mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-07 08:04:18 +00:00
Merge remote-tracking branch 'dan/master' into deeper-conformer
This commit is contained in:
commit
d618b005fc
13
.flake8
13
.flake8
@ -4,14 +4,11 @@ statistics=true
|
||||
max-line-length = 80
|
||||
per-file-ignores =
|
||||
# line too long
|
||||
egs/librispeech/ASR/*/conformer.py: E501,
|
||||
egs/aishell/ASR/*/conformer.py: E501,
|
||||
egs/tedlium3/ASR/*/conformer.py: E501,
|
||||
egs/gigaspeech/ASR/*/conformer.py: E501,
|
||||
egs/librispeech/ASR/pruned_transducer_stateless2/*.py: E501,
|
||||
egs/librispeech/ASR/pruned_transducer_stateless4/*.py: E501,
|
||||
egs/librispeech/ASR/*/optim.py: E501,
|
||||
egs/librispeech/ASR/*/scaling.py: E501,
|
||||
icefall/diagnostics.py: E501
|
||||
egs/*/ASR/*/conformer.py: E501,
|
||||
egs/*/ASR/pruned_transducer_stateless*/*.py: E501,
|
||||
egs/*/ASR/*/optim.py: E501,
|
||||
egs/*/ASR/*/scaling.py: E501,
|
||||
|
||||
# invalid escape sequence (cause by tex formular), W605
|
||||
icefall/utils.py: E501, W605
|
||||
|
15
.github/scripts/download-gigaspeech-dev-test-dataset.sh
vendored
Executable file
15
.github/scripts/download-gigaspeech-dev-test-dataset.sh
vendored
Executable file
@ -0,0 +1,15 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# This script downloads the pre-computed fbank features for
|
||||
# dev and test datasets of GigaSpeech.
|
||||
#
|
||||
# You will find directories `~/tmp/giga-dev-dataset-fbank` after running
|
||||
# this script.
|
||||
|
||||
mkdir -p ~/tmp
|
||||
cd ~/tmp
|
||||
|
||||
git lfs install
|
||||
git clone https://huggingface.co/csukuangfj/giga-dev-dataset-fbank
|
||||
|
||||
ls -lh giga-dev-dataset-fbank/data/fbank
|
49
.github/scripts/run-gigaspeech-pruned-transducer-stateless2-2022-05-12.sh
vendored
Executable file
49
.github/scripts/run-gigaspeech-pruned-transducer-stateless2-2022-05-12.sh
vendored
Executable file
@ -0,0 +1,49 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
cd egs/gigaspeech/ASR
|
||||
|
||||
repo_url=https://huggingface.co/wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2
|
||||
|
||||
log "Downloading pre-trained model from $repo_url"
|
||||
git lfs install
|
||||
git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
|
||||
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
||||
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
||||
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
|
||||
mkdir -p pruned_transducer_stateless2/exp
|
||||
ln -s $PWD/$repo/exp/pretrained-iter-3488000-avg-20.pt pruned_transducer_stateless2/exp/epoch-999.pt
|
||||
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||
|
||||
ls -lh data
|
||||
ls -lh data/lang_bpe_500
|
||||
ls -lh data/fbank
|
||||
ls -lh pruned_transducer_stateless2/exp
|
||||
|
||||
log "Decoding dev and test"
|
||||
|
||||
# use a small value for decoding with CPU
|
||||
max_duration=100
|
||||
|
||||
# Test only greedy_search to reduce CI running time
|
||||
# for method in greedy_search fast_beam_search modified_beam_search; do
|
||||
for method in greedy_search; do
|
||||
log "Decoding with $method"
|
||||
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--decoding-method $method \
|
||||
--epoch 999 \
|
||||
--avg 1 \
|
||||
--max-duration $max_duration \
|
||||
--exp-dir pruned_transducer_stateless2/exp
|
||||
done
|
||||
|
||||
rm pruned_transducer_stateless2/exp/*.pt
|
||||
fi
|
80
.github/scripts/run-librispeech-pruned-transducer-stateless3-2022-05-13.sh
vendored
Executable file
80
.github/scripts/run-librispeech-pruned-transducer-stateless3-2022-05-13.sh
vendored
Executable file
@ -0,0 +1,80 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
cd egs/librispeech/ASR
|
||||
|
||||
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13
|
||||
|
||||
log "Downloading pre-trained model from $repo_url"
|
||||
git lfs install
|
||||
git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
|
||||
log "Display test files"
|
||||
tree $repo/
|
||||
soxi $repo/test_wavs/*.wav
|
||||
ls -lh $repo/test_wavs/*.wav
|
||||
|
||||
pushd $repo/exp
|
||||
ln -s pretrained-iter-1224000-avg-14.pt pretrained.pt
|
||||
popd
|
||||
|
||||
for sym in 1 2 3; do
|
||||
log "Greedy search with --max-sym-per-frame $sym"
|
||||
|
||||
./pruned_transducer_stateless3/pretrained.py \
|
||||
--method greedy_search \
|
||||
--max-sym-per-frame $sym \
|
||||
--checkpoint $repo/exp/pretrained.pt \
|
||||
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||
$repo/test_wavs/1089-134686-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0002.wav
|
||||
done
|
||||
|
||||
for method in modified_beam_search beam_search fast_beam_search; do
|
||||
log "$method"
|
||||
|
||||
./pruned_transducer_stateless3/pretrained.py \
|
||||
--method $method \
|
||||
--beam-size 4 \
|
||||
--checkpoint $repo/exp/pretrained.pt \
|
||||
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||
$repo/test_wavs/1089-134686-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0002.wav
|
||||
done
|
||||
|
||||
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
||||
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
||||
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
|
||||
mkdir -p pruned_transducer_stateless3/exp
|
||||
ln -s $PWD/$repo/exp/pretrained.pt pruned_transducer_stateless3/exp/epoch-999.pt
|
||||
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||
|
||||
ls -lh data
|
||||
ls -lh pruned_transducer_stateless3/exp
|
||||
|
||||
log "Decoding test-clean and test-other"
|
||||
|
||||
# use a small value for decoding with CPU
|
||||
max_duration=100
|
||||
|
||||
for method in greedy_search fast_beam_search modified_beam_search; do
|
||||
log "Decoding with $method"
|
||||
|
||||
./pruned_transducer_stateless3/decode.py \
|
||||
--decoding-method $method \
|
||||
--epoch 999 \
|
||||
--avg 1 \
|
||||
--max-duration $max_duration \
|
||||
--exp-dir pruned_transducer_stateless3/exp
|
||||
done
|
||||
|
||||
rm pruned_transducer_stateless3/exp/*.pt
|
||||
fi
|
120
.github/workflows/run-gigaspeech-2022-05-13.yml
vendored
Normal file
120
.github/workflows/run-gigaspeech-2022-05-13.yml
vendored
Normal file
@ -0,0 +1,120 @@
|
||||
# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
|
||||
|
||||
# See ../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: run-gigaspeech-2022-05-13
|
||||
# stateless transducer + k2 pruned rnnt-loss + reworked conformer
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
types: [labeled]
|
||||
|
||||
schedule:
|
||||
# minute (0-59)
|
||||
# hour (0-23)
|
||||
# day of the month (1-31)
|
||||
# month (1-12)
|
||||
# day of the week (0-6)
|
||||
# nightly build at 15:50 UTC time every day
|
||||
- cron: "50 15 * * *"
|
||||
|
||||
jobs:
|
||||
run_gigaspeech_2022_05_13:
|
||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-18.04]
|
||||
python-version: [3.7, 3.8, 3.9]
|
||||
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
cache: 'pip'
|
||||
cache-dependency-path: '**/requirements-ci.txt'
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: |
|
||||
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
||||
|
||||
- name: Cache kaldifeat
|
||||
id: my-cache
|
||||
uses: actions/cache@v2
|
||||
with:
|
||||
path: |
|
||||
~/tmp/kaldifeat
|
||||
key: cache-tmp-${{ matrix.python-version }}
|
||||
|
||||
- name: Install kaldifeat
|
||||
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||
shell: bash
|
||||
run: |
|
||||
.github/scripts/install-kaldifeat.sh
|
||||
|
||||
- name: Download GigaSpeech dev/test dataset
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt-get install -y -q git-lfs
|
||||
|
||||
.github/scripts/download-gigaspeech-dev-test-dataset.sh
|
||||
|
||||
- name: Inference with pre-trained model
|
||||
shell: bash
|
||||
env:
|
||||
GITHUB_EVENT_NAME: ${{ github.event_name }}
|
||||
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||
run: |
|
||||
ln -s ~/tmp/giga-dev-dataset-fbank/data egs/gigaspeech/ASR/
|
||||
|
||||
ls -lh egs/gigaspeech/ASR/data/fbank
|
||||
|
||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||
|
||||
.github/scripts/run-gigaspeech-pruned-transducer-stateless2-2022-05-12.sh
|
||||
|
||||
- name: Display decoding results for gigaspeech pruned_transducer_stateless2
|
||||
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||
shell: bash
|
||||
run: |
|
||||
cd egs/gigaspeech/ASR/
|
||||
tree ./pruned_transducer_stateless2/exp
|
||||
|
||||
sudo apt-get -qq install tree
|
||||
|
||||
cd pruned_transducer_stateless2
|
||||
echo "results for pruned_transducer_stateless2"
|
||||
echo "===greedy search==="
|
||||
find exp/greedy_search -name "log-*" -exec grep -n --color "best for dev" {} + | sort -n -k2
|
||||
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test" {} + | sort -n -k2
|
||||
|
||||
- name: Upload decoding results for gigaspeech pruned_transducer_stateless2
|
||||
uses: actions/upload-artifact@v2
|
||||
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||
with:
|
||||
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-gigaspeech-pruned_transducer_stateless2-2022-05-12
|
||||
path: egs/gigaspeech/ASR/pruned_transducer_stateless2/exp/
|
@ -142,8 +142,8 @@ jobs:
|
||||
find fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
|
||||
echo "===modified beam search==="
|
||||
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
find modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
|
||||
- name: Display decoding results for pruned_transducer_stateless3
|
||||
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||
@ -161,8 +161,8 @@ jobs:
|
||||
find fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
|
||||
echo "===modified beam search==="
|
||||
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
find modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
|
||||
- name: Upload decoding results for pruned_transducer_stateless2
|
||||
uses: actions/upload-artifact@v2
|
||||
|
151
.github/workflows/run-librispeech-pruned-transducer-stateless3-2022-05-13.yml
vendored
Normal file
151
.github/workflows/run-librispeech-pruned-transducer-stateless3-2022-05-13.yml
vendored
Normal file
@ -0,0 +1,151 @@
|
||||
# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
|
||||
|
||||
# See ../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: run-librispeech-pruned-transducer-stateless3-2022-05-13
|
||||
# stateless pruned transducer (reworked model) + giga speech
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
types: [labeled]
|
||||
|
||||
schedule:
|
||||
# minute (0-59)
|
||||
# hour (0-23)
|
||||
# day of the month (1-31)
|
||||
# month (1-12)
|
||||
# day of the week (0-6)
|
||||
# nightly build at 15:50 UTC time every day
|
||||
- cron: "50 15 * * *"
|
||||
|
||||
jobs:
|
||||
run_librispeech_pruned_transducer_stateless3_2022_05_13:
|
||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-18.04]
|
||||
python-version: [3.7, 3.8, 3.9]
|
||||
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
cache: 'pip'
|
||||
cache-dependency-path: '**/requirements-ci.txt'
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: |
|
||||
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
||||
|
||||
- name: Cache kaldifeat
|
||||
id: my-cache
|
||||
uses: actions/cache@v2
|
||||
with:
|
||||
path: |
|
||||
~/tmp/kaldifeat
|
||||
key: cache-tmp-${{ matrix.python-version }}
|
||||
|
||||
- name: Install kaldifeat
|
||||
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||
shell: bash
|
||||
run: |
|
||||
.github/scripts/install-kaldifeat.sh
|
||||
|
||||
- name: Cache LibriSpeech test-clean and test-other datasets
|
||||
id: libri-test-clean-and-test-other-data
|
||||
uses: actions/cache@v2
|
||||
with:
|
||||
path: |
|
||||
~/tmp/download
|
||||
key: cache-libri-test-clean-and-test-other
|
||||
|
||||
- name: Download LibriSpeech test-clean and test-other
|
||||
if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true'
|
||||
shell: bash
|
||||
run: |
|
||||
.github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh
|
||||
|
||||
- name: Prepare manifests for LibriSpeech test-clean and test-other
|
||||
shell: bash
|
||||
run: |
|
||||
.github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh
|
||||
|
||||
- name: Cache LibriSpeech test-clean and test-other fbank features
|
||||
id: libri-test-clean-and-test-other-fbank
|
||||
uses: actions/cache@v2
|
||||
with:
|
||||
path: |
|
||||
~/tmp/fbank-libri
|
||||
key: cache-libri-fbank-test-clean-and-test-other
|
||||
|
||||
- name: Compute fbank for LibriSpeech test-clean and test-other
|
||||
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'
|
||||
shell: bash
|
||||
run: |
|
||||
.github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh
|
||||
|
||||
- name: Inference with pre-trained model
|
||||
shell: bash
|
||||
env:
|
||||
GITHUB_EVENT_NAME: ${{ github.event_name }}
|
||||
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||
run: |
|
||||
mkdir -p egs/librispeech/ASR/data
|
||||
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
|
||||
ls -lh egs/librispeech/ASR/data/*
|
||||
|
||||
sudo apt-get -qq install git-lfs tree sox
|
||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||
|
||||
.github/scripts/run-librispeech-pruned-transducer-stateless3-2022-05-13.sh
|
||||
|
||||
- name: Display decoding results for pruned_transducer_stateless3
|
||||
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||
shell: bash
|
||||
run: |
|
||||
cd egs/librispeech/ASR
|
||||
tree pruned_transducer_stateless3/exp
|
||||
cd pruned_transducer_stateless3/exp
|
||||
echo "===greedy search==="
|
||||
find greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
|
||||
echo "===fast_beam_search==="
|
||||
find fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
|
||||
echo "===modified beam search==="
|
||||
find modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
|
||||
- name: Upload decoding results for pruned_transducer_stateless3
|
||||
uses: actions/upload-artifact@v2
|
||||
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||
with:
|
||||
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-pruned_transducer_stateless3-2022-04-29
|
||||
path: egs/librispeech/ASR/pruned_transducer_stateless3/exp/
|
36
.github/workflows/test.yml
vendored
36
.github/workflows/test.yml
vendored
@ -103,11 +103,26 @@ jobs:
|
||||
cd egs/librispeech/ASR/conformer_ctc
|
||||
pytest -v -s
|
||||
|
||||
cd ../pruned_transducer_stateless
|
||||
pytest -v -s
|
||||
|
||||
cd ../pruned_transducer_stateless2
|
||||
pytest -v -s
|
||||
|
||||
cd ../pruned_transducer_stateless3
|
||||
pytest -v -s
|
||||
|
||||
cd ../pruned_transducer_stateless4
|
||||
pytest -v -s
|
||||
|
||||
cd ../transducer_stateless
|
||||
pytest -v -s
|
||||
|
||||
if [[ ${{ matrix.torchaudio }} == "0.10.0" ]]; then
|
||||
cd ../transducer
|
||||
pytest -v -s
|
||||
|
||||
cd ../transducer_stateless
|
||||
cd ../transducer_stateless2
|
||||
pytest -v -s
|
||||
|
||||
cd ../transducer_lstm
|
||||
@ -128,13 +143,28 @@ jobs:
|
||||
cd egs/librispeech/ASR/conformer_ctc
|
||||
pytest -v -s
|
||||
|
||||
if [[ ${{ matrix.torchaudio }} == "0.10.0" ]]; then
|
||||
cd ../transducer
|
||||
cd ../pruned_transducer_stateless
|
||||
pytest -v -s
|
||||
|
||||
cd ../pruned_transducer_stateless2
|
||||
pytest -v -s
|
||||
|
||||
cd ../pruned_transducer_stateless3
|
||||
pytest -v -s
|
||||
|
||||
cd ../pruned_transducer_stateless4
|
||||
pytest -v -s
|
||||
|
||||
cd ../transducer_stateless
|
||||
pytest -v -s
|
||||
|
||||
if [[ ${{ matrix.torchaudio }} == "0.10.0" ]]; then
|
||||
cd ../transducer
|
||||
pytest -v -s
|
||||
|
||||
cd ../transducer_stateless2
|
||||
pytest -v -s
|
||||
|
||||
cd ../transducer_lstm
|
||||
pytest -v -s
|
||||
fi
|
||||
|
28
README.md
28
README.md
@ -12,13 +12,14 @@ for installation.
