mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-09 17:14:20 +00:00
Fix
This commit is contained in:
parent
1398e07b3c
commit
d44a434fed
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/pruned_transducer_stateless2/beam_search.py
|
../../../librispeech/ASR/zipformer/beam_search.py
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/zipformer/decode_stream.py
|
../../../librispeech/ASR/zipformer/decode_stream.py
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/zipformer/decoder.py
|
../../../librispeech/ASR/zipformer/decoder.py
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/transducer_stateless/encoder_interface.py
|
../../../librispeech/ASR/zipformer/encoder_interface.py
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/zipformer/jit_pretrained.py
|
../../../librispeech/ASR/zipformer/jit_pretrained.py
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/zipformer/jit_pretrained_ctc.py
|
../../../librispeech/ASR/zipformer/jit_pretrained_ctc.py
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/zipformer/jit_pretrained_streaming.py
|
../../../librispeech/ASR/zipformer/jit_pretrained_streaming.py
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/zipformer/joiner.py
|
../../../librispeech/ASR/zipformer/joiner.py
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/zipformer/onnx_check.py
|
../../../librispeech/ASR/zipformer/onnx_check.py
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/zipformer/onnx_decode.py
|
../../../librispeech/ASR/zipformer/onnx_decode.py
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/zipformer/onnx_pretrained-streaming.py
|
../../../librispeech/ASR/zipformer/onnx_pretrained-streaming.py
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/zipformer/onnx_pretrained.py
|
../../../librispeech/ASR/zipformer/onnx_pretrained.py
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/zipformer/optim.py
|
../../../librispeech/ASR/zipformer/optim.py
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/zipformer/pretrained.py
|
../../../librispeech/ASR/zipformer/pretrained.py
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/zipformer/pretrained_ctc.py
|
../../../librispeech/ASR/zipformer/pretrained_ctc.py
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/zipformer/profile.py
|
../../../librispeech/ASR/zipformer/profile.py
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/zipformer/scaling.py
|
../../../librispeech/ASR/zipformer/scaling.py
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/zipformer/scaling_converter.py
|
../../../librispeech/ASR/zipformer/scaling_converter.py
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/zipformer/subsampling.py
|
../../../librispeech/ASR/zipformer/subsampling.py
|
@ -26,22 +26,20 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
|||||||
# For non-streaming model training:
|
# For non-streaming model training:
|
||||||
./zipformer/train.py \
|
./zipformer/train.py \
|
||||||
--world-size 4 \
|
--world-size 4 \
|
||||||
--num-epochs 30 \
|
--num-epochs 120 \
|
||||||
--start-epoch 1 \
|
--start-epoch 1 \
|
||||||
--use-fp16 1 \
|
--use-fp16 1 \
|
||||||
--exp-dir zipformer/exp \
|
--exp-dir zipformer/exp \
|
||||||
--full-libri 1 \
|
|
||||||
--max-duration 1000
|
--max-duration 1000
|
||||||
|
|
||||||
# For streaming model training:
|
# For streaming model training:
|
||||||
./zipformer/train.py \
|
./zipformer/train.py \
|
||||||
--world-size 4 \
|
--world-size 4 \
|
||||||
--num-epochs 30 \
|
--num-epochs 120 \
|
||||||
--start-epoch 1 \
|
--start-epoch 1 \
|
||||||
--use-fp16 1 \
|
--use-fp16 1 \
|
||||||
--exp-dir zipformer/exp \
|
--exp-dir zipformer/exp \
|
||||||
--causal 1 \
|
--causal 1 \
|
||||||
--full-libri 1 \
|
|
||||||
--max-duration 1000
|
--max-duration 1000
|
||||||
|
|
||||||
It supports training with:
|
It supports training with:
|
||||||
|
@ -1 +1 @@
|
|||||||
/k2-dev/yangyifan/icefall-bengaliai/egs/librispeech/ASR/zipformer/zipformer.py
|
../../../librispeech/ASR/zipformer/zipformer.py
|
@ -1,445 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang,
|
|
||||||
# Zengwei Yao)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
"""
|
|
||||||
This script loads a checkpoint and uses it to decode waves.
|
|
||||||
You can generate the checkpoint with the following command:
|
|
||||||
|
|
||||||
- For non-streaming model:
|
|
||||||
|
|
||||||
./zipformer/export.py \
|
|
||||||
--exp-dir ./zipformer/exp \
|
|
||||||
--use-ctc 1 \
|
|
||||||
--tokens data/lang_bpe_500/tokens.txt \
|
|
||||||
--epoch 30 \
|
|
||||||
--avg 9
|
|
||||||
|
|
||||||
- For streaming model:
|
|
||||||
|
|
||||||
./zipformer/export.py \
|
|
||||||
--exp-dir ./zipformer/exp \
|
|
||||||
--use-ctc 1 \
|
|
||||||
--causal 1 \
|
|
||||||
--tokens data/lang_bpe_500/tokens.txt \
|
|
||||||
--epoch 30 \
|
|
||||||
--avg 9
|
|
||||||
|
|
||||||
Usage of this script:
|
|
||||||
|
|
||||||
(1) ctc-decoding
|
|
||||||
./zipformer/pretrained_ctc.py \
|
|
||||||
--checkpoint ./zipformer/exp/pretrained.pt \
|
|
||||||
--tokens data/lang_bpe_500/tokens.txt \
|
|
||||||
--method ctc-decoding \
|
|
||||||
--sample-rate 16000 \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav
|
|
||||||
|
|
||||||
(2) 1best
|
|
||||||
./zipformer/pretrained_ctc.py \
|
|
||||||
--checkpoint ./zipformer/exp/pretrained.pt \
|
|
||||||
--HLG data/lang_bpe_500/HLG.pt \
|
|
||||||
--words-file data/lang_bpe_500/words.txt \
|
|
||||||
--method 1best \
|
|
||||||
--sample-rate 16000 \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav
|
|
||||||
|
|
||||||
(3) nbest-rescoring
|
|
||||||
./zipformer/pretrained_ctc.py \
|
|
||||||
--checkpoint ./zipformer/exp/pretrained.pt \
|
|
||||||
--HLG data/lang_bpe_500/HLG.pt \
|
|
||||||
--words-file data/lang_bpe_500/words.txt \
|
|
||||||
--G data/lm/G_4_gram.pt \
|
|
||||||
--method nbest-rescoring \
|
|
||||||
--sample-rate 16000 \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav
|
|
||||||
|
|
||||||
|
|
||||||
(4) whole-lattice-rescoring
|
|
||||||
./zipformer/pretrained_ctc.py \
|
|
||||||
--checkpoint ./zipformer/exp/pretrained.pt \
|
|
||||||
--HLG data/lang_bpe_500/HLG.pt \
|
|
||||||
--words-file data/lang_bpe_500/words.txt \
|
|
||||||
--G data/lm/G_4_gram.pt \
|
|
||||||
--method whole-lattice-rescoring \
|
|
||||||
--sample-rate 16000 \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
import math
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import kaldifeat
|
|
||||||
import torch
|
|
||||||
import torchaudio
|
|
||||||
from ctc_decode import get_decoding_params
|
|
||||||
from export import num_tokens
|
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
|
||||||
from train import add_model_arguments, get_model, get_params
|
|
||||||
|
|
||||||
from icefall.decode import (
|
|
||||||
get_lattice,
|
|
||||||
one_best_decoding,
|
|
||||||
rescore_with_n_best_list,
|
|
||||||
rescore_with_whole_lattice,
|
|
||||||
)
|
|
||||||
from icefall.utils import get_texts
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--checkpoint",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="Path to the checkpoint. "
|
|
||||||
"The checkpoint is assumed to be saved by "
|
|
||||||
"icefall.checkpoint.save_checkpoint().",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--context-size",
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--words-file",
|
|
||||||
type=str,
|
|
||||||
help="""Path to words.txt.
