mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Implement greedy search in batch mode for transducer decoding. (#262)
This commit is contained in:
parent
b2b4d9e0b6
commit
d5c78a2238
@ -106,7 +106,7 @@ def fast_beam_search(
|
||||
def greedy_search(
|
||||
model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int
|
||||
) -> List[int]:
|
||||
"""
|
||||
"""Greedy search for a single utterance.
|
||||
Args:
|
||||
model:
|
||||
An instance of `Transducer`.
|
||||
@ -178,6 +178,64 @@ def greedy_search(
|
||||
return hyp
|
||||
|
||||
|
||||
def greedy_search_batch(
|
||||
model: Transducer, encoder_out: torch.Tensor
|
||||
) -> List[List[int]]:
|
||||
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
||||
Args:
|
||||
model:
|
||||
The transducer model.
|
||||
encoder_out:
|
||||
Output from the encoder. Its shape is (N, T, C), where N >= 1.
|
||||
Returns:
|
||||
Return a list-of-list integers containing the decoded results.
|
||||
len(ans) equals to encoder_out.size(0).
|
||||
"""
|
||||
assert encoder_out.ndim == 3
|
||||
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||
|
||||
device = model.device
|
||||
|
||||
batch_size = encoder_out.size(0)
|
||||
T = encoder_out.size(1)
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
|
||||
hyps = [[blank_id] * context_size for _ in range(batch_size)]
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
hyps,
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
) # (batch_size, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
# decoder_out: (batch_size, 1, decoder_out_dim)
|
||||
for t in range(T):
|
||||
current_encoder_out = encoder_out[:, t : t + 1, :].unsqueeze(2) # noqa
|
||||
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
|
||||
logits = model.joiner(current_encoder_out, decoder_out.unsqueeze(1))
|
||||
# logits'shape (batch_size, 1, 1, vocab_size)
|
||||
|
||||
logits = logits.squeeze(1).squeeze(1) # (batch_size, vocab_size)
|
||||
assert logits.ndim == 2, logits.shape
|
||||
y = logits.argmax(dim=1).tolist()
|
||||
emitted = False
|
||||
for i, v in enumerate(y):
|
||||
if v != blank_id:
|
||||
hyps[i].append(v)
|
||||
emitted = True
|
||||
if emitted:
|
||||
# update decoder output
|
||||
decoder_input = [h[-context_size:] for h in hyps]
|
||||
decoder_input = torch.tensor(decoder_input, device=device)
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
|
||||
ans = [h[context_size:] for h in hyps]
|
||||
return ans
|
||||
|
||||
|
||||
@dataclass
|
||||
class Hypothesis:
|
||||
# The predicted tokens so far.
|
||||
|
@ -71,6 +71,7 @@ from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from train import get_params, get_transducer_model
|
||||
@ -261,6 +262,16 @@ def decode_one_batch(
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif (
|
||||
params.decoding_method == "greedy_search"
|
||||
and params.max_sym_per_frame == 1
|
||||
):
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user