|
||||
Please refer to <https://icefall.readthedocs.io/en/latest/recipes/index.html>
|
||||
for more information.
|
||||
|
||||
We provide four recipes at present:
|
||||
We provide 6 recipes at present:
|
||||
|
||||
- [yesno][yesno]
|
||||
- [LibriSpeech][librispeech]
|
||||
- [Aishell][aishell]
|
||||
- [TIMIT][timit]
|
||||
- [TED-LIUM3][tedlium3]
|
||||
- [GigaSpeech][gigaspeech]
|
||||
|
||||
### yesno
|
||||
|
||||
@ -106,7 +107,7 @@ We provide a Colab notebook to run a pre-trained transducer conformer + stateles
|
||||
|
||||
| | test-clean | test-other |
|
||||
|-----|------------|------------|
|
||||
| WER | 2.19 | 4.97 |
|
||||
| WER | 2.00 | 4.63 |
|
||||
|
||||
|
||||
### Aishell
|
||||
@ -197,6 +198,26 @@ The best WER using modified beam search with beam size 4 is:
|
||||
|
||||
We provide a Colab notebook to run a pre-trained Pruned Transducer Stateless model: [](https://colab.research.google.com/drive/1je_1zGrOkGVVd4WLzgkXRHxl-I27yWtz?usp=sharing)
|
||||
|
||||
### GigaSpeech
|
||||
|
||||
We provide two models for this recipe: [Conformer CTC model][GigaSpeech_conformer_ctc]
|
||||
and [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss][GigaSpeech_pruned_transducer_stateless2].
|
||||
|
||||
#### Conformer CTC
|
||||
|
||||
| | Dev | Test |
|
||||
|-----|-------|-------|
|
||||
| WER | 10.47 | 10.58 |
|
||||
|
||||
#### Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss
|
||||
|
||||
| | Dev | Test |
|
||||
|----------------------|-------|-------|
|
||||
| greedy search | 10.51 | 10.73 |
|
||||
| fast beam search | 10.50 | 10.69 |
|
||||
| modified beam search | 10.40 | 10.51 |
|
||||
|
||||
|
||||
## Deployment with C++
|
||||
|
||||
Once you have trained a model in icefall, you may want to deploy it with C++,
|
||||
@ -220,9 +241,12 @@ Please see: [ for details.
|
||||
|
@ -1,4 +1,77 @@
|
||||
## Results
|
||||
### GigaSpeech BPE training results (Pruned Transducer 2)
|
||||
|
||||
#### 2022-05-12
|
||||
|
||||
#### Conformer encoder + embedding decoder
|
||||
|
||||
Conformer encoder + non-recurrent decoder. The encoder is a
|
||||
reworked version of the conformer encoder, with many changes. The
|
||||
decoder contains only an embedding layer, a Conv1d (with kernel
|
||||
size 2) and a linear layer (to transform tensor dim). k2 pruned
|
||||
RNN-T loss is used.
|
||||
|
||||
The best WER, as of 2022-05-12, for the gigaspeech is below
|
||||
|
||||
Results are:
|
||||
|
||||
| | Dev | Test |
|
||||
|----------------------|-------|-------|
|
||||
| greedy search | 10.51 | 10.73 |
|
||||
| fast beam search | 10.50 | 10.69 |
|
||||
| modified beam search | 10.40 | 10.51 |
|
||||
|
||||
To reproduce the above result, use the following commands for training:
|
||||
|
||||
```bash
|
||||
cd egs/gigaspeech/ASR
|
||||
./prepare.sh
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
||||
./pruned_transducer_stateless2/train.py \
|
||||
--max-duration 120 \
|
||||
--num-workers 1 \
|
||||
--world-size 8 \
|
||||
--exp-dir pruned_transducer_stateless2/exp \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--use-fp16 True
|
||||
```
|
||||
|
||||
and the following commands for decoding:
|
||||
|
||||
```bash
|
||||
# greedy search
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--iter 3488000 \
|
||||
--avg 20 \
|
||||
--decoding-method greedy_search \
|
||||
--exp-dir pruned_transducer_stateless2/exp \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--max-duration 600
|
||||
|
||||
# fast beam search
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--iter 3488000 \
|
||||
--avg 20 \
|
||||
--decoding-method fast_beam_search \
|
||||
--exp-dir pruned_transducer_stateless2/exp \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--max-duration 600
|
||||
|
||||
# modified beam search
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--iter 3488000 \
|
||||
--avg 15 \
|
||||
--decoding-method modified_beam_search \
|
||||
--exp-dir pruned_transducer_stateless2/exp \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--max-duration 600
|
||||
```
|
||||
|
||||
Pretrained model is available at
|
||||
<https://huggingface.co/wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2>
|
||||
|
||||
The tensorboard log for training is available at
|
||||
<https://tensorboard.dev/experiment/zmmM0MLASnG1N2RmJ4MZBw/>
|
||||
|
||||
### GigaSpeech BPE training results (Conformer-CTC)
|
||||
|
||||
@ -20,7 +93,7 @@ Scale values used in n-gram LM rescoring and attention rescoring for the best WE
|
||||
|
||||
To reproduce the above result, use the following commands for training:
|
||||
|
||||
```
|
||||
```bash
|
||||
cd egs/gigaspeech/ASR
|
||||
./prepare.sh
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
||||
@ -34,7 +107,7 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
||||
|
||||
and the following command for decoding:
|
||||
|
||||
```
|
||||
```bash
|
||||
./conformer_ctc/decode.py \
|
||||
--epoch 18 \
|
||||
--avg 6 \
|
||||
@ -59,7 +132,7 @@ Scale values used in n-gram LM rescoring and attention rescoring for the best WE
|
||||
|
||||
To reproduce the above result, use the training commands above, and the following command for decoding:
|
||||
|
||||
```
|
||||
```bash
|
||||
./conformer_ctc/decode.py \
|
||||
--epoch 18 \
|
||||
--avg 6 \
|
||||
|
@ -0,0 +1,416 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import inspect
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
||||
from lhotse.dataset import (
|
||||
BucketingSampler,
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SingleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class _SeedWorkers:
|
||||
def __init__(self, seed: int):
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, worker_id: int):
|
||||
fix_random_seed(self.seed + worker_id)
|
||||
|
||||
|
||||
class GigaSpeechAsrDataModule:
|
||||
"""
|
||||
DataModule for k2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the DynamicBucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-spec-aug",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use SpecAugment for training dataset.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--spec-aug-time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Used only when --enable-spec-aug is True. "
|
||||
"It specifies the factor for time warping in SpecAugment. "
|
||||
"Larger values mean more warping. "
|
||||
"A value less than 1 means to disable time warp.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-musan",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, select noise from MUSAN and mix it "
|
||||
"with training dataset. ",
|
||||
)
|
||||
|
||||
# GigaSpeech specific arguments
|
||||
group.add_argument(
|
||||
"--subset",
|
||||
type=str,
|
||||
default="XL",
|
||||
help="Select the GigaSpeech subset (XS|S|M|L|XL)",
|
||||
)
|
||||
group.add_argument(
|
||||
"--small-dev",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Should we use only 1000 utterances for dev "
|
||||
"(speeds up training)",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self,
|
||||
cuts_train: CutSet,
|
||||
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||
) -> DataLoader:
|
||||
"""
|
||||
Args:
|
||||
cuts_train:
|
||||
CutSet for training.
|
||||
sampler_state_dict:
|
||||
The state dict for the training sampler.
|
||||
"""
|
||||
|
||||
transforms = []
|
||||
if self.args.enable_musan:
|
||||
logging.info("Enable MUSAN")
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(
|
||||
self.args.manifest_dir / "cuts_musan.json.gz"
|
||||
)
|
||||
transforms.append(
|
||||
CutMix(
|
||||
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
||||
if self.args.concatenate_cuts:
|
||||
logging.info(
|
||||
f"Using cut concatenation with duration factor "
|
||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||
)
|
||||
# Cut concatenation should be the first transform in the list,
|
||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||
# different utterances.
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
input_transforms = []
|
||||
if self.args.enable_spec_aug:
|
||||
logging.info("Enable SpecAugment")
|
||||
logging.info(
|
||||
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
||||
)
|
||||
# Set the value of num_frame_masks according to Lhotse's version.
|
||||
# In different Lhotse's versions, the default of num_frame_masks is
|
||||
# different.
|
||||
num_frame_masks = 10
|
||||
num_frame_masks_parameter = inspect.signature(
|
||||
SpecAugment.__init__
|
||||
).parameters["num_frame_masks"]
|
||||
if num_frame_masks_parameter.default == 1:
|
||||
num_frame_masks = 2
|
||||
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||
input_transforms.append(
|
||||
SpecAugment(
|
||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||
num_frame_masks=num_frame_masks,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable SpecAugment")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
# NOTE: the PerturbSpeed transform should be added only if we
|
||||
# remove it from data prep stage.
|
||||
# Add on-the-fly speed perturbation; since originally it would
|
||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||
# 3x more epochs.
|
||||
# Speed perturbation probably should come first before
|
||||
# concatenation, but in principle the transforms order doesn't have
|
||||
# to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||
# Drop feats to be on the safe side.
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=True,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SingleCutSampler.")
|
||||
train_sampler = SingleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
if sampler_state_dict is not None:
|
||||
logging.info("Loading sampler state dict")
|
||||
train_sampler.load_state_dict(sampler_state_dict)
|
||||
|
||||
# 'seed' is derived from the current random state, which will have
|
||||
# previously been set in the main process.
|
||||
seed = torch.randint(0, 100000, ()).item()
|
||||
worker_init_fn = _SeedWorkers(seed)
|
||||
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
worker_init_fn=worker_init_fn,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = BucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||
if self.args.on_the_fly_feats
|
||||
else PrecomputedFeatures(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = BucketingSampler(
|
||||
cuts, max_duration=self.args.max_duration, shuffle=False
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info(f"About to get train_{self.args.subset} cuts")
|
||||
path = self.args.manifest_dir / f"cuts_{self.args.subset}.jsonl.gz"
|
||||
cuts_train = CutSet.from_jsonl_lazy(path)
|
||||
return cuts_train
|
||||
|
||||
@lru_cache()
|
||||
def dev_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev cuts")
|
||||
cuts_valid = load_manifest(self.args.manifest_dir / "cuts_DEV.jsonl.gz")
|
||||
if self.args.small_dev:
|
||||
return cuts_valid.subset(first=1000)
|
||||
else:
|
||||
return cuts_valid
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> CutSet:
|
||||
logging.info("About to get test cuts")
|
||||
return load_manifest(self.args.manifest_dir / "cuts_TEST.jsonl.gz")
|
1
egs/gigaspeech/ASR/pruned_transducer_stateless2/beam_search.py
Symbolic link
1
egs/gigaspeech/ASR/pruned_transducer_stateless2/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/beam_search.py
|
1
egs/gigaspeech/ASR/pruned_transducer_stateless2/conformer.py
Symbolic link
1
egs/gigaspeech/ASR/pruned_transducer_stateless2/conformer.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/conformer.py
|
577
egs/gigaspeech/ASR/pruned_transducer_stateless2/decode.py
Executable file
577
egs/gigaspeech/ASR/pruned_transducer_stateless2/decode.py
Executable file
@ -0,0 +1,577 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
(2) beam search
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(3) modified beam search
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import GigaSpeechAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from gigaspeech_scoring import asr_text_post_processing
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=29,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 0.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless2/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def post_processing(
|
||||
results: List[Tuple[List[str], List[str]]],
|
||||
) -> List[Tuple[List[str], List[str]]]:
|
||||
new_results = []
|
||||
for ref, hyp in results:
|
||||
new_ref = asr_text_post_processing(" ".join(ref)).split()
|
||||
new_hyp = asr_text_post_processing(" ".join(hyp)).split()
|
||||
new_results.append((new_ref, new_hyp))
|
||||
return new_results
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
batch: dict,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if greedy_search is used, it would be "greedy_search"
|
||||
If beam search with a beam size of 7 is used, it would be
|
||||
"beam_7"
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = model.device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
encoder_out, encoder_out_lens = model.encoder(
|
||||
x=feature, x_lens=feature_lens
|
||||
)
|
||||
hyps = []
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif (
|
||||
params.decoding_method == "greedy_search"
|
||||
and params.max_sym_per_frame == 1
|
||||
):
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
return {
|
||||
(
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
): hyps
|
||||
}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
log_interval = 20
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for hyp_words, ref_text in zip(hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = post_processing(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir
|
||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
GigaSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam_size}"
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
gigaspeech = GigaSpeechAsrDataModule(args)
|
||||
|
||||
dev_cuts = gigaspeech.dev_cuts()
|
||||
test_cuts = gigaspeech.test_cuts()
|
||||
|
||||
dev_dl = gigaspeech.test_dataloaders(dev_cuts)
|
||||
test_dl = gigaspeech.test_dataloaders(test_cuts)
|
||||
|
||||
test_sets = ["dev", "test"]
|
||||
test_dls = [dev_dl, test_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dls):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/gigaspeech/ASR/pruned_transducer_stateless2/decoder.py
Symbolic link
1
egs/gigaspeech/ASR/pruned_transducer_stateless2/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/decoder.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/encoder_interface.py
|
214
egs/gigaspeech/ASR/pruned_transducer_stateless2/export.py
Executable file
214
egs/gigaspeech/ASR/pruned_transducer_stateless2/export.py
Executable file
@ -0,0 +1,214 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
"""
|
||||
Usage:
|
||||
./pruned_transducer_stateless2/export.py \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--epoch 20 \
|
||||
--avg 10
|
||||
|
||||
It will generate a file exp_dir/pretrained.pt
|
||||
|
||||
To use the generated file with `pruned_transducer_stateless2/decode.py`,
|
||||
you can do:
|
||||
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/librispeech/ASR
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--epoch 9999 \
|
||||
--avg 1 \
|
||||
--max-duration 100 \
|
||||
--bpe-model data/lang_bpe_500/bpe.model
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for averaging.