|
|
||||||
Used only when method is not ctc-decoding.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--HLG",
|
|
||||||
type=str,
|
|
||||||
help="""Path to HLG.pt.
|
|
||||||
Used only when method is not ctc-decoding.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--tokens",
|
|
||||||
type=str,
|
|
||||||
help="""Path to tokens.txt.
|
|
||||||
Used only when method is ctc-decoding.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--method",
|
|
||||||
type=str,
|
|
||||||
default="1best",
|
|
||||||
help="""Decoding method.
|
|
||||||
Possible values are:
|
|
||||||
(0) ctc-decoding - Use CTC decoding. It uses a token table,
|
|
||||||
i.e., lang_dir/tokens.txt, to convert
|
|
||||||
word pieces to words. It needs neither a lexicon
|
|
||||||
nor an n-gram LM.
|
|
||||||
(1) 1best - Use the best path as decoding output. Only
|
|
||||||
the transformer encoder output is used for decoding.
|
|
||||||
We call it HLG decoding.
|
|
||||||
(2) nbest-rescoring. Extract n paths from the decoding lattice,
|
|
||||||
rescore them with an LM, the path with
|
|
||||||
the highest score is the decoding result.
|
|
||||||
We call it HLG decoding + nbest n-gram LM rescoring.
|
|
||||||
(3) whole-lattice-rescoring - Use an LM to rescore the
|
|
||||||
decoding lattice and then use 1best to decode the
|
|
||||||
rescored lattice.
|
|
||||||
We call it HLG decoding + whole-lattice n-gram LM rescoring.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--G",
|
|
||||||
type=str,
|
|
||||||
help="""An LM for rescoring.
|
|
||||||
Used only when method is
|
|
||||||
whole-lattice-rescoring or nbest-rescoring.
|
|
||||||
It's usually a 4-gram LM.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--num-paths",
|
|
||||||
type=int,
|
|
||||||
default=100,
|
|
||||||
help="""
|
|
||||||
Used only when method is attention-decoder.
|
|
||||||
It specifies the size of n-best list.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--ngram-lm-scale",
|
|
||||||
type=float,
|
|
||||||
default=1.3,
|
|
||||||
help="""
|
|
||||||
Used only when method is whole-lattice-rescoring and nbest-rescoring.
|
|
||||||
It specifies the scale for n-gram LM scores.
|
|
||||||
(Note: You need to tune it on a dataset.)
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--nbest-scale",
|
|
||||||
type=float,
|
|
||||||
default=1.0,
|
|
||||||
help="""
|
|
||||||
Used only when method is nbest-rescoring.
|
|
||||||
It specifies the scale for lattice.scores when
|
|
||||||
extracting n-best lists. A smaller value results in
|
|
||||||
more unique number of paths with the risk of missing
|
|
||||||
the best path.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--sample-rate",
|
|
||||||
type=int,
|
|
||||||
default=16000,
|
|
||||||
help="The sample rate of the input sound file",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"sound_files",
|
|
||||||
type=str,
|
|
||||||
nargs="+",
|
|
||||||
help="The input sound file(s) to transcribe. "
|
|
||||||
"Supported formats are those supported by torchaudio.load(). "
|
|
||||||
"For example, wav and flac are supported. "
|
|
||||||
"The sample rate has to be 16kHz.",
|
|
||||||
)
|
|
||||||
|
|
||||||
add_model_arguments(parser)
|
|
||||||
|
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
def read_sound_files(
|
|
||||||
filenames: List[str], expected_sample_rate: float = 16000
|
|
||||||
) -> List[torch.Tensor]:
|
|
||||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
|
||||||
Args:
|
|
||||||
filenames:
|
|
||||||
A list of sound filenames.
|
|
||||||
expected_sample_rate:
|
|
||||||
The expected sample rate of the sound files.
|
|
||||||
Returns:
|
|
||||||
Return a list of 1-D float32 torch tensors.
