Disable CUDA_LAUNCH_BLOCKING in wenetspeech recipes. (#554)

* Disable CUDA_LAUNCH_BLOCKING in wenetspeech recipes.

* minor fixes
This commit is contained in:
Fangjun Kuang 2022-08-28 11:17:38 +08:00 committed by GitHub
parent 235eb0746f
commit d68b8e9120
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 22 additions and 22 deletions

View File

@ -23,6 +23,8 @@ from pathlib import Path
from lhotse import CutSet, SupervisionSegment
from lhotse.recipes.utils import read_manifests_if_cached
from icefall import setup_logger
# Similar text filtering and normalization procedure as in:
# https://github.com/SpeechColab/WenetSpeech/blob/main/toolkits/kaldi/wenetspeech_data_prep.sh
@ -48,13 +50,17 @@ def preprocess_wenet_speech():
output_dir = Path("data/fbank")
output_dir.mkdir(exist_ok=True)
# Note: By default, we preprocess all sub-parts.
# You can delete those that you don't need.
# For instance, if you don't want to use the L subpart, just remove
# the line below containing "L"
dataset_parts = (
"L",
"M",
"S",
"DEV",
"TEST_NET",
"TEST_MEETING",
"S",
"M",
"L",
)
logging.info("Loading manifest (may take 10 minutes)")
@ -81,10 +87,13 @@ def preprocess_wenet_speech():
logging.info(f"Normalizing text in {partition}")
for sup in m["supervisions"]:
text = str(sup.text)
logging.info(f"Original text: {text}")
orig_text = text
sup.text = normalize_text(sup.text)
text = str(sup.text)
logging.info(f"Normalize text: {text}")
if len(orig_text) != len(text):
logging.info(
f"\nOriginal text vs normalized text:\n{orig_text}\n{text}"
)
# Create long-recording cut manifests.
logging.info(f"Processing {partition}")
@ -109,12 +118,10 @@ def preprocess_wenet_speech():
def main():
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
setup_logger(log_filename="./log-preprocess-wenetspeech")
preprocess_wenet_speech()
logging.info("Done")
if __name__ == "__main__":

View File

@ -81,7 +81,6 @@ For training with the S subset:
import argparse
import logging
import os
import warnings
from pathlib import Path
from shutil import copyfile
@ -120,8 +119,6 @@ LRSchedulerType = Union[
torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
]
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
def get_parser():
parser = argparse.ArgumentParser(
@ -162,7 +159,7 @@ def get_parser():
default=0,
help="""Resume training from from this epoch.
If it is positive, it will load checkpoint from
transducer_stateless2/exp/epoch-{start_epoch-1}.pt
pruned_transducer_stateless2/exp/epoch-{start_epoch-1}.pt
""",
)
@ -361,8 +358,8 @@ def get_params() -> AttributeDict:
"best_valid_loss": float("inf"),
"best_train_epoch": -1,
"best_valid_epoch": -1,
"batch_idx_train": 10,
"log_interval": 1,
"batch_idx_train": 0,
"log_interval": 50,
"reset_interval": 200,
# parameters for conformer
"feature_dim": 80,
@ -545,7 +542,7 @@ def compute_loss(
warmup: float = 1.0,
) -> Tuple[Tensor, MetricsTracker]:
"""
Compute CTC loss given the model and its inputs.
Compute RNN-T loss given the model and its inputs.
Args:
params:
Parameters for training. See :func:`get_params`.
@ -573,7 +570,7 @@ def compute_loss(
texts = batch["supervisions"]["text"]
y = graph_compiler.texts_to_ids(texts)
if type(y) == list:
if isinstance(y, list):
y = k2.RaggedTensor(y).to(device)
else:
y = y.to(device)
@ -697,7 +694,6 @@ def train_one_epoch(
tot_loss = MetricsTracker()
for batch_idx, batch in enumerate(train_dl):
params.batch_idx_train += 1
batch_size = len(batch["supervisions"]["text"])

View File

@ -61,7 +61,6 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
import argparse
import copy
import logging
import os
import warnings
from pathlib import Path
from shutil import copyfile
@ -103,8 +102,6 @@ LRSchedulerType = Union[
torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
]
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
def add_model_arguments(parser: argparse.ArgumentParser):
parser.add_argument(
@ -684,7 +681,7 @@ def compute_loss(
texts = batch["supervisions"]["text"]
y = graph_compiler.texts_to_ids(texts)
if type(y) == list:
if isinstance(y, list):
y = k2.RaggedTensor(y).to(device)
else:
y = y.to(device)