|
||||
Note: Epoch counts from 0.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless2/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
assert args.jit is False, "Support torchscript will be added later"
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
model.to(device)
|
||||
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
model.eval()
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
model.save(str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torch.jit.script")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
@ -0,0 +1 @@
|
||||
../conformer_ctc/gigaspeech_scoring.py
|
1
egs/gigaspeech/ASR/pruned_transducer_stateless2/joiner.py
Symbolic link
1
egs/gigaspeech/ASR/pruned_transducer_stateless2/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/joiner.py
|
1
egs/gigaspeech/ASR/pruned_transducer_stateless2/model.py
Symbolic link
1
egs/gigaspeech/ASR/pruned_transducer_stateless2/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/model.py
|
1
egs/gigaspeech/ASR/pruned_transducer_stateless2/optim.py
Symbolic link
1
egs/gigaspeech/ASR/pruned_transducer_stateless2/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/optim.py
|
1
egs/gigaspeech/ASR/pruned_transducer_stateless2/scaling.py
Symbolic link
1
egs/gigaspeech/ASR/pruned_transducer_stateless2/scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/scaling.py
|
974
egs/gigaspeech/ASR/pruned_transducer_stateless2/train.py
Executable file
974
egs/gigaspeech/ASR/pruned_transducer_stateless2/train.py
Executable file
@ -0,0 +1,974 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Wei Kang
|
||||
# Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
./pruned_transducer_stateless2/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 0 \
|
||||
--exp-dir pruned_transducer_stateless2/exp \
|
||||
--full-libri 1 \
|
||||
--max-duration 300
|
||||
|
||||
# For mix precision training:
|
||||
|
||||
./pruned_transducer_stateless2/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 0 \
|
||||
--use_fp16 1 \
|
||||
--exp-dir pruned_transducer_stateless2/exp \
|
||||
--full-libri 1 \
|
||||
--max-duration 550
|
||||
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import k2
|
||||
import optim
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import GigaSpeechAsrDataModule
|
||||
from conformer import Conformer
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from lhotse.dataset.sampling.base import CutSampler
|
||||
from lhotse.utils import fix_random_seed
|
||||
from model import Transducer
|
||||
from optim import Eden, Eve
|
||||
from torch import Tensor
|
||||
from torch.cuda.amp import GradScaler
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from icefall import diagnostics
|
||||
from icefall.checkpoint import load_checkpoint, remove_checkpoints
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.checkpoint import save_checkpoint_with_global_batch_idx
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||
|
||||
LRSchedulerType = Union[
|
||||
torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
|
||||
]
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=30,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
transducer_stateless2/exp/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-batch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --start-epoch is ignored and
|
||||
it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless2/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--initial-lr",
|
||||
type=float,
|
||||
default=0.003,
|
||||
help="The initial learning rate. This value should not need to be changed.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lr-batches",
|
||||
type=float,
|
||||
default=5000,
|
||||
help="""Number of steps that affects how rapidly the learning rate decreases.
|
||||
We suggest not to change this.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lr-epochs",
|
||||
type=float,
|
||||
default=6,
|
||||
help="""Number of epochs that affects how rapidly the learning rate decreases.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--prune-range",
|
||||
type=int,
|
||||
default=5,
|
||||
help="The prune range for rnnt loss, it means how many symbols(context)"
|
||||
"we are using to compute the loss",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-scale",
|
||||
type=float,
|
||||
default=0.25,
|
||||
help="The scale to smooth the loss with lm "
|
||||
"(output of prediction network) part.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--am-scale",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="The scale to smooth the loss with am (output of encoder network)"
|
||||
"part.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--simple-loss-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="To get pruning ranges, we will calculate a simple version"
|
||||
"loss(joiner is just addition), this simple loss also uses for"
|
||||
"training (as a regularization item). We will scale the simple loss"
|
||||
"with this parameter before adding to the final loss.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=42,
|
||||
help="The seed for random generators intended for reproducibility",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--print-diagnostics",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Accumulate stats on activations, print them and exit.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--save-every-n",
|
||||
type=int,
|
||||
default=8000,
|
||||
help="""Save checkpoint after processing this number of batches"
|
||||
periodically. We save checkpoint to exp-dir/ whenever
|
||||
params.batch_idx_train % save_every_n == 0. The checkpoint filename
|
||||
has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
|
||||
Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
|
||||
end of each epoch where `xxx` is the epoch number counting from 0.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--keep-last-k",
|
||||
type=int,
|
||||
default=20,
|
||||
help="""Only keep this number of checkpoints on disk.
|
||||
For instance, if it is 3, there are only 3 checkpoints
|
||||
in the exp-dir with filenames `checkpoint-xxx.pt`.
|
||||
It does not affect checkpoints with name `epoch-xxx.pt`.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-fp16",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Whether to use half precision training.",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
are saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- best_train_loss: Best training loss so far. It is used to select
|
||||
the model that has the lowest training loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_valid_loss: Best validation loss so far. It is used to select
|
||||
the model that has the lowest validation loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_train_epoch: It is the epoch that has the best training loss.
|
||||
|
||||
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||
|
||||
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||
contains number of batches trained so far across
|
||||
epochs.
|
||||
|
||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||
|
||||
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||
|
||||
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
||||
|
||||
- feature_dim: The model input dim. It has to match the one used
|
||||
in computing features.
|
||||
|
||||
- subsampling_factor: The subsampling factor for the model.
|
||||
|
||||
- encoder_dim: Hidden dim for multi-head attention model.
|
||||
|
||||
- num_decoder_layers: Number of decoder layer of transformer decoder.
|
||||
|
||||
- warm_step: The warm_step for Noam optimizer.
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 500,
|
||||
"reset_interval": 2000,
|
||||
"valid_interval": 20000,
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
"subsampling_factor": 4,
|
||||
"encoder_dim": 512,
|
||||
"nhead": 8,
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
# parameters for decoder
|
||||
"decoder_dim": 512,
|
||||
# parameters for joiner
|
||||
"joiner_dim": 512,
|
||||
# parameters for Noam
|
||||
"model_warm_step": 20000, # arg given to model, not for lrate
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
|
||||
return params
|
||||
|
||||
|
||||
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
||||
# TODO: We can add an option to switch between Conformer and Transformer
|
||||
encoder = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
d_model=params.encoder_dim,
|
||||
nhead=params.nhead,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
)
|
||||
return encoder
|
||||
|
||||
|
||||
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
||||
decoder = Decoder(
|
||||
vocab_size=params.vocab_size,
|
||||
decoder_dim=params.decoder_dim,
|
||||
blank_id=params.blank_id,
|
||||
context_size=params.context_size,
|
||||
)
|
||||
return decoder
|
||||
|
||||
|
||||
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
||||
joiner = Joiner(
|
||||
encoder_dim=params.encoder_dim,
|
||||
decoder_dim=params.decoder_dim,
|
||||
joiner_dim=params.joiner_dim,
|
||||
vocab_size=params.vocab_size,
|
||||
)
|
||||
return joiner
|
||||
|
||||
|
||||
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
||||
encoder = get_encoder_model(params)
|
||||
decoder = get_decoder_model(params)
|
||||
joiner = get_joiner_model(params)
|
||||
|
||||
model = Transducer(
|
||||
encoder=encoder,
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
encoder_dim=params.encoder_dim,
|
||||
decoder_dim=params.decoder_dim,
|
||||
joiner_dim=params.joiner_dim,
|
||||
vocab_size=params.vocab_size,
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[LRSchedulerType] = None,
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_batch is positive, it will load the checkpoint from
|
||||
`params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
|
||||
params.start_epoch is positive, it will load the checkpoint from
|
||||
`params.start_epoch - 1`.
|
||||
|
||||
Apart from loading state dict for `model` and `optimizer` it also updates
|
||||
`best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The scheduler that we are using.
|
||||
Returns:
|
||||
Return a dict containing previously saved training info.
|
||||
"""
|
||||
if params.start_batch > 0:
|
||||
filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
|
||||
elif params.start_epoch > 0:
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
else:
|
||||
return None
|
||||
|
||||
assert filename.is_file(), f"{filename} does not exist!"
|
||||
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
if params.start_batch > 0:
|
||||
if "cur_epoch" in saved_params:
|
||||
params["start_epoch"] = saved_params["cur_epoch"]
|
||||
|
||||
if "cur_batch_idx" in saved_params:
|
||||
params["cur_batch_idx"] = saved_params["cur_batch_idx"]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[LRSchedulerType] = None,
|
||||
sampler: Optional[CutSampler] = None,
|
||||
scaler: Optional[GradScaler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer used in the training.
|
||||
sampler:
|
||||
The sampler for the training dataset.
|
||||
scaler:
|
||||
The scaler used for mix precision training.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
sampler=sampler,
|
||||
scaler=scaler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
batch: dict,
|
||||
is_training: bool,
|
||||
warmup: float = 1.0,
|
||||
) -> Tuple[Tensor, MetricsTracker]:
|
||||
"""
|
||||
Compute CTC loss given the model and its inputs.
|
||||
|
||||
Args:
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
model:
|
||||
The model for training. It is an instance of Conformer in our case.
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
is_training:
|
||||
True for training. False for validation. When it is True, this
|
||||
function enables autograd during computation; when it is False, it
|
||||
disables autograd.
|
||||
warmup: a floating point value which increases throughout training;
|
||||
values >= 1.0 are fully warmed up and have all modules present.
|
||||
"""
|
||||
device = model.device
|
||||
feature = batch["inputs"]
|
||||
# at entry, feature is (N, T, C)
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
texts = batch["supervisions"]["text"]
|
||||
y = sp.encode(texts, out_type=int)
|
||||
y = k2.RaggedTensor(y).to(device)
|
||||
|
||||
with torch.set_grad_enabled(is_training):
|
||||
simple_loss, pruned_loss = model(
|
||||
x=feature,
|
||||
x_lens=feature_lens,
|
||||
y=y,
|
||||
prune_range=params.prune_range,
|
||||
am_scale=params.am_scale,
|
||||
lm_scale=params.lm_scale,
|
||||
warmup=warmup,
|
||||
)
|
||||
# after the main warmup step, we keep pruned_loss_scale small
|
||||
# for the same amount of time (model_warm_step), to avoid
|
||||
# overwhelming the simple_loss and causing it to diverge,
|
||||
# in case it had not fully learned the alignment yet.
|
||||
pruned_loss_scale = (
|
||||
0.0
|
||||
if warmup < 1.0
|
||||
else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
|
||||
)
|
||||
loss = (
|
||||
params.simple_loss_scale * simple_loss
|
||||
+ pruned_loss_scale * pruned_loss
|
||||
)
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
info = MetricsTracker()
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
info["frames"] = (
|
||||
(feature_lens // params.subsampling_factor).sum().item()
|
||||
)
|
||||
|
||||
# Note: We use reduction=sum while computing the loss.
|
||||
info["loss"] = loss.detach().cpu().item()
|
||||
info["simple_loss"] = simple_loss.detach().cpu().item()
|
||||
info["pruned_loss"] = pruned_loss.detach().cpu().item()
|
||||
|
||||
return loss, info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process."""
|
||||
model.eval()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
batch=batch,
|
||||
is_training=False,
|
||||
)
|
||||
assert loss.requires_grad is False
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
scheduler: LRSchedulerType,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
scaler: GradScaler,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all frames is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler, we call step() every step.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
scaler:
|
||||
The scaler used for mix precision training.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
rank:
|
||||
The rank of the node in DDP training. If no DDP is used, it should
|
||||
be set to 0.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
cur_batch_idx = params.get("cur_batch_idx", 0)
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
if batch_idx < cur_batch_idx:
|
||||
continue
|
||||
cur_batch_idx = batch_idx
|
||||
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
batch=batch,
|
||||
is_training=True,
|
||||
warmup=(params.batch_idx_train / params.model_warm_step),
|
||||
)
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||
# in the batch and there is no normalization to it so far.
|
||||
scaler.scale(loss).backward()
|
||||
scheduler.step_batch(params.batch_idx_train)
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
optimizer.zero_grad()
|
||||
|
||||
if params.print_diagnostics and batch_idx == 30:
|
||||
return
|
||||
|
||||
if (
|
||||
params.batch_idx_train > 0
|
||||
and params.batch_idx_train % params.save_every_n == 0
|
||||
):
|
||||
params.cur_batch_idx = batch_idx
|
||||
save_checkpoint_with_global_batch_idx(
|
||||
out_dir=params.exp_dir,
|
||||
global_batch_idx=params.batch_idx_train,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
sampler=train_dl.sampler,
|
||||
scaler=scaler,
|
||||
rank=rank,
|
||||
)
|
||||
del params.cur_batch_idx
|
||||
remove_checkpoints(
|
||||
out_dir=params.exp_dir,
|
||||
topk=params.keep_last_k,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
cur_lr = scheduler.get_last_lr()[0]
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
||||
f"lr: {cur_lr:.2e}"
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||
)
|
||||
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(
|
||||
tb_writer, "train/tot_", params.batch_idx_train
|
||||
)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
logging.info("Computing validation loss")
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
logging.info("Using DDP")
|
||||
model = DDP(model, device_ids=[rank])
|
||||
model.device = device
|
||||
|
||||
optimizer = Eve(model.parameters(), lr=params.initial_lr)
|
||||
|
||||
scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
|
||||
|
||||
if checkpoints and "optimizer" in checkpoints:
|
||||
logging.info("Loading optimizer state dict")
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
if (
|
||||
checkpoints
|
||||
and "scheduler" in checkpoints
|
||||
and checkpoints["scheduler"] is not None
|
||||
):
|
||||
logging.info("Loading scheduler state dict")
|
||||
scheduler.load_state_dict(checkpoints["scheduler"])
|
||||
|
||||
if params.print_diagnostics:
|
||||
diagnostic = diagnostics.attach_diagnostics(model)
|
||||
|
||||
gigaspeech = GigaSpeechAsrDataModule(args)
|
||||
|
||||
train_cuts = gigaspeech.train_cuts()
|
||||
|
||||
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
||||
# We only load the sampler's state dict when it loads a checkpoint
|
||||
# saved in the middle of an epoch
|
||||
sampler_state_dict = checkpoints["sampler"]
|
||||
else:
|
||||
sampler_state_dict = None
|
||||
|
||||
train_dl = gigaspeech.train_dataloaders(
|
||||
train_cuts, sampler_state_dict=sampler_state_dict
|
||||
)
|
||||
|
||||
valid_cuts = gigaspeech.dev_cuts()
|
||||
valid_dl = gigaspeech.valid_dataloaders(valid_cuts)
|
||||
|
||||
if not params.print_diagnostics:
|
||||
scan_pessimistic_batches_for_oom(
|
||||
model=model,
|
||||
train_dl=train_dl,
|
||||
optimizer=optimizer,
|
||||
sp=sp,
|
||||
params=params,
|
||||
)
|
||||
|
||||
scaler = GradScaler(enabled=params.use_fp16)
|
||||
if checkpoints and "grad_scaler" in checkpoints:
|
||||
logging.info("Loading grad scaler state dict")
|
||||
scaler.load_state_dict(checkpoints["grad_scaler"])
|
||||
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
scheduler.step_epoch(epoch)
|
||||
fix_random_seed(params.seed + epoch)
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
sp=sp,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
scaler=scaler,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.print_diagnostics:
|
||||
diagnostic.print_diagnostics()
|
||||
break
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
sampler=train_dl.sampler,
|
||||
scaler=scaler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
if world_size > 1:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def scan_pessimistic_batches_for_oom(
|
||||
model: nn.Module,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
params: AttributeDict,
|
||||
):
|
||||
from lhotse.dataset import find_pessimistic_batches
|
||||
|
||||
logging.info(
|
||||
"Sanity check -- see if any of the batches in epoch 0 would cause OOM."