|
|
||||||
"""
|
|
||||||
ans = []
|
|
||||||
for f in filenames:
|
|
||||||
wave, sample_rate = torchaudio.load(f)
|
|
||||||
assert sample_rate == expected_sample_rate, (
|
|
||||||
f"expected sample rate: {expected_sample_rate}. " f"Given: {sample_rate}"
|
|
||||||
)
|
|
||||||
# We use only the first channel
|
|
||||||
ans.append(wave[0].contiguous())
|
|
||||||
return ans
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def main():
|
|
||||||
parser = get_parser()
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
params = get_params()
|
|
||||||
# add decoding params
|
|
||||||
params.update(get_decoding_params())
|
|
||||||
params.update(vars(args))
|
|
||||||
|
|
||||||
token_table = k2.SymbolTable.from_file(params.tokens)
|
|
||||||
params.vocab_size = num_tokens(token_table)
|
|
||||||
params.blank_id = token_table["<blk>"]
|
|
||||||
assert params.blank_id == 0
|
|
||||||
|
|
||||||
logging.info(f"{params}")
|
|
||||||
|
|
||||||
device = torch.device("cpu")
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
device = torch.device("cuda", 0)
|
|
||||||
|
|
||||||
logging.info(f"device: {device}")
|
|
||||||
|
|
||||||
logging.info("Creating model")
|
|
||||||
model = get_model(params)
|
|
||||||
|
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
|
||||||
logging.info(f"Number of model parameters: {num_param}")
|
|
||||||
|
|
||||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
|
||||||
model.load_state_dict(checkpoint["model"], strict=False)
|
|
||||||
model.to(device)
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
logging.info("Constructing Fbank computer")
|
|
||||||
opts = kaldifeat.FbankOptions()
|
|
||||||
opts.device = device
|
|
||||||
opts.frame_opts.dither = 0
|
|
||||||
opts.frame_opts.snip_edges = False
|
|
||||||
opts.frame_opts.samp_freq = params.sample_rate
|
|
||||||
opts.mel_opts.num_bins = params.feature_dim
|
|
||||||
|
|
||||||
fbank = kaldifeat.Fbank(opts)
|
|
||||||
|
|
||||||
logging.info(f"Reading sound files: {params.sound_files}")
|
|
||||||
waves = read_sound_files(
|
|
||||||
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
|
||||||
)
|
|
||||||
waves = [w.to(device) for w in waves]
|
|
||||||
|
|
||||||
logging.info("Decoding started")
|
|
||||||
features = fbank(waves)
|
|
||||||
feature_lengths = [f.size(0) for f in features]
|
|
||||||
|
|
||||||
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
|
||||||
feature_lengths = torch.tensor(feature_lengths, device=device)
|
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.forward_encoder(features, feature_lengths)
|
|
||||||
ctc_output = model.ctc_output(encoder_out) # (N, T, C)
|
|
||||||
|
|
||||||
batch_size = ctc_output.shape[0]
|
|
||||||
supervision_segments = torch.tensor(
|
|
||||||
[
|
|
||||||
[i, 0, feature_lengths[i].item() // params.subsampling_factor]
|
|
||||||
for i in range(batch_size)
|
|
||||||
],
|
|
||||||
dtype=torch.int32,
|
|
||||||
)
|
|
||||||
|
|
||||||
if params.method == "ctc-decoding":
|
|
||||||
logging.info("Use CTC decoding")
|
|
||||||
max_token_id = params.vocab_size - 1
|
|
||||||
|
|
||||||
H = k2.ctc_topo(
|
|
||||||
max_token=max_token_id,
|
|
||||||
modified=False,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
|
|
||||||
lattice = get_lattice(
|
|
||||||
nnet_output=ctc_output,
|
|
||||||
decoding_graph=H,
|
|
||||||
supervision_segments=supervision_segments,
|
|
||||||
search_beam=params.search_beam,
|
|
||||||
output_beam=params.output_beam,
|
|
||||||
min_active_states=params.min_active_states,
|
|
||||||
max_active_states=params.max_active_states,
|
|
||||||
subsampling_factor=params.subsampling_factor,
|
|
||||||
)
|
|
||||||
|
|
||||||
best_path = one_best_decoding(
|
|
||||||
lattice=lattice, use_double_scores=params.use_double_scores
|
|
||||||
)
|
|
||||||
token_ids = get_texts(best_path)
|
|
||||||
hyps = [[token_table[i] for i in ids] for ids in token_ids]
|
|
||||||
elif params.method in [
|
|
||||||
"1best",
|
|
||||||
"nbest-rescoring",
|
|
||||||
"whole-lattice-rescoring",
|
|
||||||
]:
|
|
||||||
logging.info(f"Loading HLG from {params.HLG}")
|
|
||||||
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
|
||||||
HLG = HLG.to(device)
|
|
||||||
if not hasattr(HLG, "lm_scores"):
|
|
||||||
# For whole-lattice-rescoring and attention-decoder
|
|
||||||
HLG.lm_scores = HLG.scores.clone()
|
|
||||||
|
|
||||||
if params.method in [
|
|
||||||
"nbest-rescoring",
|
|
||||||
"whole-lattice-rescoring",
|
|
||||||
]:
|
|
||||||
logging.info(f"Loading G from {params.G}")
|
|
||||||
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
|
|
||||||
G = G.to(device)
|
|
||||||
if params.method == "whole-lattice-rescoring":
|
|
||||||
# Add epsilon self-loops to G as we will compose
|
|
||||||
# it with the whole lattice later
|
|
||||||
G = k2.add_epsilon_self_loops(G)
|
|
||||||
G = k2.arc_sort(G)
|
|
||||||
|
|
||||||
# G.lm_scores is used to replace HLG.lm_scores during
|
|
||||||
# LM rescoring.
|
|
||||||
G.lm_scores = G.scores.clone()
|
|
||||||
|
|
||||||
lattice = get_lattice(
|
|
||||||
nnet_output=ctc_output,
|
|
||||||
decoding_graph=HLG,
|
|
||||||
supervision_segments=supervision_segments,
|
|
||||||
search_beam=params.search_beam,
|
|
||||||
output_beam=params.output_beam,
|
|
||||||
min_active_states=params.min_active_states,
|
|
||||||
max_active_states=params.max_active_states,
|
|
||||||
subsampling_factor=params.subsampling_factor,
|
|
||||||
)
|
|
||||||
|
|
||||||
if params.method == "1best":
|
|
||||||
logging.info("Use HLG decoding")
|
|
||||||
best_path = one_best_decoding(
|
|
||||||
lattice=lattice, use_double_scores=params.use_double_scores
|
|
||||||
)
|
|
||||||
if params.method == "nbest-rescoring":
|
|
||||||
logging.info("Use HLG decoding + LM rescoring")
|
|
||||||
best_path_dict = rescore_with_n_best_list(
|
|
||||||
lattice=lattice,
|
|
||||||
G=G,
|
|
||||||
num_paths=params.num_paths,
|
|
||||||
lm_scale_list=[params.ngram_lm_scale],
|
|
||||||
nbest_scale=params.nbest_scale,
|
|
||||||
)
|
|
||||||
best_path = next(iter(best_path_dict.values()))
|
|
||||||
elif params.method == "whole-lattice-rescoring":
|
|
||||||
logging.info("Use HLG decoding + LM rescoring")
|
|
||||||
best_path_dict = rescore_with_whole_lattice(
|
|
||||||
lattice=lattice,
|
|
||||||
G_with_epsilon_loops=G,
|
|
||||||
lm_scale_list=[params.ngram_lm_scale],
|
|
||||||
)
|
|
||||||
best_path = next(iter(best_path_dict.values()))
|
|
||||||
|
|
||||||
hyps = get_texts(best_path)
|
|
||||||
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
|
||||||
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unsupported decoding method: {params.method}")
|
|
||||||
|
|
||||||
s = "\n"
|
|
||||||
for filename, hyp in zip(params.sound_files, hyps):
|
|
||||||
words = " ".join(hyp)
|
|
||||||
words = words.replace("▁", " ").strip()
|
|
||||||
s += f"{filename}:\n{words}\n\n"
|
|
||||||
logging.info(s)
|
|
||||||
|
|
||||||
logging.info("Decoding Done")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
main()
|
|
1
egs/librispeech/ASR/zipformer/pretrained_ctc.py
Symbolic link
1
egs/librispeech/ASR/zipformer/pretrained_ctc.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/pretrained.py
|
@ -1,104 +0,0 @@
|
|||||||
# Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
"""
|
|
||||||
This file replaces various modules in a model.
