mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Disable CUDA_LAUNCH_BLOCKING in wenetspeech recipes. (#554)
* Disable CUDA_LAUNCH_BLOCKING in wenetspeech recipes. * minor fixes
This commit is contained in:
parent
235eb0746f
commit
d68b8e9120
@ -23,6 +23,8 @@ from pathlib import Path
|
||||
from lhotse import CutSet, SupervisionSegment
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
from icefall import setup_logger
|
||||
|
||||
# Similar text filtering and normalization procedure as in:
|
||||
# https://github.com/SpeechColab/WenetSpeech/blob/main/toolkits/kaldi/wenetspeech_data_prep.sh
|
||||
|
||||
@ -48,13 +50,17 @@ def preprocess_wenet_speech():
|
||||
output_dir = Path("data/fbank")
|
||||
output_dir.mkdir(exist_ok=True)
|
||||
|
||||
# Note: By default, we preprocess all sub-parts.
|
||||
# You can delete those that you don't need.
|
||||
# For instance, if you don't want to use the L subpart, just remove
|
||||
# the line below containing "L"
|
||||
dataset_parts = (
|
||||
"L",
|
||||
"M",
|
||||
"S",
|
||||
"DEV",
|
||||
"TEST_NET",
|
||||
"TEST_MEETING",
|
||||
"S",
|
||||
"M",
|
||||
"L",
|
||||
)
|
||||
|
||||
logging.info("Loading manifest (may take 10 minutes)")
|
||||
@ -81,10 +87,13 @@ def preprocess_wenet_speech():
|
||||
logging.info(f"Normalizing text in {partition}")
|
||||
for sup in m["supervisions"]:
|
||||
text = str(sup.text)
|
||||
logging.info(f"Original text: {text}")
|
||||
orig_text = text
|
||||
sup.text = normalize_text(sup.text)
|
||||
text = str(sup.text)
|
||||
logging.info(f"Normalize text: {text}")
|
||||
if len(orig_text) != len(text):
|
||||
logging.info(
|
||||
f"\nOriginal text vs normalized text:\n{orig_text}\n{text}"
|
||||
)
|
||||
|
||||
# Create long-recording cut manifests.
|
||||
logging.info(f"Processing {partition}")
|
||||
@ -109,12 +118,10 @@ def preprocess_wenet_speech():
|
||||
|
||||
|
||||
def main():
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
setup_logger(log_filename="./log-preprocess-wenetspeech")
|
||||
|
||||
preprocess_wenet_speech()
|
||||
logging.info("Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -81,7 +81,6 @@ For training with the S subset:
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
@ -120,8 +119,6 @@ LRSchedulerType = Union[
|
||||
torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
|
||||
]
|
||||
|
||||
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
@ -162,7 +159,7 @@ def get_parser():
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
transducer_stateless2/exp/epoch-{start_epoch-1}.pt
|
||||
pruned_transducer_stateless2/exp/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
@ -361,8 +358,8 @@ def get_params() -> AttributeDict:
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 10,
|
||||
"log_interval": 1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 50,
|
||||
"reset_interval": 200,
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
@ -545,7 +542,7 @@ def compute_loss(
|
||||
warmup: float = 1.0,
|
||||
) -> Tuple[Tensor, MetricsTracker]:
|
||||
"""
|
||||
Compute CTC loss given the model and its inputs.
|
||||
Compute RNN-T loss given the model and its inputs.
|
||||
Args:
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
@ -573,7 +570,7 @@ def compute_loss(
|
||||
texts = batch["supervisions"]["text"]
|
||||
|
||||
y = graph_compiler.texts_to_ids(texts)
|
||||
if type(y) == list:
|
||||
if isinstance(y, list):
|
||||
y = k2.RaggedTensor(y).to(device)
|
||||
else:
|
||||
y = y.to(device)
|
||||
@ -697,7 +694,6 @@ def train_one_epoch(
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
|
@ -61,7 +61,6 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
||||
import argparse
|
||||
import copy
|
||||
import logging
|
||||
import os
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
@ -103,8 +102,6 @@ LRSchedulerType = Union[
|
||||
torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
|
||||
]
|
||||
|
||||
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
||||
|
||||
|
||||
def add_model_arguments(parser: argparse.ArgumentParser):
|
||||
parser.add_argument(
|
||||
@ -684,7 +681,7 @@ def compute_loss(
|
||||
texts = batch["supervisions"]["text"]
|
||||
|
||||
y = graph_compiler.texts_to_ids(texts)
|
||||
if type(y) == list:
|
||||
if isinstance(y, list):
|
||||
y = k2.RaggedTensor(y).to(device)
|
||||
else:
|
||||
y = y.to(device)
|
||||
|
Loading…
x
Reference in New Issue
Block a user