|
||||
)
|
||||
batches, crit_values = find_pessimistic_batches(train_dl.sampler)
|
||||
for criterion, cuts in batches.items():
|
||||
batch = train_dl.dataset[cuts]
|
||||
try:
|
||||
# warmup = 0.0 is so that the derivs for the pruned loss stay zero
|
||||
# (i.e. are not remembered by the decaying-average in adam), because
|
||||
# we want to avoid these params being subject to shrinkage in adam.
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
loss, _ = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
batch=batch,
|
||||
is_training=True,
|
||||
warmup=0.0,
|
||||
)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
except RuntimeError as e:
|
||||
if "CUDA out of memory" in str(e):
|
||||
logging.error(
|
||||
"Your GPU ran out of memory with the current "
|
||||
"max_duration setting. We recommend decreasing "
|
||||
"max_duration and trying again.\n"
|
||||
f"Failing criterion: {criterion} "
|
||||
f"(={crit_values[criterion]}) ..."
|
||||
)
|
||||
raise
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
GigaSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -133,7 +133,7 @@ results at:
|
||||
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless5-M-2022-05-13>
|
||||
|
||||
|
||||
### LibriSpeech BPE training results (Pruned Stateless Transducer 3)
|
||||
### LibriSpeech BPE training results (Pruned Stateless Transducer 3, 2022-04-29)
|
||||
|
||||
[pruned_transducer_stateless3](./pruned_transducer_stateless3)
|
||||
Same as `Pruned Stateless Transducer 2` but using the XL subset from
|
||||
@ -286,6 +286,67 @@ for epoch in 27; do
|
||||
done
|
||||
```
|
||||
|
||||
### LibriSpeech BPE training results (Pruned Transducer 3, 2022-05-13)
|
||||
|
||||
Same setup as [pruned_transducer_stateless3](./pruned_transducer_stateless3) (2022-04-29)
|
||||
but change `--giga-prob` from 0.8 to 0.9. Also use `repeat` on gigaspeech XL
|
||||
subset so that the gigaspeech dataloader never exhausts.
|
||||
|
||||
| | test-clean | test-other | comment |
|
||||
|-------------------------------------|------------|------------|---------------------------------------------|
|
||||
| greedy search (max sym per frame 1) | 2.03 | 4.70 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||
| modified beam search | 2.00 | 4.63 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||
| fast beam search | 2.10 | 4.68 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||
|
||||
The training commands are:
|
||||
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
||||
|
||||
./prepare.sh
|
||||
./prepare_giga_speech.sh
|
||||
|
||||
./pruned_transducer_stateless3/train.py \
|
||||
--world-size 8 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 0 \
|
||||
--full-libri 1 \
|
||||
--exp-dir pruned_transducer_stateless3/exp-0.9 \
|
||||
--max-duration 300 \
|
||||
--use-fp16 1 \
|
||||
--lr-epochs 4 \
|
||||
--num-workers 2 \
|
||||
--giga-prob 0.9
|
||||
```
|
||||
|
||||
The tensorboard log is available at
|
||||
<https://tensorboard.dev/experiment/HpocR7dKS9KCQkJeYxfXug/>
|
||||
|
||||
Decoding commands:
|
||||
|
||||
```bash
|
||||
for iter in 1224000; do
|
||||
for avg in 14; do
|
||||
for method in greedy_search modified_beam_search fast_beam_search ; do
|
||||
./pruned_transducer_stateless3/decode.py \
|
||||
--iter $iter \
|
||||
--avg $avg \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp-0.9/ \
|
||||
--max-duration 600 \
|
||||
--decoding-method $method \
|
||||
--max-sym-per-frame 1 \
|
||||
--beam 4 \
|
||||
--max-contexts 32
|
||||
done
|
||||
done
|
||||
done
|
||||
```
|
||||
|
||||
The pretrained models, training logs, decoding logs, and decoding results
|
||||
can be found at
|
||||
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13>
|
||||
|
||||
|
||||
### LibriSpeech BPE training results (Pruned Transducer 2)
|
||||
|
||||
[pruned_transducer_stateless2](./pruned_transducer_stateless2)
|
||||
|
@ -145,7 +145,14 @@ def generate_lexicon(
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(str(model_file))
|
||||
|
||||
words_pieces: List[List[str]] = sp.encode(words, out_type=str)
|
||||
# Convert word to word piece IDs instead of word piece strings
|
||||
# to avoid OOV tokens.
|
||||
words_pieces_ids: List[List[int]] = sp.encode(words, out_type=int)
|
||||
|
||||
# Now convert word piece IDs back to word piece strings.
|
||||
words_pieces: List[List[str]] = [
|
||||
sp.id_to_piece(ids) for ids in words_pieces_ids
|
||||
]
|
||||
|
||||
lexicon = []
|
||||
for word, pieces in zip(words, words_pieces):
|
||||
|
77
egs/librispeech/ASR/local/validate_bpe_lexicon.py
Executable file
77
egs/librispeech/ASR/local/validate_bpe_lexicon.py
Executable file
@ -0,0 +1,77 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This script checks that there are no OOV tokens in the BPE-based lexicon.
|
||||
|
||||
Usage example:
|
||||
|
||||
python3 ./local/validate_bpe_lexicon.py \
|
||||
--lexicon /path/to/lexicon.txt \
|
||||
--bpe-model /path/to/bpe.model
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple
|
||||
|
||||
import sentencepiece as spm
|
||||
|
||||
from icefall.lexicon import read_lexicon
|
||||
|
||||
# Map word to word pieces
|
||||
Lexicon = List[Tuple[str, List[str]]]
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--lexicon",
|
||||
required=True,
|
||||
type=Path,
|
||||
help="Path to lexicon.txt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
required=True,
|
||||
type=Path,
|
||||
help="Path to bpe.model",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
assert args.lexicon.is_file(), args.lexicon
|
||||
assert args.bpe_model.is_file(), args.bpe_model
|
||||
|
||||
lexicon = read_lexicon(args.lexicon)
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(str(args.bpe_model))
|
||||
|
||||
word_pieces = set(sp.id_to_piece(list(range(sp.vocab_size()))))
|
||||
for word, pieces in lexicon:
|
||||
for p in pieces:
|
||||
if p not in word_pieces:
|
||||
raise ValueError(f"The word {word} contains an OOV token {p}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -184,13 +184,20 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
done > $lang_dir/transcript_words.txt
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/bpe.model ]; then
|
||||
./local/train_bpe_model.py \
|
||||
--lang-dir $lang_dir \
|
||||
--vocab-size $vocab_size \
|
||||
--transcript $lang_dir/transcript_words.txt
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||
./local/prepare_lang_bpe.py --lang-dir $lang_dir
|
||||
|
||||
log "Validating $lang_dir/lexicon.txt"
|
||||
./local/validate_bpe_lexicon.py \
|
||||
--lexicon $lang_dir/lexicon.txt \
|
||||
--bpe-model $lang_dir/bpe.model
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
@ -116,8 +116,6 @@ def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
assert args.jit is False, "Support torchscript will be added later"
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
@ -159,6 +157,11 @@ def main():
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
# We won't use the forward() method of the model in C++, so just ignore
|
||||
# it here.
|
||||
# Otherwise, one of its arguments is a ragged tensor and is not
|
||||
# torch scriptabe.
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
|
@ -23,7 +23,7 @@ Usage:
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--method greedy_search \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(2) beam search
|
||||
./pruned_transducer_stateless/pretrained.py \
|
||||
@ -32,7 +32,7 @@ Usage:
|
||||
--method beam_search \
|
||||
--beam-size 4 \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(3) modified beam search
|
||||
./pruned_transducer_stateless/pretrained.py \
|
||||
@ -41,7 +41,7 @@ Usage:
|
||||
--method modified_beam_search \
|
||||
--beam-size 4 \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(4) fast beam search
|
||||
./pruned_transducer_stateless/pretrained.py \
|
||||
@ -50,7 +50,7 @@ Usage:
|
||||
--method fast_beam_search \
|
||||
--beam-size 4 \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
You can also use `./pruned_transducer_stateless/exp/epoch-xx.pt`.
|
||||
|
||||
@ -233,6 +233,9 @@ def main():
|
||||
logging.info("Creating model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||
model.load_state_dict(checkpoint["model"], strict=False)
|
||||
model.to(device)
|
||||
|
@ -29,6 +29,7 @@ from decoder import Decoder
|
||||
def test_decoder():
|
||||
vocab_size = 3
|
||||
blank_id = 0
|
||||
unk_id = 2
|
||||
embedding_dim = 128
|
||||
context_size = 4
|
||||
|
||||
@ -36,6 +37,7 @@ def test_decoder():
|
||||
vocab_size=vocab_size,
|
||||
embedding_dim=embedding_dim,
|
||||
blank_id=blank_id,
|
||||
unk_id=unk_id,
|
||||
context_size=context_size,
|
||||
)
|
||||
N = 100
|
||||
|
50
egs/librispeech/ASR/pruned_transducer_stateless/test_model.py
Executable file
50
egs/librispeech/ASR/pruned_transducer_stateless/test_model.py
Executable file
@ -0,0 +1,50 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./pruned_transducer_stateless/test_model.py
|
||||
"""
|
||||
|
||||
import torch
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
|
||||
def test_model():
|
||||
params = get_params()
|
||||
params.vocab_size = 500
|
||||
params.blank_id = 0
|
||||
params.context_size = 2
|
||||
params.unk_id = 2
|
||||
|
||||
model = get_transducer_model(params)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
print(f"Number of model parameters: {num_param}")
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
torch.jit.script(model)
|
||||
|
||||
|
||||
def main():
|
||||
test_model()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -112,10 +112,13 @@ class Conformer(EncoderInterface):
|
||||
x, pos_emb = self.encoder_pos(x)
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
# Caution: We assume the subsampling factor is 4!
|
||||
lengths = ((x_lens - 1) // 2 - 1) // 2
|
||||
|
||||
# lengths = ((x_lens - 1) // 2 - 1) // 2 # issue an warning
|
||||
#
|
||||
# Note: rounding_mode in torch.div() is available only in torch >= 1.8.0
|
||||
lengths = (((x_lens - 1) >> 1) - 1) >> 1
|
||||
|
||||
assert x.size(0) == lengths.max().item()
|
||||
mask = make_pad_mask(lengths)
|
||||
|
||||
|
@ -51,7 +51,11 @@ import sentencepiece as spm
|
||||
import torch
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
@ -64,8 +68,19 @@ def get_parser():
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
help="""It specifies the checkpoint to use for averaging.
|
||||
Note: Epoch counts from 0.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -74,7 +89,7 @@ def get_parser():
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -116,8 +131,6 @@ def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
assert args.jit is False, "Support torchscript will be added later"
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
@ -141,7 +154,24 @@ def main():
|
||||
|
||||
model.to(device)
|
||||
|
||||
if params.avg == 1:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
@ -159,6 +189,11 @@ def main():
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
# We won't use the forward() method of the model in C++, so just ignore
|
||||
# it here.
|
||||
# Otherwise, one of its arguments is a ragged tensor and is not
|
||||
# torch scriptabe.
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
|
@ -23,16 +23,34 @@ Usage:
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--method greedy_search \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(1) beam search
|
||||
(2) beam search
|
||||
./pruned_transducer_stateless2/pretrained.py \
|
||||
--checkpoint ./pruned_transducer_stateless2/exp/pretrained.pt \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--method beam_search \
|
||||
--beam-size 4 \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(3) modified beam search
|
||||
./pruned_transducer_stateless2/pretrained.py \
|
||||
--checkpoint ./pruned_transducer_stateless2/exp/pretrained.pt \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--method modified_beam_search \
|
||||
--beam-size 4 \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(4) fast beam search
|
||||
./pruned_transducer_stateless2/pretrained.py \
|
||||
--checkpoint ./pruned_transducer_stateless2/exp/pretrained.pt \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--method fast_beam_search \
|
||||
--beam-size 4 \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
You can also use `./pruned_transducer_stateless2/exp/epoch-xx.pt`.
|
||||
|
||||
@ -79,9 +97,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
help="""Path to bpe.model.
|
||||
Used only when method is ctc-decoding.
|
||||
""",
|
||||
help="""Path to bpe.model.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -117,7 +133,33 @@ def get_parser():
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Used only when --method is beam_search and modified_beam_search",
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -244,9 +286,9 @@ def main():
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=8.0,
|
||||
max_contexts=32,
|
||||
max_states=8,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
@ -254,6 +296,7 @@ def main():
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
|
||||
@ -263,6 +306,7 @@ def main():
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
|
@ -212,7 +212,10 @@ class ScaledLinear(nn.Linear):
|
||||
return self.weight * self.weight_scale.exp()
|
||||
|
||||
def get_bias(self):
|
||||
return None if self.bias is None else self.bias * self.bias_scale.exp()
|
||||
if self.bias is None or self.bias_scale is None:
|
||||
return None
|
||||
|
||||
return self.bias * self.bias_scale.exp()
|
||||
|
||||
def forward(self, input: Tensor) -> Tensor:
|
||||
return torch.nn.functional.linear(
|
||||
@ -255,7 +258,11 @@ class ScaledConv1d(nn.Conv1d):
|
||||
return self.weight * self.weight_scale.exp()
|
||||
|
||||
def get_bias(self):
|
||||
return None if self.bias is None else self.bias * self.bias_scale.exp()
|
||||
bias = self.bias
|
||||
bias_scale = self.bias_scale
|
||||
if bias is None or bias_scale is None:
|
||||
return None
|
||||
return bias * bias_scale.exp()
|
||||
|
||||
def forward(self, input: Tensor) -> Tensor:
|
||||
F = torch.nn.functional
|
||||
@ -269,7 +276,7 @@ class ScaledConv1d(nn.Conv1d):
|
||||
self.get_weight(),
|
||||
self.get_bias(),
|
||||
self.stride,
|
||||
_single(0),
|
||||
(0,),
|
||||
self.dilation,
|
||||
self.groups,
|
||||
)
|
||||
@ -319,7 +326,12 @@ class ScaledConv2d(nn.Conv2d):
|
||||
return self.weight * self.weight_scale.exp()
|
||||
|
||||
def get_bias(self):
|
||||
return None if self.bias is None else self.bias * self.bias_scale.exp()
|
||||
# see https://github.com/pytorch/pytorch/issues/24135
|
||||
bias = self.bias
|
||||
bias_scale = self.bias_scale
|
||||
if bias is None or bias_scale is None:
|
||||
return None
|
||||
return bias * bias_scale.exp()
|
||||
|
||||
def _conv_forward(self, input, weight):
|
||||
F = torch.nn.functional
|
||||
@ -333,7 +345,7 @@ class ScaledConv2d(nn.Conv2d):
|
||||
weight,
|
||||
self.get_bias(),
|
||||
self.stride,
|
||||
_pair(0),
|
||||
(0, 0),
|
||||
self.dilation,
|
||||
self.groups,
|
||||
)
|
||||
@ -398,6 +410,9 @@ class ActivationBalancer(torch.nn.Module):
|
||||
self.max_abs = max_abs
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
if torch.jit.is_scripting():
|
||||
return x
|
||||
|
||||
return ActivationBalancerFunction.apply(
|
||||
x,
|
||||
self.channel_dim,
|
||||
@ -444,6 +459,8 @@ class DoubleSwish(torch.nn.Module):
|
||||
"""Return double-swish activation function which is an approximation to Swish(Swish(x)),
|
||||
that we approximate closely with x * sigmoid(x-1).