|
|
||||||
Specifically, ActivationBalancer is replaced with an identity operator;
|
|
||||||
Whiten is also replaced with an identity operator;
|
|
||||||
BasicNorm is replaced by a module with `exp` removed.
|
|
||||||
"""
|
|
||||||
|
|
||||||
import copy
|
|
||||||
from typing import List, Tuple
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from scaling import (
|
|
||||||
Balancer,
|
|
||||||
Dropout3,
|
|
||||||
ScaleGrad,
|
|
||||||
SwooshL,
|
|
||||||
SwooshLOnnx,
|
|
||||||
SwooshR,
|
|
||||||
SwooshROnnx,
|
|
||||||
Whiten,
|
|
||||||
)
|
|
||||||
from zipformer import CompactRelPositionalEncoding
|
|
||||||
|
|
||||||
|
|
||||||
# Copied from https://pytorch.org/docs/1.9.0/_modules/torch/nn/modules/module.html#Module.get_submodule # noqa
|
|
||||||
# get_submodule was added to nn.Module at v1.9.0
|
|
||||||
def get_submodule(model, target):
|
|
||||||
if target == "":
|
|
||||||
return model
|
|
||||||
atoms: List[str] = target.split(".")
|
|
||||||
mod: torch.nn.Module = model
|
|
||||||
for item in atoms:
|
|
||||||
if not hasattr(mod, item):
|
|
||||||
raise AttributeError(
|
|
||||||
mod._get_name() + " has no " "attribute `" + item + "`"
|
|
||||||
)
|
|
||||||
mod = getattr(mod, item)
|
|
||||||
if not isinstance(mod, torch.nn.Module):
|
|
||||||
raise AttributeError("`" + item + "` is not " "an nn.Module")
|
|
||||||
return mod
|
|
||||||
|
|
||||||
|
|
||||||
def convert_scaled_to_non_scaled(
|
|
||||||
model: nn.Module,
|
|
||||||
inplace: bool = False,
|
|
||||||
is_pnnx: bool = False,
|
|
||||||
is_onnx: bool = False,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
The model to be converted.
|
|
||||||
inplace:
|
|
||||||
If True, the input model is modified inplace.
|
|
||||||
If False, the input model is copied and we modify the copied version.
|
|
||||||
is_pnnx:
|
|
||||||
True if we are going to export the model for PNNX.
|
|
||||||
is_onnx:
|
|
||||||
True if we are going to export the model for ONNX.
|
|
||||||
Return:
|
|
||||||
Return a model without scaled layers.
|
|
||||||
"""
|
|
||||||
if not inplace:
|
|
||||||
model = copy.deepcopy(model)
|
|
||||||
|
|
||||||
d = {}
|
|
||||||
for name, m in model.named_modules():
|
|
||||||
if isinstance(m, (Balancer, Dropout3, ScaleGrad, Whiten)):
|
|
||||||
d[name] = nn.Identity()
|
|
||||||
elif is_onnx and isinstance(m, SwooshR):
|
|
||||||
d[name] = SwooshROnnx()
|
|
||||||
elif is_onnx and isinstance(m, SwooshL):
|
|
||||||
d[name] = SwooshLOnnx()
|
|
||||||
elif is_onnx and isinstance(m, CompactRelPositionalEncoding):
|
|
||||||
# We want to recreate the positional encoding vector when
|
|
||||||
# the input changes, so we have to use torch.jit.script()
|
|
||||||
# to replace torch.jit.trace()
|
|
||||||
d[name] = torch.jit.script(m)
|
|
||||||
|
|
||||||
for k, v in d.items():
|
|
||||||
if "." in k:
|
|
||||||
parent, child = k.rsplit(".", maxsplit=1)
|
|
||||||
setattr(get_submodule(model, parent), child, v)
|
|
||||||
else:
|
|
||||||
setattr(model, k, v)
|
|
||||||
|
|
||||||
return model
|
|
1
egs/librispeech/ASR/zipformer/scaling_converter.py
Symbolic link
1
egs/librispeech/ASR/zipformer/scaling_converter.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/scaling.py
|
@ -1,876 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2022-2023 Xiaomi Corporation (Authors: Wei Kang,
|
|
||||||
# Fangjun Kuang,
|
|
||||||
# Zengwei Yao)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
"""
|
|
||||||
Usage:
|
|
||||||
./zipformer/streaming_decode.py \
|
|
||||||
--epoch 28 \
|
|
||||||
--avg 15 \
|
|
||||||
--causal 1 \
|
|
||||||
--chunk-size 32 \
|
|
||||||
--left-context-frames 256 \
|
|
||||||
--exp-dir ./zipformer/exp \
|
|
||||||
--decoding-method greedy_search \
|
|
||||||
--num-decode-streams 2000
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
import math
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Dict, List, Optional, Tuple
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import numpy as np
|
|
||||||
import sentencepiece as spm
|
|
||||||
import torch
|
|
||||||
from asr_datamodule import LibriSpeechAsrDataModule
|
|
||||||
from decode_stream import DecodeStream
|
|
||||||
from kaldifeat import Fbank, FbankOptions
|
|
||||||
from lhotse import CutSet
|
|
||||||
from streaming_beam_search import (
|
|
||||||
fast_beam_search_one_best,
|
|
||||||
greedy_search,
|
|
||||||
modified_beam_search,
|
|
||||||
)
|
|
||||||
from torch import Tensor, nn
|
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
|
||||||
from train import add_model_arguments, get_params, get_model
|
|
||||||
|
|
||||||
from icefall.checkpoint import (
|
|
||||||
average_checkpoints,
|
|
||||||
average_checkpoints_with_averaged_model,
|
|
||||||
find_checkpoints,
|
|
||||||
load_checkpoint,
|
|
||||||
)
|
|
||||||
from icefall.utils import (
|
|
||||||
AttributeDict,
|
|
||||||
make_pad_mask,
|
|
||||||
setup_logger,
|
|
||||||
store_transcripts,
|
|
||||||
str2bool,
|
|
||||||
write_error_stats,
|
|
||||||
)
|
|
||||||
|
|
||||||
LOG_EPS = math.log(1e-10)
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--epoch",
|
|
||||||
type=int,
|
|
||||||
default=28,
|
|
||||||
help="""It specifies the checkpoint to use for decoding.
