Introduce alpha for DoubleSwish, set it to -0.05.

This commit is contained in:
Daniel Povey 2022-11-30 18:58:25 +08:00
parent 2969eb5467
commit d682ecc246

View File

@ -1064,7 +1064,8 @@ class MaxEig(torch.nn.Module):
class DoubleSwishFunction(torch.autograd.Function):
"""
double_swish(x) = x * torch.sigmoid(x-1)
double_swish(x) = x * (torch.sigmoid(x-1) + alpha)
for e.g. alpha=-0.05 (user supplied).
This is a definition, originally motivated by its close numerical
similarity to swish(swish(x)), where swish(x) = x * sigmoid(x).
@ -1079,9 +1080,10 @@ class DoubleSwishFunction(torch.autograd.Function):
"""
@staticmethod
def forward(ctx, x: Tensor) -> Tensor:
def forward(ctx, x: Tensor, alpha: float) -> Tensor:
requires_grad = x.requires_grad
x_dtype = x.dtype
ctx.alpha = alpha
if x.dtype == torch.float16:
x = x.to(torch.float32)
@ -1105,6 +1107,7 @@ class DoubleSwishFunction(torch.autograd.Function):
assert d_scaled.max() < 256.0
d_int = d_scaled.to(torch.uint8)
ctx.save_for_backward(d_int)
y = y + alpha * x
if x.dtype == torch.float16 or torch.is_autocast_enabled():
y = y.to(torch.float16)
return y
@ -1112,20 +1115,29 @@ class DoubleSwishFunction(torch.autograd.Function):
@staticmethod
def backward(ctx, y_grad: Tensor) -> Tensor:
d, = ctx.saved_tensors
alpha = ctx.alpha
# the same constants as used in forward pass.
floor = -0.043637
ceil = 1.2
d = (d * ((ceil - floor) / 255.0) + floor)
return (y_grad * d)
return (y_grad * (d + alpha)), None
class DoubleSwish(torch.nn.Module):
def __init__(self,
alpha: float = -0.05):
super().__init__()
self.alpha = alpha
def extra_repr(self) -> str:
return 'alpha={}'.format(self.alpha)
def forward(self, x: Tensor) -> Tensor:
"""Return double-swish activation function which is an approximation to Swish(Swish(x)),
that we approximate closely with x * sigmoid(x-1).
"""
if torch.jit.is_scripting():
return x * torch.sigmoid(x - 1.0)
return DoubleSwishFunction.apply(x)
return x * (torch.sigmoid(x - 1.0) + self.alpha)
return DoubleSwishFunction.apply(x, self.alpha)
class TanSwishFunction(torch.autograd.Function):