|
||||
"""
|
||||
if torch.jit.is_scripting():
|
||||
return x * torch.sigmoid(x - 1.0)
|
||||
return DoubleSwishFunction.apply(x)
|
||||
|
||||
|
||||
|
@ -23,6 +23,7 @@ To run this file, do:
|
||||
python ./pruned_transducer_stateless2/test_model.py
|
||||
"""
|
||||
|
||||
import torch
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
|
||||
@ -31,9 +32,14 @@ def test_model():
|
||||
params.vocab_size = 500
|
||||
params.blank_id = 0
|
||||
params.context_size = 2
|
||||
params.unk_id = 2
|
||||
|
||||
model = get_transducer_model(params)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
print(f"Number of model parameters: {num_param}")
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
torch.jit.script(model)
|
||||
|
||||
|
||||
def main():
|
||||
|
@ -695,7 +695,7 @@ def train_one_epoch(
|
||||
display_and_save_batch(batch, params=params, sp=sp)
|
||||
raise
|
||||
|
||||
if params.print_diagnostics and batch_idx == 5:
|
||||
if params.print_diagnostics and batch_idx == 30:
|
||||
return
|
||||
|
||||
if (
|
||||
@ -839,10 +839,7 @@ def run(rank, world_size, args):
|
||||
scheduler.load_state_dict(checkpoints["scheduler"])
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2 ** 22
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
diagnostic = diagnostics.attach_diagnostics(model)
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
|
@ -52,7 +52,11 @@ import sentencepiece as spm
|
||||
import torch
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
@ -65,8 +69,19 @@ def get_parser():
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
help="""It specifies the checkpoint to use for averaging.
|
||||
Note: Epoch counts from 0.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -75,7 +90,7 @@ def get_parser():
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -117,8 +132,6 @@ def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
assert args.jit is False, "Support torchscript will be added later"
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
@ -142,7 +155,24 @@ def main():
|
||||
|
||||
model.to(device)
|
||||
|
||||
if params.avg == 1:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
@ -160,6 +190,11 @@ def main():
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
# We won't use the forward() method of the model in C++, so just ignore
|
||||
# it here.
|
||||
# Otherwise, one of its arguments is a ragged tensor and is not
|
||||
# torch scriptabe.
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
|
@ -23,16 +23,34 @@ Usage:
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--method greedy_search \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(1) beam search
|
||||
(2) beam search
|
||||
./pruned_transducer_stateless3/pretrained.py \
|
||||
--checkpoint ./pruned_transducer_stateless3/exp/pretrained.pt \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--method beam_search \
|
||||
--beam-size 4 \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(3) modified beam search
|
||||
./pruned_transducer_stateless3/pretrained.py \
|
||||
--checkpoint ./pruned_transducer_stateless3/exp/pretrained.pt \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--method modified_beam_search \
|
||||
--beam-size 4 \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(4) fast beam search
|
||||
./pruned_transducer_stateless3/pretrained.py \
|
||||
--checkpoint ./pruned_transducer_stateless3/exp/pretrained.pt \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--method fast_beam_search \
|
||||
--beam-size 4 \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
You can also use `./pruned_transducer_stateless3/exp/epoch-xx.pt`.
|
||||
|
||||
@ -79,9 +97,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
help="""Path to bpe.model.
|
||||
Used only when method is ctc-decoding.
|
||||
""",
|
||||
help="""Path to bpe.model.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -117,7 +133,33 @@ def get_parser():
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Used only when --method is beam_search and modified_beam_search",
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -244,9 +286,9 @@ def main():
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=8.0,
|
||||
max_contexts=32,
|
||||
max_states=8,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
@ -254,6 +296,7 @@ def main():
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
|
||||
@ -263,6 +306,7 @@ def main():
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
|
50
egs/librispeech/ASR/pruned_transducer_stateless3/test_model.py
Executable file
50
egs/librispeech/ASR/pruned_transducer_stateless3/test_model.py
Executable file
@ -0,0 +1,50 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./pruned_transducer_stateless3/test_model.py
|
||||
"""
|
||||
|
||||
import torch
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
|
||||
def test_model():
|
||||
params = get_params()
|
||||
params.vocab_size = 500
|
||||
params.blank_id = 0
|
||||
params.context_size = 2
|
||||
params.unk_id = 2
|
||||
|
||||
model = get_transducer_model(params)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
print(f"Number of model parameters: {num_param}")
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
torch.jit.script(model)
|
||||
|
||||
|
||||
def main():
|
||||
test_model()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
69
egs/librispeech/ASR/pruned_transducer_stateless3/test_scaling.py
Executable file
69
egs/librispeech/ASR/pruned_transducer_stateless3/test_scaling.py
Executable file
@ -0,0 +1,69 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./pruned_transducer_stateless3/test_scaling.py
|
||||
"""
|
||||
|
||||
import torch
|
||||
from scaling import ActivationBalancer, ScaledConv1d, ScaledConv2d
|
||||
|
||||
|
||||
def test_scaled_conv1d():
|
||||
for bias in [True, False]:
|
||||
conv1d = ScaledConv1d(
|
||||
3,
|
||||
6,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=bias,
|
||||
)
|
||||
torch.jit.script(conv1d)
|
||||
|
||||
|
||||
def test_scaled_conv2d():
|
||||
for bias in [True, False]:
|
||||
conv2d = ScaledConv2d(
|
||||
in_channels=1,
|
||||
out_channels=3,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
bias=bias,
|
||||
)
|
||||
torch.jit.script(conv2d)
|
||||
|
||||
|
||||
def test_activation_balancer():
|
||||
act = ActivationBalancer(
|
||||
channel_dim=1, max_abs=10.0, min_positive=0.05, max_positive=1.0
|
||||
)
|
||||
torch.jit.script(act)
|
||||
|
||||
|
||||
def main():
|
||||
test_scaled_conv1d()
|
||||
test_scaled_conv2d()
|
||||
test_activation_balancer()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -767,7 +767,7 @@ def train_one_epoch(
|
||||
scaler.update()
|
||||
optimizer.zero_grad()
|
||||
|
||||
if params.print_diagnostics and batch_idx == 5:
|
||||
if params.print_diagnostics and batch_idx == 30:
|
||||
return
|
||||
|
||||
if (
|
||||
@ -938,10 +938,7 @@ def run(rank, world_size, args):
|
||||
scheduler.load_state_dict(checkpoints["scheduler"])
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2 ** 22
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
diagnostic = diagnostics.attach_diagnostics(model)
|
||||
|
||||
librispeech = LibriSpeech(manifest_dir=args.manifest_dir)
|
||||
|
||||
@ -968,6 +965,7 @@ def run(rank, world_size, args):
|
||||
train_giga_cuts = gigaspeech.train_S_cuts()
|
||||
|
||||
train_giga_cuts = filter_short_and_long_utterances(train_giga_cuts)
|
||||
train_giga_cuts = train_giga_cuts.repeat(times=None)
|
||||
|
||||
if args.enable_musan:
|
||||
cuts_musan = load_manifest(
|
||||
|
50
egs/librispeech/ASR/pruned_transducer_stateless4/test_model.py
Executable file
50
egs/librispeech/ASR/pruned_transducer_stateless4/test_model.py
Executable file
@ -0,0 +1,50 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./pruned_transducer_stateless4/test_model.py
|
||||
"""
|
||||
|
||||
import torch
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
|
||||
def test_model():
|
||||
params = get_params()
|
||||
params.vocab_size = 500
|
||||
params.blank_id = 0
|
||||
params.context_size = 2
|
||||
params.unk_id = 2
|
||||
|
||||
model = get_transducer_model(params)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
print(f"Number of model parameters: {num_param}")
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
torch.jit.script(model)
|
||||
|
||||
|
||||
def main():
|
||||
test_model()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -724,7 +724,7 @@ def train_one_epoch(
|
||||
scaler.update()
|
||||
optimizer.zero_grad()
|
||||
|
||||
if params.print_diagnostics and batch_idx == 5:
|
||||
if params.print_diagnostics and batch_idx == 30:
|
||||
return
|
||||
|
||||
if (
|
||||
@ -888,10 +888,7 @@ def run(rank, world_size, args):
|
||||
scheduler.load_state_dict(checkpoints["scheduler"])
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2 ** 22
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
diagnostic = diagnostics.attach_diagnostics(model)
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
|
@ -94,7 +94,7 @@ class LstmEncoder(EncoderInterface):
|
||||
)
|
||||
|
||||
if False:
|
||||
# It is commented out as DPP complains that not all parameters are
|
||||
# It is commented out as DDP complains that not all parameters are
|
||||
# used. Need more checks later for the reason.
|
||||
#
|
||||
# Caution: We assume the dataloader returns utterances with
|
||||
@ -107,7 +107,7 @@ class LstmEncoder(EncoderInterface):
|
||||
)
|
||||
|
||||
packed_rnn_out, _ = self.rnn(packed_x)
|
||||
rnn_out, _ = pad_packed_sequence(packed_x, batch_first=True)
|
||||
rnn_out, _ = pad_packed_sequence(packed_rnn_out, batch_first=True)
|
||||
else:
|
||||
rnn_out, _ = self.rnn(x)
|
||||
|
||||
|
@ -97,8 +97,7 @@ class Transducer(nn.Module):
|
||||
y_lens = row_splits[1:] - row_splits[:-1]
|
||||
|
||||
blank_id = self.decoder.blank_id
|
||||
sos_id = self.decoder.sos_id
|
||||
sos_y = add_sos(y, sos_id=sos_id)
|
||||
sos_y = add_sos(y, sos_id=blank_id)
|
||||
|
||||
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||
sos_y_padded = sos_y_padded.to(torch.int64)
|
||||
|
@ -109,10 +109,12 @@ class Conformer(Transformer):
|
||||
x, pos_emb = self.encoder_pos(x)
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
# Caution: We assume the subsampling factor is 4!
|
||||
lengths = ((x_lens - 1) // 2 - 1) // 2
|
||||
|
||||
# lengths = ((x_lens - 1) // 2 - 1) // 2 # issue an warning
|
||||
#
|
||||
# Note: rounding_mode in torch.div() is available only in torch >= 1.8.0
|
||||
lengths = (((x_lens - 1) >> 1) - 1) >> 1
|
||||
|
||||
assert x.size(0) == lengths.max().item()
|
||||
mask = make_pad_mask(lengths)
|
||||
|
@ -183,8 +183,6 @@ def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
assert args.jit is False, "Support torchscript will be added later"
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
@ -226,6 +224,11 @@ def main():
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
# We won't use the forward() method of the model in C++, so just ignore
|
||||
# it here.
|
||||
# Otherwise, one of its arguments is a ragged tensor and is not
|
||||
# torch scriptabe.
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
|
@ -14,6 +14,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
@ -55,8 +57,8 @@ class Joiner(nn.Module):
|
||||
|
||||
N = encoder_out.size(0)
|
||||
|
||||
encoder_out_len = encoder_out_len.tolist()
|
||||
decoder_out_len = decoder_out_len.tolist()
|
||||
encoder_out_len: List[int] = encoder_out_len.tolist()
|
||||
decoder_out_len: List[int] = decoder_out_len.tolist()
|
||||
|
||||
encoder_out_list = [
|
||||
encoder_out[i, : encoder_out_len[i], :] for i in range(N)
|
||||
|
49
egs/librispeech/ASR/transducer_stateless/test_model.py
Executable file
49
egs/librispeech/ASR/transducer_stateless/test_model.py
Executable file
@ -0,0 +1,49 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./transducer_stateless/test_model.py
|
||||
"""
|
||||
|
||||
import torch
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
|
||||
def test_model():
|
||||
params = get_params()
|
||||
params.vocab_size = 500
|
||||
params.blank_id = 0
|
||||
params.context_size = 2
|
||||
|
||||
model = get_transducer_model(params)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
print(f"Number of model parameters: {num_param}")
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
torch.jit.script(model)
|
||||
|
||||
|
||||
def main():
|
||||
test_model()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -523,7 +523,7 @@ def train_one_epoch(
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
if params.print_diagnostics and batch_idx == 5:
|
||||
if params.print_diagnostics and batch_idx == 30:
|
||||
return
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
@ -635,10 +635,7 @@ def run(rank, world_size, args):
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2 ** 22
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
diagnostic = diagnostics.attach_diagnostics(model)
|
||||
|
||||
train_cuts = librispeech.train_clean_100_cuts()
|
||||
if params.full_libri:
|
||||
|
@ -115,8 +115,6 @@ def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
assert args.jit is False, "Support torchscript will be added later"
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
@ -158,6 +156,11 @@ def main():
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
# We won't use the forward() method of the model in C++, so just ignore
|
||||
# it here.
|
||||
# Otherwise, one of its arguments is a ragged tensor and is not
|
||||
# torch scriptabe.
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
|
@ -14,6 +14,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
@ -30,7 +32,8 @@ class Joiner(nn.Module):
|
||||
self,
|
||||
encoder_out: torch.Tensor,
|
||||
decoder_out: torch.Tensor,
|
||||
*unused,
|
||||
unused_encoder_out_len: Optional[torch.Tensor] = None,
|
||||
unused_decoder_out_len: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
@ -38,10 +41,12 @@ class Joiner(nn.Module):
|
||||
Output from the encoder. Its shape is (N, T, self.input_dim).
|
||||
decoder_out:
|
||||
Output from the decoder. Its shape is (N, U, self.input_dim).
|
||||
unused:
|
||||
unused_encoder_out_len:
|
||||
This is a placeholder so that we can reuse
|
||||
transducer_stateless/beam_search.py in this folder as that
|
||||
script assumes the joiner networks accepts 4 inputs.
|
||||
unused_decoder_out_len:
|
||||
Just a placeholder.
|
||||
Returns:
|
||||
Return a tensor of shape (N, T, U, self.output_dim).
|
||||
"""
|
||||
|
49
egs/librispeech/ASR/transducer_stateless2/test_model.py
Executable file
49
egs/librispeech/ASR/transducer_stateless2/test_model.py
Executable file
@ -0,0 +1,49 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./transducer_stateless2/test_model.py
|
||||
"""
|
||||
|
||||
import torch
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
|
||||
def test_model():
|
||||
params = get_params()
|
||||
params.vocab_size = 500
|
||||
params.blank_id = 0
|
||||
params.context_size = 2
|
||||
|
||||
model = get_transducer_model(params)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
print(f"Number of model parameters: {num_param}")
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
torch.jit.script(model)
|
||||
|
||||
|
||||
def main():
|
||||
test_model()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -511,7 +511,7 @@ def train_one_epoch(
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
if params.print_diagnostics and batch_idx == 5:
|
||||
if params.print_diagnostics and batch_idx == 30:
|
||||
return
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
@ -623,10 +623,7 @@ def run(rank, world_size, args):
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2 ** 22
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
diagnostic = diagnostics.attach_diagnostics(model)
|
||||
|
||||
train_cuts = librispeech.train_clean_100_cuts()
|
||||
if params.full_libri:
|
||||
|
@ -184,8 +184,6 @@ def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
assert args.jit is False, "Support torchscript will be added later"
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
@ -229,6 +227,11 @@ def main():
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
# We won't use the forward() method of the model in C++, so just ignore
|
||||
# it here.
|
||||
# Otherwise, one of its arguments is a ragged tensor and is not
|
||||
# torch scriptabe.
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
|
32
egs/spgispeech/ASR/README.md
Normal file
32
egs/spgispeech/ASR/README.md
Normal file
@ -0,0 +1,32 @@
|
||||
# SPGISpeech
|
||||
|
||||
SPGISpeech consists of 5,000 hours of recorded company earnings calls and their respective
|
||||
transcriptions. The original calls were split into slices ranging from 5 to 15 seconds in
|
||||
length to allow easy training for speech recognition systems. Calls represent a broad
|
||||
cross-section of international business English; SPGISpeech contains approximately 50,000
|
||||
speakers, one of the largest numbers of any speech corpus, and offers a variety of L1 and
|
||||
L2 English accents. The format of each WAV file is single channel, 16kHz, 16 bit audio.