|
|
||||||
Note: Epoch counts from 1.
|
|
||||||
You can specify --avg to use more checkpoints for model averaging.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--iter",
|
|
||||||
type=int,
|
|
||||||
default=0,
|
|
||||||
help="""If positive, --epoch is ignored and it
|
|
||||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
||||||
You can specify --avg to use more checkpoints for model averaging.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--avg",
|
|
||||||
type=int,
|
|
||||||
default=15,
|
|
||||||
help="Number of checkpoints to average. Automatically select "
|
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
|
||||||
"'--epoch' and '--iter'",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--use-averaged-model",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="Whether to load averaged model. Currently it only supports "
|
|
||||||
"using --epoch. If True, it would decode with the averaged model "
|
|
||||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
|
||||||
"Actually only the models with epoch number of `epoch-avg` and "
|
|
||||||
"`epoch` are loaded for averaging. ",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--exp-dir",
|
|
||||||
type=str,
|
|
||||||
default="zipformer/exp",
|
|
||||||
help="The experiment dir",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--bpe-model",
|
|
||||||
type=str,
|
|
||||||
default="data/lang_bpe_500/bpe.model",
|
|
||||||
help="Path to the BPE model",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--decoding-method",
|
|
||||||
type=str,
|
|
||||||
default="greedy_search",
|
|
||||||
help="""Supported decoding methods are:
|
|
||||||
greedy_search
|
|
||||||
modified_beam_search
|
|
||||||
fast_beam_search
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--num_active_paths",
|
|
||||||
type=int,
|
|
||||||
default=4,
|
|
||||||
help="""An interger indicating how many candidates we will keep for each
|
|
||||||
frame. Used only when --decoding-method is modified_beam_search.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--beam",
|
|
||||||
type=float,
|
|
||||||
default=4,
|
|
||||||
help="""A floating point value to calculate the cutoff score during beam
|
|
||||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
|
||||||
`beam` in Kaldi.
|
|
||||||
Used only when --decoding-method is fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-contexts",
|
|
||||||
type=int,
|
|
||||||
default=4,
|
|
||||||
help="""Used only when --decoding-method is
|
|
||||||
fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-states",
|
|
||||||
type=int,
|
|
||||||
default=32,
|
|
||||||
help="""Used only when --decoding-method is
|
|
||||||
fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--context-size",
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--num-decode-streams",
|
|
||||||
type=int,
|
|
||||||
default=2000,
|
|
||||||
help="The number of streams that can be decoded parallel.",
|
|
||||||
)
|
|
||||||
|
|
||||||
add_model_arguments(parser)
|
|
||||||
|
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
def get_init_states(
|
|
||||||
model: nn.Module,
|
|
||||||
batch_size: int = 1,
|
|
||||||
device: torch.device = torch.device("cpu"),
|
|
||||||
) -> List[torch.Tensor]:
|
|
||||||
"""
|
|
||||||
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
|
||||||
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
|
||||||
states[-2] is the cached left padding for ConvNeXt module,
|
|
||||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
|
||||||
states[-1] is processed_lens of shape (batch,), which records the number
|
|
||||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
|
||||||
"""
|
|
||||||
states = model.encoder.get_init_states(batch_size, device)
|
|
||||||
|
|
||||||
embed_states = model.encoder_embed.get_init_states(batch_size, device)
|
|
||||||
states.append(embed_states)
|
|
||||||
|
|
||||||
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
|
||||||
states.append(processed_lens)
|
|
||||||
|
|
||||||
return states
|
|
||||||
|
|
||||||
|
|
||||||
def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]:
|
|
||||||
"""Stack list of zipformer states that correspond to separate utterances
|
|
||||||
into a single emformer state, so that it can be used as an input for
|
|
||||||
zipformer when those utterances are formed into a batch.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
state_list:
|
|
||||||
Each element in state_list corresponding to the internal state
|
|
||||||
of the zipformer model for a single utterance. For element-n,
|
|
||||||
state_list[n] is a list of cached tensors of all encoder layers. For layer-i,
|
|
||||||
state_list[n][i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1,
|
|
||||||
cached_val2, cached_conv1, cached_conv2).
|
|
||||||
state_list[n][-2] is the cached left padding for ConvNeXt module,
|
|
||||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
|
||||||
state_list[n][-1] is processed_lens of shape (batch,), which records the number
|
|
||||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
|
||||||
|
|
||||||
Note:
|
|
||||||
It is the inverse of :func:`unstack_states`.
