In this case,
we will convert nn.LSTM with proj_size to LSTMP.
Return:
Return a model without scaled layers.
"""
@ -294,7 +302,13 @@ def convert_scaled_to_non_scaled(model: nn.Module, inplace: bool = False):
elif isinstance(m, BasicNorm):
d[name] = convert_basic_norm(m)
elif isinstance(m, ScaledLSTM):
d[name] = scaled_lstm_to_lstm(m)
if is_onnx:
d[name] = LSTMP(scaled_lstm_to_lstm(m))
# See
# https://github.com/pytorch/pytorch/issues/47887
# d[name] = torch.jit.script(LSTMP(scaled_lstm_to_lstm(m)))
else:
d[name] = scaled_lstm_to_lstm(m)
elif isinstance(m, ActivationBalancer):
d[name] = nn.Identity()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/lstm_transducer_stateless2/lstmp.py