|
||||
|
||||
Transcription text represents the output of several stages of manual post-processing.
|
||||
As such, the text contains polished English orthography following a detailed style guide,
|
||||
including proper casing, punctuation, and denormalized non-standard words such as numbers
|
||||
and acronyms, making SPGISpeech suited for training fully formatted end-to-end models.
|
||||
|
||||
Official reference:
|
||||
|
||||
O’Neill, P.K., Lavrukhin, V., Majumdar, S., Noroozi, V., Zhang, Y., Kuchaiev, O., Balam,
|
||||
J., Dovzhenko, Y., Freyberg, K., Shulman, M.D., Ginsburg, B., Watanabe, S., & Kucsko, G.
|
||||
(2021). SPGISpeech: 5, 000 hours of transcribed financial audio for fully formatted
|
||||
end-to-end speech recognition. ArXiv, abs/2104.02014.
|
||||
|
||||
ArXiv link: https://arxiv.org/abs/2104.02014
|
||||
|
||||
## Performance Record
|
||||
|
||||
| Decoding method | val WER | val CER |
|
||||
|---------------------------|------------|---------|
|
||||
| greedy search | 2.40 | 0.99 |
|
||||
| modified beam search | 2.24 | 0.91 |
|
||||
| fast beam search | 2.35 | 0.97 |
|
||||
|
||||
See [RESULTS](/egs/spgispeech/ASR/RESULTS.md) for details.
|
73
egs/spgispeech/ASR/RESULTS.md
Normal file
73
egs/spgispeech/ASR/RESULTS.md
Normal file
@ -0,0 +1,73 @@
|
||||
## Results
|
||||
|
||||
### SPGISpeech BPE training results (Pruned Transducer)
|
||||
|
||||
#### 2022-05-11
|
||||
|
||||
#### Conformer encoder + embedding decoder
|
||||
|
||||
Conformer encoder + non-current decoder. The decoder
|
||||
contains only an embedding layer, a Conv1d (with kernel size 2) and a linear
|
||||
layer (to transform tensor dim).
|
||||
|
||||
The WERs are
|
||||
|
||||
| | dev | val | comment |
|
||||
|---------------------------|------------|------------|------------------------------------------|
|
||||
| greedy search | 2.46 | 2.40 | --avg-last-n 10 --max-duration 500 |
|
||||
| modified beam search | 2.28 | 2.24 | --avg-last-n 10 --max-duration 500 --beam-size 4 |
|
||||
| fast beam search | 2.38 | 2.35 | --avg-last-n 10 --max-duration 500 --beam-size 4 --max-contexts 4 --max-states 8 |
|
||||
|
||||
**NOTE:** SPGISpeech transcripts can be prepared in `ortho` or `norm` ways, which refer to whether the
|
||||
transcripts are orthographic or normalized. These WERs correspond to the normalized transcription
|
||||
scenario.
|
||||
|
||||
The training command for reproducing is given below:
|
||||
|
||||
```
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
||||
|
||||
./pruned_transducer_stateless2/train.py \
|
||||
--world-size 8 \
|
||||
--num-epochs 20 \
|
||||
--start-epoch 0 \
|
||||
--exp-dir pruned_transducer_stateless2/exp \
|
||||
--max-duration 200 \
|
||||
--prune-range 5 \
|
||||
--lr-factor 5 \
|
||||
--lm-scale 0.25 \
|
||||
--use-fp16 True
|
||||
```
|
||||
|
||||
The decoding command is:
|
||||
```
|
||||
# greedy search
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--iter 696000 --avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
# modified beam search
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--iter 696000 --avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
# fast beam search
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--iter 696000 --avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 1500 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
```
|
||||
|
||||
Pretrained model is available at <https://huggingface.co/desh2608/icefall-asr-spgispeech-pruned-transducer-stateless2>
|
||||
|
||||
The tensorboard training log can be found at
|
||||
<https://tensorboard.dev/experiment/ExSoBmrPRx6liMTGLu0Tgw/#scalars>
|
0
egs/spgispeech/ASR/local/__init__.py
Normal file
0
egs/spgispeech/ASR/local/__init__.py
Normal file
1
egs/spgispeech/ASR/local/compile_hlg.py
Symbolic link
1
egs/spgispeech/ASR/local/compile_hlg.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/compile_hlg.py
|
107
egs/spgispeech/ASR/local/compute_fbank_musan.py
Executable file
107
egs/spgispeech/ASR/local/compute_fbank_musan.py
Executable file
@ -0,0 +1,107 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file computes fbank features of the musan dataset.
|
||||
It looks for manifests in the directory data/manifests.
|
||||
|
||||
The generated fbank features are saved in data/fbank.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, LilcomChunkyWriter, combine
|
||||
from lhotse.features.kaldifeat import (
|
||||
KaldifeatFbank,
|
||||
KaldifeatFbankConfig,
|
||||
KaldifeatFrameOptions,
|
||||
KaldifeatMelOptions,
|
||||
)
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def compute_fbank_musan():
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path("data/fbank")
|
||||
|
||||
sampling_rate = 16000
|
||||
num_mel_bins = 80
|
||||
|
||||
extractor = KaldifeatFbank(
|
||||
KaldifeatFbankConfig(
|
||||
frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate),
|
||||
mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins),
|
||||
device="cuda",
|
||||
)
|
||||
)
|
||||
|
||||
dataset_parts = (
|
||||
"music",
|
||||
"speech",
|
||||
"noise",
|
||||
)
|
||||
manifests = read_manifests_if_cached(
|
||||
dataset_parts=dataset_parts, output_dir=src_dir
|
||||
)
|
||||
assert manifests is not None
|
||||
|
||||
musan_cuts_path = src_dir / "cuts_musan.jsonl.gz"
|
||||
|
||||
if musan_cuts_path.is_file():
|
||||
logging.info(f"{musan_cuts_path} already exists - skipping")
|
||||
return
|
||||
|
||||
logging.info("Extracting features for Musan")
|
||||
|
||||
# create chunks of Musan with duration 5 - 10 seconds
|
||||
musan_cuts = (
|
||||
CutSet.from_manifests(
|
||||
recordings=combine(
|
||||
part["recordings"] for part in manifests.values()
|
||||
)
|
||||
)
|
||||
.cut_into_windows(10.0)
|
||||
.filter(lambda c: c.duration > 5)
|
||||
.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=output_dir / "feats_musan",
|
||||
batch_duration=500,
|
||||
num_workers=4,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
)
|
||||
|
||||
logging.info(f"Saving to {musan_cuts_path}")
|
||||
musan_cuts.to_file(musan_cuts_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
compute_fbank_musan()
|
151
egs/spgispeech/ASR/local/compute_fbank_spgispeech.py
Executable file
151
egs/spgispeech/ASR/local/compute_fbank_spgispeech.py
Executable file
@ -0,0 +1,151 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Johns Hopkins University (authors: Desh Raj)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file computes fbank features of the SPGISpeech dataset.
|
||||
It looks for manifests in the directory data/manifests.
|
||||
|
||||
The generated fbank features are saved in data/fbank.
|
||||
"""
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import LilcomChunkyWriter, load_manifest_lazy
|
||||
from lhotse.features.kaldifeat import (
|
||||
KaldifeatFbank,
|
||||
KaldifeatFbankConfig,
|
||||
KaldifeatFrameOptions,
|
||||
KaldifeatMelOptions,
|
||||
)
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--num-splits",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of splits for the train set.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--start",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Start index of the train set split.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--stop",
|
||||
type=int,
|
||||
default=-1,
|
||||
help="Stop index of the train set split.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--test",
|
||||
action="store_true",
|
||||
help="If set, only compute features for the dev and val set.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--train",
|
||||
action="store_true",
|
||||
help="If set, only compute features for the train set.",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def compute_fbank_spgispeech(args):
|
||||
assert args.train or args.test, "Either train or test must be set."
|
||||
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path("data/fbank")
|
||||
|
||||
sampling_rate = 16000
|
||||
num_mel_bins = 80
|
||||
|
||||
extractor = KaldifeatFbank(
|
||||
KaldifeatFbankConfig(
|
||||
frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate),
|
||||
mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins),
|
||||
device="cuda",
|
||||
)
|
||||
)
|
||||
|
||||
if args.train:
|
||||
logging.info("Processing train")
|
||||
cut_set = load_manifest_lazy(src_dir / "cuts_train_raw.jsonl.gz")
|
||||
chunk_size = len(cut_set) // args.num_splits
|
||||
cut_sets = cut_set.split_lazy(
|
||||
output_dir=src_dir / f"cuts_train_raw_split{args.num_splits}",
|
||||
chunk_size=chunk_size,
|
||||
)
|
||||
start = args.start
|
||||
stop = (
|
||||
min(args.stop, args.num_splits)
|
||||
if args.stop > 0
|
||||
else args.num_splits
|
||||
)
|
||||
num_digits = len(str(args.num_splits))
|
||||
for i in range(start, stop):
|
||||
idx = f"{i + 1}".zfill(num_digits)
|
||||
cuts_train_idx_path = src_dir / f"cuts_train_{idx}.jsonl.gz"
|
||||
logging.info(f"Processing train split {i}")
|
||||
cs = cut_sets[i].compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=output_dir / f"feats_train_{idx}",
|
||||
batch_duration=500,
|
||||
num_workers=4,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
cs.to_file(cuts_train_idx_path)
|
||||
|
||||
if args.test:
|
||||
for partition in ["dev", "val"]:
|
||||
if (output_dir / f"cuts_{partition}.jsonl.gz").is_file():
|
||||
logging.info(f"{partition} already exists - skipping.")
|
||||
continue
|
||||
logging.info(f"Processing {partition}")
|
||||
cut_set = load_manifest_lazy(
|
||||
src_dir / f"cuts_{partition}_raw.jsonl.gz"
|
||||
)
|
||||
cut_set = cut_set.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=output_dir / f"feats_{partition}",
|
||||
manifest_path=src_dir / f"cuts_{partition}.jsonl.gz",
|
||||
batch_duration=500,
|
||||
num_workers=4,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
args = get_args()
|
||||
compute_fbank_spgispeech(args)
|
1
egs/spgispeech/ASR/local/prepare_lang.py
Symbolic link
1
egs/spgispeech/ASR/local/prepare_lang.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/prepare_lang.py
|
1
egs/spgispeech/ASR/local/prepare_lang_bpe.py
Symbolic link
1
egs/spgispeech/ASR/local/prepare_lang_bpe.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/prepare_lang_bpe.py
|
81
egs/spgispeech/ASR/local/prepare_splits.py
Executable file
81
egs/spgispeech/ASR/local/prepare_splits.py
Executable file
@ -0,0 +1,81 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Johns Hopkins University (authors: Desh Raj)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file splits the training set into train and dev sets.
|
||||
"""
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def split_spgispeech_train():
|
||||
src_dir = Path("data/manifests")
|
||||
|
||||
manifests = read_manifests_if_cached(
|
||||
dataset_parts=["train", "val"],
|
||||
output_dir=src_dir,
|
||||
prefix="spgispeech",
|
||||
suffix="jsonl.gz",
|
||||
lazy=True,
|
||||
)
|
||||
assert manifests is not None
|
||||
|
||||
train_dev_cuts = CutSet.from_manifests(
|
||||
recordings=manifests["train"]["recordings"],
|
||||
supervisions=manifests["train"]["supervisions"],
|
||||
)
|
||||
dev_cuts = train_dev_cuts.subset(first=4000)
|
||||
train_cuts = train_dev_cuts.filter(lambda c: c not in dev_cuts)
|
||||
|
||||
# Add speed perturbation
|
||||
train_cuts = (
|
||||
train_cuts
|
||||
+ train_cuts.perturb_speed(0.9)
|
||||
+ train_cuts.perturb_speed(1.1)
|
||||
)
|
||||
|
||||
# Write the manifests to disk.
|
||||
train_cuts.to_file(src_dir / "cuts_train_raw.jsonl.gz")
|
||||
dev_cuts.to_file(src_dir / "cuts_dev_raw.jsonl.gz")
|
||||
|
||||
# Also write the val set to disk.
|
||||
val_cuts = CutSet.from_manifests(
|
||||
recordings=manifests["val"]["recordings"],
|
||||
supervisions=manifests["val"]["supervisions"],
|
||||
)
|
||||
val_cuts.to_file(src_dir / "cuts_val_raw.jsonl.gz")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
split_spgispeech_train()
|
1
egs/spgispeech/ASR/local/train_bpe_model.py
Symbolic link
1
egs/spgispeech/ASR/local/train_bpe_model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/train_bpe_model.py
|
196
egs/spgispeech/ASR/prepare.sh
Executable file
196
egs/spgispeech/ASR/prepare.sh
Executable file
@ -0,0 +1,196 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
nj=20
|
||||
stage=-1
|
||||
stop_stage=100
|
||||
|
||||
# We assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, they will be downloaded
|
||||
# by this script automatically.
|
||||
#
|
||||
# - $dl_dir/spgispeech
|
||||
# You can find train.csv, val.csv, train, and val in this directory, which belong
|
||||
# to the SPGISpeech dataset.
|
||||
#
|
||||
# - $dl_dir/musan
|
||||
# This directory contains the following directories downloaded from
|
||||
# http://www.openslr.org/17/
|
||||
#
|
||||
# - music
|
||||
# - noise
|
||||
# - speech
|
||||
dl_dir=$PWD/download
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
# vocab size for sentence piece models.
|
||||
# It will generate data/lang_bpe_xxx,
|
||||
# data/lang_bpe_yyy if the array contains xxx, yyy
|
||||
vocab_sizes=(
|
||||
500
|
||||
)
|
||||
|
||||
# All files generated by this script are saved in "data".
|
||||
# You can safely remove "data" and rerun this script to regenerate it.
|
||||
mkdir -p data
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
log "dl_dir: $dl_dir"
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
log "Stage 0: Download data"
|
||||
|
||||
# If you have pre-downloaded it to /path/to/spgispeech,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/spgispeech $dl_dir/spgispeech
|
||||
#
|
||||
if [ ! -d $dl_dir/spgispeech/train.csv ]; then
|
||||
lhotse download spgispeech $dl_dir
|
||||
fi
|
||||
|
||||
# If you have pre-downloaded it to /path/to/musan,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/musan $dl_dir/
|
||||
#
|
||||
if [ ! -d $dl_dir/musan ]; then
|
||||
lhotse download musan $dl_dir
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
log "Stage 1: Prepare SPGISpeech manifest (may take ~1h)"
|
||||
# We assume that you have downloaded the SPGISpeech corpus
|
||||
# to $dl_dir/spgispeech. We perform text normalization for the transcripts.
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare spgispeech -j $nj --normalize-text $dl_dir/spgispeech data/manifests
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Prepare musan manifest"
|
||||
# We assume that you have downloaded the musan corpus
|
||||
# to data/musan
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare musan $dl_dir/musan data/manifests
|
||||
lhotse combine data/manifests/recordings_{music,speech,noise}.json data/manifests/recordings_musan.jsonl.gz
|
||||
lhotse cut simple -r data/manifests/recordings_musan.jsonl.gz data/manifests/cuts_musan_raw.jsonl.gz
|
||||
fi
|
||||
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
log "Stage 3: Split train into train and dev and create cut sets."