|
|
||||||
"""
|
|
||||||
batch_size = len(state_list)
|
|
||||||
assert (len(state_list[0]) - 2) % 6 == 0, len(state_list[0])
|
|
||||||
tot_num_layers = (len(state_list[0]) - 2) // 6
|
|
||||||
|
|
||||||
batch_states = []
|
|
||||||
for layer in range(tot_num_layers):
|
|
||||||
layer_offset = layer * 6
|
|
||||||
# cached_key: (left_context_len, batch_size, key_dim)
|
|
||||||
cached_key = torch.cat(
|
|
||||||
[state_list[i][layer_offset] for i in range(batch_size)], dim=1
|
|
||||||
)
|
|
||||||
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
|
||||||
cached_nonlin_attn = torch.cat(
|
|
||||||
[state_list[i][layer_offset + 1] for i in range(batch_size)], dim=1
|
|
||||||
)
|
|
||||||
# cached_val1: (left_context_len, batch_size, value_dim)
|
|
||||||
cached_val1 = torch.cat(
|
|
||||||
[state_list[i][layer_offset + 2] for i in range(batch_size)], dim=1
|
|
||||||
)
|
|
||||||
# cached_val2: (left_context_len, batch_size, value_dim)
|
|
||||||
cached_val2 = torch.cat(
|
|
||||||
[state_list[i][layer_offset + 3] for i in range(batch_size)], dim=1
|
|
||||||
)
|
|
||||||
# cached_conv1: (#batch, channels, left_pad)
|
|
||||||
cached_conv1 = torch.cat(
|
|
||||||
[state_list[i][layer_offset + 4] for i in range(batch_size)], dim=0
|
|
||||||
)
|
|
||||||
# cached_conv2: (#batch, channels, left_pad)
|
|
||||||
cached_conv2 = torch.cat(
|
|
||||||
[state_list[i][layer_offset + 5] for i in range(batch_size)], dim=0
|
|
||||||
)
|
|
||||||
batch_states += [
|
|
||||||
cached_key,
|
|
||||||
cached_nonlin_attn,
|
|
||||||
cached_val1,
|
|
||||||
cached_val2,
|
|
||||||
cached_conv1,
|
|
||||||
cached_conv2,
|
|
||||||
]
|
|
||||||
|
|
||||||
cached_embed_left_pad = torch.cat(
|
|
||||||
[state_list[i][-2] for i in range(batch_size)], dim=0
|
|
||||||
)
|
|
||||||
batch_states.append(cached_embed_left_pad)
|
|
||||||
|
|
||||||
processed_lens = torch.cat(
|
|
||||||
[state_list[i][-1] for i in range(batch_size)], dim=0
|
|
||||||
)
|
|
||||||
batch_states.append(processed_lens)
|
|
||||||
|
|
||||||
return batch_states
|
|
||||||
|
|
||||||
|
|
||||||
def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
|
|
||||||
"""Unstack the zipformer state corresponding to a batch of utterances
|
|
||||||
into a list of states, where the i-th entry is the state from the i-th
|
|
||||||
utterance in the batch.
|
|
||||||
|
|
||||||
Note:
|
|
||||||
It is the inverse of :func:`stack_states`.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
batch_states: A list of cached tensors of all encoder layers. For layer-i,
|
|
||||||
states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2,
|
|
||||||
cached_conv1, cached_conv2).
|
|
||||||
state_list[-2] is the cached left padding for ConvNeXt module,
|
|
||||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
|
||||||
states[-1] is processed_lens of shape (batch,), which records the number
|
|
||||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
state_list: A list of list. Each element in state_list corresponding to the internal state
|
|
||||||
of the zipformer model for a single utterance.
|
|
||||||
"""
|
|
||||||
assert (len(batch_states) - 2) % 6 == 0, len(batch_states)
|
|
||||||
tot_num_layers = (len(batch_states) - 2) // 6
|
|
||||||
|
|
||||||
processed_lens = batch_states[-1]
|
|
||||||
batch_size = processed_lens.shape[0]
|
|
||||||
|
|
||||||
state_list = [[] for _ in range(batch_size)]
|
|
||||||
|
|
||||||
for layer in range(tot_num_layers):
|
|
||||||
layer_offset = layer * 6
|
|
||||||
# cached_key: (left_context_len, batch_size, key_dim)
|
|
||||||
cached_key_list = batch_states[layer_offset].chunk(
|
|
||||||
chunks=batch_size, dim=1
|
|
||||||
)
|
|
||||||
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
|
||||||
cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk(
|
|
||||||
chunks=batch_size, dim=1
|
|
||||||
)
|
|
||||||
# cached_val1: (left_context_len, batch_size, value_dim)
|
|
||||||
cached_val1_list = batch_states[layer_offset + 2].chunk(
|
|
||||||
chunks=batch_size, dim=1
|
|
||||||
)
|
|
||||||
# cached_val2: (left_context_len, batch_size, value_dim)
|
|
||||||
cached_val2_list = batch_states[layer_offset + 3].chunk(
|
|
||||||
chunks=batch_size, dim=1
|
|
||||||
)
|
|
||||||
# cached_conv1: (#batch, channels, left_pad)
|
|
||||||
cached_conv1_list = batch_states[layer_offset + 4].chunk(
|
|
||||||
chunks=batch_size, dim=0
|
|
||||||
)
|
|
||||||
# cached_conv2: (#batch, channels, left_pad)
|
|
||||||
cached_conv2_list = batch_states[layer_offset + 5].chunk(
|
|
||||||
chunks=batch_size, dim=0
|
|
||||||
)
|
|
||||||
for i in range(batch_size):
|
|
||||||
state_list[i] += [
|
|
||||||
cached_key_list[i],
|
|
||||||
cached_nonlin_attn_list[i],
|
|
||||||
cached_val1_list[i],
|
|
||||||
cached_val2_list[i],
|
|
||||||
cached_conv1_list[i],
|
|
||||||
cached_conv2_list[i],
|
|
||||||
]
|
|
||||||
|
|
||||||
cached_embed_left_pad_list = batch_states[-2].chunk(
|
|
||||||
chunks=batch_size, dim=0
|
|
||||||
)
|
|
||||||
for i in range(batch_size):
|
|
||||||
state_list[i].append(cached_embed_left_pad_list[i])
|
|
||||||
|
|
||||||
processed_lens_list = batch_states[-1].chunk(chunks=batch_size, dim=0)
|
|
||||||
for i in range(batch_size):
|
|
||||||
state_list[i].append(processed_lens_list[i])
|
|
||||||
|
|
||||||
return state_list
|
|
||||||
|
|
||||||
|
|
||||||
def streaming_forward(
|
|
||||||
features: Tensor,
|
|
||||||
feature_lens: Tensor,
|
|
||||||
model: nn.Module,
|
|
||||||
states: List[Tensor],
|
|
||||||
chunk_size: int,
|
|
||||||
left_context_len: int,
|
|
||||||
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
|
||||||
"""
|
|
||||||
Returns encoder outputs, output lengths, and updated states.