|
||||
python local/prepare_splits.py
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "Stage 4: Compute fbank features for spgispeech dev and val"
|
||||
mkdir -p data/fbank
|
||||
python local/compute_fbank_spgispeech.py --test
|
||||
fi
|
||||
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "Stage 5: Compute fbank features for train"
|
||||
mkdir -p data/fbank
|
||||
python local/compute_fbank_spgispeech.py --train --num-splits 20
|
||||
|
||||
log "Combine features from train splits (may take ~1h)"
|
||||
if [ ! -f data/manifests/cuts_train.jsonl.gz ]; then
|
||||
pieces=$(find data/manifests -name "cuts_train_[0-9]*.jsonl.gz")
|
||||
lhotse combine $pieces data/manifests/cuts_train.jsonl.gz
|
||||
fi
|
||||
gunzip -c data/manifests/train_cuts.jsonl.gz | shuf | gzip -c > data/manifests/train_cuts_shuf.jsonl.gz
|
||||
fi
|
||||
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
log "Stage 6: Compute fbank features for musan"
|
||||
mkdir -p data/fbank
|
||||
python local/compute_fbank_musan.py
|
||||
fi
|
||||
|
||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||
log "Stage 7: Dump transcripts for LM training"
|
||||
mkdir -p data/lm
|
||||
gunzip -c data/manifests/cuts_train_raw.jsonl.gz \
|
||||
| jq '.supervisions[0].text' \
|
||||
| sed 's:"::g' \
|
||||
> data/lm/transcript_words.txt
|
||||
fi
|
||||
|
||||
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||
log "Stage 8: Prepare BPE based lang"
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
lang_dir=data/lang_bpe_${vocab_size}
|
||||
mkdir -p $lang_dir
|
||||
|
||||
# Add special words to words.txt
|
||||
echo "<eps> 0" > $lang_dir/words.txt
|
||||
echo "!SIL 1" >> $lang_dir/words.txt
|
||||
echo "[UNK] 2" >> $lang_dir/words.txt
|
||||
|
||||
# Add regular words to words.txt
|
||||
gunzip -c data/manifests/cuts_train_raw.jsonl.gz \
|
||||
| jq '.supervisions[0].text' \
|
||||
| sed 's:"::g' \
|
||||
| sed 's: :\n:g' \
|
||||
| sort \
|
||||
| uniq \
|
||||
| sed '/^$/d' \
|
||||
| awk '{print $0,NR+2}' \
|
||||
>> $lang_dir/words.txt
|
||||
|
||||
# Add remaining special word symbols expected by LM scripts.
|
||||
num_words=$(cat $lang_dir/words.txt | wc -l)
|
||||
echo "<s> ${num_words}" >> $lang_dir/words.txt
|
||||
num_words=$(cat $lang_dir/words.txt | wc -l)
|
||||
echo "</s> ${num_words}" >> $lang_dir/words.txt
|
||||
num_words=$(cat $lang_dir/words.txt | wc -l)
|
||||
echo "#0 ${num_words}" >> $lang_dir/words.txt
|
||||
|
||||
./local/train_bpe_model.py \
|
||||
--lang-dir $lang_dir \
|
||||
--vocab-size $vocab_size \
|
||||
--transcript data/lm/transcript_words.txt
|
||||
|
||||
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||
./local/prepare_lang_bpe.py --lang-dir $lang_dir
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
||||
log "Stage 9: Train LM"
|
||||
lm_dir=data/lm
|
||||
|
||||
if [ ! -f $lm_dir/G.arpa ]; then
|
||||
./shared/make_kn_lm.py \
|
||||
-ngram-order 3 \
|
||||
-text $lm_dir/transcript_words.txt \
|
||||
-lm $lm_dir/G.arpa
|
||||
fi
|
||||
|
||||
if [ ! -f $lm_dir/G_3_gram.fst.txt ]; then
|
||||
python3 -m kaldilm \
|
||||
--read-symbol-table="data/lang_phone/words.txt" \
|
||||
--disambig-symbol='#0' \
|
||||
--max-order=3 \
|
||||
$lm_dir/G.arpa > $lm_dir/G_3_gram.fst.txt
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
||||
log "Stage 10: Compile HLG"
|
||||
./local/compile_hlg.py --lang-dir data/lang_phone
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
lang_dir=data/lang_bpe_${vocab_size}
|
||||
./local/compile_hlg.py --lang-dir $lang_dir
|
||||
done
|
||||
fi
|
@ -0,0 +1,366 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||
from lhotse.dataset import (
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.utils.data import DataLoader
|
||||
from tqdm import tqdm
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class _SeedWorkers:
|
||||
def __init__(self, seed: int):
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, worker_id: int):
|
||||
fix_random_seed(self.seed + worker_id)
|
||||
|
||||
|
||||
class SPGISpeechAsrDataModule:
|
||||
"""
|
||||
DataModule for k2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/manifests"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--enable-musan",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, select noise from MUSAN and mix it "
|
||||
"with training dataset. ",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=100.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the BucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=8,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--enable-spec-aug",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use SpecAugment for training dataset.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--spec-aug-time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Used only when --enable-spec-aug is True. "
|
||||
"It specifies the factor for time warping in SpecAugment. "
|
||||
"Larger values mean more warping. "
|
||||
"A value less than 1 means to disable time warp.",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self,
|
||||
cuts_train: CutSet,
|
||||
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||
) -> DataLoader:
|
||||
"""
|
||||
Args:
|
||||
cuts_train:
|
||||
CutSet for training.
|
||||
sampler_state_dict:
|
||||
The state dict for the training sampler.
|
||||
"""
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(
|
||||
self.args.manifest_dir / "cuts_musan.jsonl.gz"
|
||||
)
|
||||
|
||||
transforms = []
|
||||
if self.args.enable_musan:
|
||||
logging.info("Enable MUSAN")
|
||||
transforms.append(
|
||||
CutMix(
|
||||
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
||||
if self.args.concatenate_cuts:
|
||||
logging.info(
|
||||
f"Using cut concatenation with duration factor "
|
||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||
)
|
||||
# Cut concatenation should be the first transform in the list,
|
||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||
# different utterances.
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
input_transforms = []
|
||||
if self.args.enable_spec_aug:
|
||||
logging.info("Enable SpecAugment")
|
||||
logging.info(
|
||||
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
||||
)
|
||||
input_transforms.append(
|
||||
SpecAugment(
|
||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||
num_frame_masks=2,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable SpecAugment")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
input_transforms=input_transforms,
|
||||
)
|
||||
else:
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
)
|
||||
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=True,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
if sampler_state_dict is not None:
|
||||
logging.info("Loading sampler state dict")
|
||||
train_sampler.load_state_dict(sampler_state_dict)
|
||||
|
||||
# 'seed' is derived from the current random state, which will have
|
||||
# previously been set in the main process.
|
||||
seed = torch.randint(0, 100000, ()).item()
|
||||
worker_init_fn = _SeedWorkers(seed)
|
||||
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
worker_init_fn=worker_init_fn,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
)
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||
if self.args.on_the_fly_feats
|
||||
else PrecomputedFeatures(),
|
||||
)
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts, max_duration=self.args.max_duration, shuffle=False
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get SPGISpeech train cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "cuts_train_shuf.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def dev_cuts(self) -> CutSet:
|
||||
logging.info("About to get SPGISpeech dev cuts")
|
||||
return load_manifest_lazy(self.args.manifest_dir / "cuts_dev.jsonl.gz")
|
||||
|
||||
@lru_cache()
|
||||
def val_cuts(self) -> CutSet:
|
||||
logging.info("About to get SPGISpeech val cuts")
|
||||
return load_manifest_lazy(self.args.manifest_dir / "cuts_val.jsonl.gz")
|
||||
|
||||
|
||||
def test():
|
||||
parser = argparse.ArgumentParser()
|
||||
SPGISpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
adm = SPGISpeechAsrDataModule(args)
|
||||
|
||||
cuts = adm.train_cuts()
|
||||
dl = adm.train_dataloaders(cuts)
|
||||
for i, batch in tqdm(enumerate(dl)):
|
||||
if i == 100:
|
||||
break
|
||||
|
||||
cuts = adm.dev_cuts()
|
||||
dl = adm.valid_dataloaders(cuts)
|
||||
for i, batch in tqdm(enumerate(dl)):
|
||||
if i == 100:
|
||||
break
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test()
|
1
egs/spgispeech/ASR/pruned_transducer_stateless2/beam_search.py
Symbolic link
1
egs/spgispeech/ASR/pruned_transducer_stateless2/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/beam_search.py
|
1
egs/spgispeech/ASR/pruned_transducer_stateless2/conformer.py
Symbolic link
1
egs/spgispeech/ASR/pruned_transducer_stateless2/conformer.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/conformer.py
|
594
egs/spgispeech/ASR/pruned_transducer_stateless2/decode.py
Executable file
594
egs/spgispeech/ASR/pruned_transducer_stateless2/decode.py
Executable file
@ -0,0 +1,594 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--iter 696000 \
|
||||
--avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
(2) beam search
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--iter 696000 \
|
||||
--avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(3) modified beam search
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--iter 696000 \
|
||||
--avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--iter 696000 \
|
||||
--avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 1500 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import SPGISpeechAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=20,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 0.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless2/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An interger indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
batch: dict,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if greedy_search is used, it would be "greedy_search"
|
||||
If beam search with a beam size of 7 is used, it would be
|
||||
"beam_7"
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = model.device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
encoder_out, encoder_out_lens = model.encoder(
|
||||
x=feature, x_lens=feature_lens
|
||||
)
|
||||
hyps = []
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif (
|
||||
params.decoding_method == "greedy_search"
|
||||
and params.max_sym_per_frame == 1
|
||||
):
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
return {
|
||||
(
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
): hyps
|
||||
}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 100
|
||||
else:
|
||||
log_interval = 2
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for hyp_words, ref_text in zip(hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
test_set_cers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
wers_filename = (
|
||||
params.res_dir / f"wers-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(wers_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
# we also compute CER for spgispeech dataset.
|
||||
results_char = []
|
||||
for res in results:
|
||||
results_char.append((list("".join(res[0])), list("".join(res[1]))))
|
||||
cers_filename = (
|
||||
params.res_dir / f"cers-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(cers_filename, "w") as f:
|
||||
cer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results_char, enable_log=True
|
||||
)
|
||||
test_set_cers[key] = cer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(wers_filename))
|
||||
|
||||
test_set_wers = {
|
||||
k: v for k, v in sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
}
|
||||
test_set_cers = {
|
||||
k: v for k, v in sorted(test_set_cers.items(), key=lambda x: x[1])
|
||||
}
|
||||
errs_info = (
|
||||
params.res_dir
|
||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER\tCER", file=f)
|
||||
for key in test_set_wers:
|
||||
print(
|
||||
"{}\t{}\t{}".format(
|
||||
key, test_set_wers[key], test_set_cers[key]
|
||||
),
|
||||
file=f,
|
||||
)
|
||||
|
||||
s = "\nFor {}, WER/CER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key in test_set_wers:
|
||||
s += "{}\t{}\t{}{}\n".format(
|
||||
key, test_set_wers[key], test_set_cers[key], note
|
||||
)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
SPGISpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += (
|
||||
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||
)
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
spgispeech = SPGISpeechAsrDataModule(args)
|
||||
|
||||
dev_cuts = spgispeech.dev_cuts()
|
||||
val_cuts = spgispeech.val_cuts()
|
||||
|
||||
dev_dl = spgispeech.test_dataloaders(dev_cuts)
|
||||
val_dl = spgispeech.test_dataloaders(val_cuts)
|
||||
|
||||
test_sets = ["dev", "val"]
|
||||
test_dl = [dev_dl, val_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/spgispeech/ASR/pruned_transducer_stateless2/decoder.py
Symbolic link
1
egs/spgispeech/ASR/pruned_transducer_stateless2/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/decoder.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/encoder_interface.py
|
201
egs/spgispeech/ASR/pruned_transducer_stateless2/export.py
Executable file
201
egs/spgispeech/ASR/pruned_transducer_stateless2/export.py
Executable file
@ -0,0 +1,201 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
"""
|
||||
Usage:
|
||||
./pruned_transducer_stateless2/export.py \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--avg-last-n 10
|
||||
|
||||
It will generate a file exp_dir/pretrained.pt
|
||||
|
||||
To use the generated file with `pruned_transducer_stateless2/decode.py`,
|
||||
you can do:
|
||||
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/spgispeech/ASR
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--epoch 9999 \
|
||||
--avg 1 \
|
||||
--max-duration 100 \
|
||||
--bpe-model data/lang_bpe_500/bpe.model
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg-last-n",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch and --avg are ignored and it
|
||||
will use the last n checkpoints exp_dir/checkpoint-xxx.pt
|
||||
where xxx is the number of processed batches while
|
||||
saving that checkpoint.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless2/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
assert args.jit is False, "Support torchscript will be added later"
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
model.to(device)
|
||||
|
||||
if params.avg_last_n > 0:
|
||||
filenames = find_checkpoints(params.exp_dir)[: params.avg_last_n]
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
model.eval()
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
model.save(str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torch.jit.script")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
1
egs/spgispeech/ASR/pruned_transducer_stateless2/joiner.py
Symbolic link
1
egs/spgispeech/ASR/pruned_transducer_stateless2/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/joiner.py
|
1
egs/spgispeech/ASR/pruned_transducer_stateless2/model.py
Symbolic link
1
egs/spgispeech/ASR/pruned_transducer_stateless2/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/model.py
|
1
egs/spgispeech/ASR/pruned_transducer_stateless2/optim.py
Symbolic link
1
egs/spgispeech/ASR/pruned_transducer_stateless2/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/optim.py
|
1
egs/spgispeech/ASR/pruned_transducer_stateless2/scaling.py
Symbolic link
1
egs/spgispeech/ASR/pruned_transducer_stateless2/scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/scaling.py
|
1028
egs/spgispeech/ASR/pruned_transducer_stateless2/train.py
Executable file
1028
egs/spgispeech/ASR/pruned_transducer_stateless2/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/spgispeech/ASR/shared
Symbolic link
1
egs/spgispeech/ASR/shared
Symbolic link
@ -0,0 +1 @@
|
||||
../../../icefall/shared/
|
@ -38,7 +38,9 @@ def compute_fbank_yesno():
|
||||
"test",
|
||||
)
|
||||
manifests = read_manifests_if_cached(
|
||||
dataset_parts=dataset_parts, output_dir=src_dir
|
||||
dataset_parts=dataset_parts,
|
||||
output_dir=src_dir,
|
||||
prefix="yesno",
|
||||
)
|
||||
assert manifests is not None
|
||||
|
||||
|
@ -18,7 +18,8 @@
|
||||
|
||||
|
||||
import random
|
||||
from typing import List, Optional, Tuple
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
@ -28,16 +29,12 @@ class TensorDiagnosticOptions(object):
|
||||
"""Options object for tensor diagnostics:
|
||||
|
||||
Args:
|
||||
memory_limit:
|
||||
The maximum number of bytes per tensor
|
||||
(limits how many copies of the tensor we cache).