|
|
||||||
"""
|
|
||||||
cached_embed_left_pad = states[-2]
|
|
||||||
(
|
|
||||||
x,
|
|
||||||
x_lens,
|
|
||||||
new_cached_embed_left_pad,
|
|
||||||
) = model.encoder_embed.streaming_forward(
|
|
||||||
x=features,
|
|
||||||
x_lens=feature_lens,
|
|
||||||
cached_left_pad=cached_embed_left_pad,
|
|
||||||
)
|
|
||||||
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
|
|
||||||
|
|
||||||
src_key_padding_mask = make_pad_mask(x_lens)
|
|
||||||
|
|
||||||
# processed_mask is used to mask out initial states
|
|
||||||
processed_mask = torch.arange(left_context_len, device=x.device).expand(
|
|
||||||
x.size(0), left_context_len
|
|
||||||
)
|
|
||||||
processed_lens = states[-1] # (batch,)
|
|
||||||
# (batch, left_context_size)
|
|
||||||
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
|
|
||||||
# Update processed lengths
|
|
||||||
new_processed_lens = processed_lens + x_lens
|
|
||||||
|
|
||||||
# (batch, left_context_size + chunk_size)
|
|
||||||
src_key_padding_mask = torch.cat(
|
|
||||||
[processed_mask, src_key_padding_mask], dim=1
|
|
||||||
)
|
|
||||||
|
|
||||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
|
||||||
encoder_states = states[:-2]
|
|
||||||
(
|
|
||||||
encoder_out,
|
|
||||||
encoder_out_lens,
|
|
||||||
new_encoder_states,
|
|
||||||
) = model.encoder.streaming_forward(
|
|
||||||
x=x,
|
|
||||||
x_lens=x_lens,
|
|
||||||
states=encoder_states,
|
|
||||||
src_key_padding_mask=src_key_padding_mask,
|
|
||||||
)
|
|
||||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
|
||||||
|
|
||||||
new_states = new_encoder_states + [
|
|
||||||
new_cached_embed_left_pad,
|
|
||||||
new_processed_lens,
|
|
||||||
]
|
|
||||||
return encoder_out, encoder_out_lens, new_states
|
|
||||||
|
|
||||||
|
|
||||||
def decode_one_chunk(
|
|
||||||
params: AttributeDict,
|
|
||||||
model: nn.Module,
|
|
||||||
decode_streams: List[DecodeStream],
|
|
||||||
) -> List[int]:
|
|
||||||
"""Decode one chunk frames of features for each decode_streams and
|
|
||||||
return the indexes of finished streams in a List.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
params:
|
|
||||||
It's the return value of :func:`get_params`.
|
|
||||||
model:
|
|
||||||
The neural model.
|
|
||||||
decode_streams:
|
|
||||||
A List of DecodeStream, each belonging to a utterance.
|
|
||||||
Returns:
|
|
||||||
Return a List containing which DecodeStreams are finished.
|
|
||||||
"""
|
|
||||||
device = model.device
|
|
||||||
chunk_size = int(params.chunk_size)
|
|
||||||
left_context_len = int(params.left_context_frames)
|
|
||||||
|
|
||||||
features = []
|
|
||||||
feature_lens = []
|
|
||||||
states = []
|
|
||||||
processed_lens = [] # Used in fast-beam-search
|
|
||||||
|
|
||||||
for stream in decode_streams:
|
|
||||||
feat, feat_len = stream.get_feature_frames(chunk_size * 2)
|
|
||||||
features.append(feat)
|
|
||||||
feature_lens.append(feat_len)
|
|
||||||
states.append(stream.states)
|
|
||||||
processed_lens.append(stream.done_frames)
|
|
||||||
|
|
||||||
feature_lens = torch.tensor(feature_lens, device=device)
|
|
||||||
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
|
||||||
|
|
||||||
# Make sure the length after encoder_embed is at least 1.
|
|
||||||
# The encoder_embed subsample features (T - 7) // 2
|
|
||||||
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
|
||||||
tail_length = chunk_size * 2 + 7 + 2 * 3
|
|
||||||
if features.size(1) < tail_length:
|
|
||||||
pad_length = tail_length - features.size(1)
|
|
||||||
feature_lens += pad_length
|
|
||||||
features = torch.nn.functional.pad(
|
|
||||||
features,
|
|
||||||
(0, 0, 0, pad_length),
|
|
||||||
mode="constant",
|
|
||||||
value=LOG_EPS,
|
|
||||||
)
|
|
||||||
|
|
||||||
states = stack_states(states)
|
|
||||||
|
|
||||||
encoder_out, encoder_out_lens, new_states = streaming_forward(
|
|
||||||
features=features,
|
|
||||||
feature_lens=feature_lens,
|
|
||||||
model=model,
|
|
||||||
states=states,
|
|
||||||
chunk_size=chunk_size,
|
|
||||||
left_context_len=left_context_len,
|
|
||||||
)
|
|
||||||
|
|
||||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
|
||||||
|
|
||||||
if params.decoding_method == "greedy_search":
|
|
||||||
greedy_search(
|
|
||||||
model=model, encoder_out=encoder_out, streams=decode_streams
|
|
||||||
)
|
|
||||||
elif params.decoding_method == "fast_beam_search":
|
|
||||||
processed_lens = torch.tensor(processed_lens, device=device)
|
|
||||||
processed_lens = processed_lens + encoder_out_lens
|
|
||||||
fast_beam_search_one_best(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
processed_lens=processed_lens,
|
|
||||||
streams=decode_streams,
|
|
||||||
beam=params.beam,
|
|
||||||
max_states=params.max_states,
|
|
||||||
max_contexts=params.max_contexts,
|
|
||||||
)
|
|
||||||
elif params.decoding_method == "modified_beam_search":
|
|
||||||
modified_beam_search(
|
|
||||||
model=model,
|
|
||||||
streams=decode_streams,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
num_active_paths=params.num_active_paths,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise ValueError(
|
|
||||||
f"Unsupported decoding method: {params.decoding_method}"
|
|
||||||
)
|
|
||||||
|
|
||||||
states = unstack_states(new_states)
|
|
||||||
|
|
||||||
finished_streams = []
|
|
||||||
for i in range(len(decode_streams)):
|
|
||||||
decode_streams[i].states = states[i]
|
|
||||||
decode_streams[i].done_frames += encoder_out_lens[i]
|
|
||||||
if decode_streams[i].done:
|
|
||||||
finished_streams.append(i)
|
|
||||||
|
|
||||||
return finished_streams
|
|
||||||
|
|
||||||
|
|
||||||
def decode_dataset(
|
|
||||||
cuts: CutSet,
|
|
||||||
params: AttributeDict,
|
|
||||||
model: nn.Module,
|
|
||||||
sp: spm.SentencePieceProcessor,
|
|
||||||
decoding_graph: Optional[k2.Fsa] = None,
|
|
||||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
|
||||||
"""Decode dataset.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
cuts:
|
|
||||||
Lhotse Cutset containing the dataset to decode.