|
||||
max_eig_dim:
|
||||
The maximum dimension for which we print out eigenvalues
|
||||
(limited for speed reasons).
|
||||
"""
|
||||
|
||||
def __init__(self, memory_limit: int = (2 ** 20), max_eig_dim: int = 512):
|
||||
self.memory_limit = memory_limit
|
||||
def __init__(self, max_eig_dim: int = 512):
|
||||
self.max_eig_dim = max_eig_dim
|
||||
|
||||
def dim_is_summarized(self, size: int):
|
||||
@ -94,69 +91,131 @@ def get_tensor_stats(
|
||||
return x, count
|
||||
|
||||
|
||||
def get_diagnostics_for_dim(
|
||||
dim: int,
|
||||
tensors: List[Tensor],
|
||||
options: TensorDiagnosticOptions,
|
||||
sizes_same: bool,
|
||||
stats_type: str,
|
||||
) -> str:
|
||||
"""
|
||||
This function gets diagnostics for a dimension of a module.
|
||||
@dataclass
|
||||
class TensorAndCount:
|
||||
tensor: Tensor
|
||||
count: int
|
||||
|
||||
|
||||
class TensorDiagnostic(object):
|
||||
"""This class is not directly used by the user, it is responsible for
|
||||
collecting diagnostics for a single parameter tensor of a torch.nn.Module.
|
||||
|
||||
Args:
|
||||
dim:
|
||||
the dimension to analyze, with 0 <= dim < tensors[0].ndim
|
||||
options:
|
||||
options object
|
||||
sizes_same:
|
||||
True if all the tensor sizes are the same on this dimension
|
||||
stats_type: either "abs" or "positive" or "eigs" or "value",
|
||||
imdictates the type of stats we accumulate, abs is mean absolute
|
||||
value, "positive" is proportion of positive to nonnegative values,
|
||||
"eigs" is eigenvalues after doing outer product on this dim, sum
|
||||
over all other dimes.
|
||||
Returns:
|
||||
Diagnostic as a string, either percentiles or the actual values,
|
||||
see the code. Will return the empty string if the diagnostics did
|
||||
not make sense to print out for this dimension, e.g. dimension
|
||||
mismatch and stats_type == "eigs".
|
||||
opts:
|
||||
Options object.
|
||||
name:
|
||||
The tensor name.
|
||||
"""
|
||||
|
||||
# stats_and_counts is a list of pair (Tensor, int)
|
||||
stats_and_counts = [get_tensor_stats(x, dim, stats_type) for x in tensors]
|
||||
stats = [x[0] for x in stats_and_counts]
|
||||
counts = [x[1] for x in stats_and_counts]
|
||||
def __init__(self, opts: TensorDiagnosticOptions, name: str):
|
||||
self.name = name
|
||||
self.opts = opts
|
||||
|
||||
self.stats = None # we'll later assign a list to this data member. It's a list of dict.
|
||||
|
||||
# the keys into self.stats[dim] are strings, whose values can be
|
||||
# "abs", "value", "positive", "rms", "value".
|
||||
# The values e.g. self.stats[dim]["rms"] are lists of dataclass TensorAndCount,
|
||||
# containing a tensor and its associated count (which is the sum of the other dims
|
||||
# that we aggregated over, e.g. the number of frames and/or batch elements and/or
|
||||
# channels.
|
||||
# ... we actually accumulate the Tensors / counts any time we have the same-dim tensor,
|
||||
# only adding a new element to the list if there was a different dim.
|
||||
# if the string in the key is "eigs", if we detect a length mismatch we put None as the value.
|
||||
|
||||
def accumulate(self, x):
|
||||
"""Accumulate tensors."""
|
||||
if isinstance(x, Tuple):
|
||||
x = x[0]
|
||||
if not isinstance(x, Tensor):
|
||||
return
|
||||
x = x.detach().clone()
|
||||
if x.ndim == 0:
|
||||
x = x.unsqueeze(0)
|
||||
ndim = x.ndim
|
||||
if self.stats is None:
|
||||
self.stats = [dict() for _ in range(ndim)]
|
||||
|
||||
for dim in range(ndim):
|
||||
this_dim_stats = self.stats[dim]
|
||||
if ndim > 1:
|
||||
stats_types = ["abs", "positive", "value", "rms"]
|
||||
if x.shape[dim] <= self.opts.max_eig_dim:
|
||||
stats_types.append("eigs")
|
||||
else:
|
||||
stats_types = ["value", "abs"]
|
||||
|
||||
for stats_type in stats_types:
|
||||
stats, count = get_tensor_stats(x, dim, stats_type)
|
||||
if stats_type not in this_dim_stats:
|
||||
this_dim_stats[stats_type] = [] # list of TensorAndCount
|
||||
|
||||
done = False
|
||||
if this_dim_stats[stats_type] is None:
|
||||
# we can reach here if we detected for stats_type "eigs" that
|
||||
# where was more than one different size for this dim. Then we
|
||||
# disable accumulating this stats type, as it uses too much memory.
|
||||
continue
|
||||
for s in this_dim_stats[stats_type]:
|
||||
if s.tensor.shape == stats.shape:
|
||||
s.tensor += stats
|
||||
s.count += count
|
||||
done = True
|
||||
break
|
||||
if not done:
|
||||
if (
|
||||
this_dim_stats[stats_type] != []
|
||||
and stats_type == "eigs"
|
||||
):
|
||||
# >1 size encountered on this dim, e.g. it's a batch or time dimension,
|
||||
# don't accumulat "eigs" stats type, it uses too much memory
|
||||
this_dim_stats[stats_type] = None
|
||||
else:
|
||||
this_dim_stats[stats_type].append(
|
||||
TensorAndCount(stats, count)
|
||||
)
|
||||
|
||||
def print_diagnostics(self):
|
||||
"""Print diagnostics for each dimension of the tensor."""
|
||||
for dim, this_dim_stats in enumerate(self.stats):
|
||||
for stats_type, stats_list in this_dim_stats.items():
|
||||
# stats_type could be "rms", "value", "abs", "eigs", "positive".
|
||||
# "value" could be a list of TensorAndCount, or None
|
||||
if stats_list is None:
|
||||
assert stats_type == "eigs"
|
||||
continue
|
||||
|
||||
if stats_type == "eigs":
|
||||
try:
|
||||
stats = torch.stack(stats).sum(dim=0)
|
||||
except: # noqa
|
||||
return ""
|
||||
count = sum(counts)
|
||||
stats = stats / count
|
||||
assert len(stats_list) == 1
|
||||
stats = stats_list[0].tensor / stats_list[0].count
|
||||
try:
|
||||
eigs, _ = torch.symeig(stats)
|
||||
stats = eigs.abs().sqrt()
|
||||
except: # noqa
|
||||
print("Error getting eigenvalues, trying another method.")
|
||||
print(
|
||||
"Error getting eigenvalues, trying another method."
|
||||
)
|
||||
eigs = torch.linalg.eigvals(stats)
|
||||
stats = eigs.abs().sqrt()
|
||||
# sqrt so it reflects data magnitude, like stddev- not variance
|
||||
elif sizes_same:
|
||||
stats = torch.stack(stats).sum(dim=0)
|
||||
count = sum(counts)
|
||||
stats = stats / count
|
||||
elif len(stats_list) == 1:
|
||||
stats = stats_list[0].tensor / stats_list[0].count
|
||||
else:
|
||||
stats = [x[0] / x[1] for x in stats_and_counts]
|
||||
stats = torch.cat(stats, dim=0)
|
||||
stats = torch.cat(
|
||||
[x.tensor / x.count for x in stats_list], dim=0
|
||||
)
|
||||
|
||||
if stats_type == "rms":
|
||||
# we stored the square; after aggregation we need to take sqrt.
|
||||
stats = stats.sqrt()
|
||||
|
||||
# if `summarize` we print percentiles of the stats; else,
|
||||
# we print out individual elements.
|
||||
summarize = (not sizes_same) or options.dim_is_summarized(stats.numel())
|
||||
if summarize:
|
||||
summarize = (
|
||||
len(stats_list) > 1
|
||||
) or self.opts.dim_is_summarized(stats.numel())
|
||||
if summarize: # usually `summarize` will be true
|
||||
# print out percentiles.
|
||||
stats = stats.sort()[0]
|
||||
num_percentiles = 10
|
||||
@ -178,123 +237,23 @@ def get_diagnostics_for_dim(
|
||||
# speaking in an approximate way, how much of that largest eigenvalue
|
||||
# can be attributed to the mean of the distribution.
|
||||
norm = (stats ** 2).sum().sqrt().item()
|
||||
mean = stats.mean().item()
|
||||
rms = (stats ** 2).mean().sqrt().item()
|
||||
ans += f", norm={norm:.2g}, mean={mean:.2g}, rms={rms:.2g}"
|
||||
else:
|
||||
ans += f", norm={norm:.2g}"
|
||||
mean = stats.mean().item()
|
||||
rms = (stats ** 2).mean().sqrt().item()
|
||||
ans += f", mean={mean:.2g}, rms={rms:.2g}"
|
||||
return ans
|
||||
|
||||
# OK, "ans" contains the actual stats, e.g.
|
||||
# ans = "percentiles: [0.43 0.46 0.48 0.49 0.49 0.5 0.51 0.52 0.53 0.54 0.59], mean=0.5, rms=0.5"
|
||||
|
||||
def print_diagnostics_for_dim(
|
||||
name: str, dim: int, tensors: List[Tensor], options: TensorDiagnosticOptions
|
||||
):
|
||||
"""This function prints diagnostics for a dimension of a tensor.
|
||||
|
||||
Args:
|
||||
name:
|
||||
The tensor name.
|
||||
dim:
|
||||
The dimension to analyze, with 0 <= dim < tensors[0].ndim.
|
||||
tensors:
|
||||
List of cached tensors to get the stats.
|
||||
options:
|
||||
Options object.
|
||||
"""
|
||||
|
||||
ndim = tensors[0].ndim
|
||||
if ndim > 1:
|
||||
stats_types = ["abs", "positive", "value", "rms"]
|
||||
if tensors[0].shape[dim] <= options.max_eig_dim:
|
||||
stats_types.append("eigs")
|
||||
else:
|
||||
stats_types = ["value", "abs"]
|
||||
|
||||
for stats_type in stats_types:
|
||||
sizes = [x.shape[dim] for x in tensors]
|
||||
sizes_same = all([x == sizes[0] for x in sizes])
|
||||
s = get_diagnostics_for_dim(
|
||||
dim, tensors, options, sizes_same, stats_type
|
||||
sizes = [x.tensor.shape[0] for x in stats_list]
|
||||
size_str = (
|
||||
f"{sizes[0]}"
|
||||
if len(sizes) == 1
|
||||
else f"{min(sizes)}..{max(sizes)}"
|
||||
)
|
||||
if s == "":
|
||||
continue
|
||||
|
||||
min_size = min(sizes)
|
||||
max_size = max(sizes)
|
||||
size_str = f"{min_size}" if sizes_same else f"{min_size}..{max_size}"
|
||||
# stats_type will be "abs" or "positive".
|
||||
print(f"module={name}, dim={dim}, size={size_str}, {stats_type} {s}")
|
||||
|
||||
|
||||
class TensorDiagnostic(object):
|
||||
"""This class is not directly used by the user, it is responsible for
|
||||
collecting diagnostics for a single parameter tensor of a torch.nn.Module.
|
||||
|
||||
Args:
|
||||
opts:
|
||||
Options object.
|
||||
name:
|
||||
The tensor name.
|
||||
"""
|
||||
|
||||
def __init__(self, opts: TensorDiagnosticOptions, name: str):
|
||||
self.name = name
|
||||
self.opts = opts
|
||||
# A list to cache the tensors.
|
||||
self.saved_tensors = []
|
||||
|
||||
def accumulate(self, x):
|
||||
"""Accumulate tensors."""
|
||||
if isinstance(x, Tuple):
|
||||
x = x[0]
|
||||
if not isinstance(x, Tensor):
|
||||
return
|
||||
if x.device == torch.device("cpu"):
|
||||
x = x.detach().clone()
|
||||
else:
|
||||
x = x.detach().to("cpu", non_blocking=True)
|
||||
self.saved_tensors.append(x)
|
||||
num = len(self.saved_tensors)
|
||||
if num & (num - 1) == 0: # power of 2..
|
||||
self._limit_memory()
|
||||
|
||||
def _limit_memory(self):
|
||||
"""Only keep the newly cached tensors to limit memory."""
|
||||
if len(self.saved_tensors) > 1024:
|
||||
self.saved_tensors = self.saved_tensors[-1024:]
|
||||
return
|
||||
|
||||
tot_mem = 0.0
|
||||
for i in reversed(range(len(self.saved_tensors))):
|
||||
tot_mem += (
|
||||
self.saved_tensors[i].numel()
|
||||
* self.saved_tensors[i].element_size()
|
||||
print(
|
||||
f"module={self.name}, dim={dim}, size={size_str}, {stats_type} {ans}"
|
||||
)
|
||||
if tot_mem > self.opts.memory_limit:
|
||||
self.saved_tensors = self.saved_tensors[i:]
|
||||
return
|
||||
|
||||
def print_diagnostics(self):
|
||||
"""Print diagnostics for each dimension of the tensor."""
|
||||
if len(self.saved_tensors) == 0:
|
||||
print("{name}: no stats".format(name=self.name))
|
||||
return
|
||||
|
||||
if self.saved_tensors[0].ndim == 0:
|
||||
# Ensure there is at least one dim.
|
||||
self.saved_tensors = [x.unsqueeze(0) for x in self.saved_tensors]
|
||||
|
||||
try:
|
||||
device = torch.device("cuda")
|
||||
except: # noqa
|
||||
device = torch.device("cpu")
|
||||
|
||||
ndim = self.saved_tensors[0].ndim
|
||||
tensors = [x.to(device) for x in self.saved_tensors]
|
||||
for dim in range(ndim):
|
||||
print_diagnostics_for_dim(self.name, dim, tensors, self.opts)
|
||||
|
||||
|
||||
class ModelDiagnostic(object):
|
||||
@ -326,7 +285,7 @@ class ModelDiagnostic(object):
|
||||
|
||||
|
||||
def attach_diagnostics(
|
||||
model: nn.Module, opts: TensorDiagnosticOptions
|
||||
model: nn.Module, opts: Optional[TensorDiagnosticOptions] = None
|
||||
) -> ModelDiagnostic:
|
||||
"""Attach a ModelDiagnostic object to the model by
|
||||
1) registering forward hook and backward hook on each module, to accumulate
|
||||
@ -389,7 +348,7 @@ def attach_diagnostics(
|
||||
|
||||
|
||||
def _test_tensor_diagnostic():
|
||||
opts = TensorDiagnosticOptions(2 ** 20, 512)
|
||||
opts = TensorDiagnosticOptions(512)
|
||||
|
||||
diagnostic = TensorDiagnostic(opts, "foo")
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user