|
|
||||||
params:
|
|
||||||
It is returned by :func:`get_params`.
|
|
||||||
model:
|
|
||||||
The neural model.
|
|
||||||
sp:
|
|
||||||
The BPE model.
|
|
||||||
decoding_graph:
|
|
||||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
|
||||||
only when --decoding_method is fast_beam_search.
|
|
||||||
Returns:
|
|
||||||
Return a dict, whose key may be "greedy_search" if greedy search
|
|
||||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
|
||||||
Its value is a list of tuples. Each tuple contains two elements:
|
|
||||||
The first is the reference transcript, and the second is the
|
|
||||||
predicted result.
|
|
||||||
"""
|
|
||||||
device = model.device
|
|
||||||
|
|
||||||
opts = FbankOptions()
|
|
||||||
opts.device = device
|
|
||||||
opts.frame_opts.dither = 0
|
|
||||||
opts.frame_opts.snip_edges = False
|
|
||||||
opts.frame_opts.samp_freq = 16000
|
|
||||||
opts.mel_opts.num_bins = 80
|
|
||||||
|
|
||||||
log_interval = 100
|
|
||||||
|
|
||||||
decode_results = []
|
|
||||||
# Contain decode streams currently running.
|
|
||||||
decode_streams = []
|
|
||||||
for num, cut in enumerate(cuts):
|
|
||||||
# each utterance has a DecodeStream.
|
|
||||||
initial_states = get_init_states(
|
|
||||||
model=model, batch_size=1, device=device
|
|
||||||
)
|
|
||||||
decode_stream = DecodeStream(
|
|
||||||
params=params,
|
|
||||||
cut_id=cut.id,
|
|
||||||
initial_states=initial_states,
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
|
|
||||||
audio: np.ndarray = cut.load_audio()
|
|
||||||
# audio.shape: (1, num_samples)
|
|
||||||
assert len(audio.shape) == 2
|
|
||||||
assert audio.shape[0] == 1, "Should be single channel"
|
|
||||||
assert audio.dtype == np.float32, audio.dtype
|
|
||||||
|
|
||||||
# The trained model is using normalized samples
|
|
||||||
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
|
|
||||||
|
|
||||||
samples = torch.from_numpy(audio).squeeze(0)
|
|
||||||
|
|
||||||
fbank = Fbank(opts)
|
|
||||||
feature = fbank(samples.to(device))
|
|
||||||
decode_stream.set_features(feature, tail_pad_len=30)
|
|
||||||
decode_stream.ground_truth = cut.supervisions[0].text
|
|
||||||
|
|
||||||
decode_streams.append(decode_stream)
|
|
||||||
|
|
||||||
while len(decode_streams) >= params.num_decode_streams:
|
|
||||||
finished_streams = decode_one_chunk(
|
|
||||||
params=params, model=model, decode_streams=decode_streams
|
|
||||||
)
|
|
||||||
for i in sorted(finished_streams, reverse=True):
|
|
||||||
decode_results.append(
|
|
||||||
(
|
|
||||||
decode_streams[i].id,
|
|
||||||
decode_streams[i].ground_truth.split(),
|
|
||||||
sp.decode(decode_streams[i].decoding_result()).split(),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
del decode_streams[i]
|
|
||||||
|
|
||||||
if num % log_interval == 0:
|
|
||||||
logging.info(f"Cuts processed until now is {num}.")
|
|
||||||
|
|
||||||
# decode final chunks of last sequences
|
|
||||||
while len(decode_streams):
|
|
||||||
finished_streams = decode_one_chunk(
|
|
||||||
params=params, model=model, decode_streams=decode_streams
|
|
||||||
)
|
|
||||||
for i in sorted(finished_streams, reverse=True):
|
|
||||||
decode_results.append(
|
|
||||||
(
|
|
||||||
decode_streams[i].id,
|
|
||||||
decode_streams[i].ground_truth.split(),
|
|
||||||
sp.decode(decode_streams[i].decoding_result()).split(),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
del decode_streams[i]
|
|
||||||
|
|
||||||
if params.decoding_method == "greedy_search":
|
|
||||||
key = "greedy_search"
|
|
||||||
elif params.decoding_method == "fast_beam_search":
|
|
||||||
key = (
|
|
||||||
f"beam_{params.beam}_"
|
|
||||||
f"max_contexts_{params.max_contexts}_"
|
|
||||||
f"max_states_{params.max_states}"
|
|
||||||
)
|
|
||||||
elif params.decoding_method == "modified_beam_search":
|
|
||||||
key = f"num_active_paths_{params.num_active_paths}"
|
|
||||||
else:
|
|
||||||
raise ValueError(
|
|
||||||
f"Unsupported decoding method: {params.decoding_method}"
|
|
||||||
)
|
|
||||||
return {key: decode_results}
|
|
||||||
|
|
||||||
|
|
||||||
def save_results(
|
|
||||||
params: AttributeDict,
|
|
||||||
test_set_name: str,
|
|
||||||
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
|
||||||
):
|
|
||||||
test_set_wers = dict()
|
|
||||||
for key, results in results_dict.items():
|
|
||||||
recog_path = (
|
|
||||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
|
||||||
results = sorted(results)
|
|
||||||
store_transcripts(filename=recog_path, texts=results)
|
|
||||||
logging.info(f"The transcripts are stored in {recog_path}")
|
|
||||||
|
|
||||||
# The following prints out WERs, per-word error statistics and aligned
|
|
||||||
# ref/hyp pairs.
|
|
||||||
errs_filename = (
|
|
||||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
|
||||||
with open(errs_filename, "w") as f:
|
|
||||||
wer = write_error_stats(
|
|
||||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
|
||||||
)
|
|
||||||
test_set_wers[key] = wer
|
|
||||||
|
|
||||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
|
||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
|
||||||
errs_info = (
|
|
||||||
params.res_dir
|
|
||||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
|
||||||
with open(errs_info, "w") as f:
|
|
||||||
print("settings\tWER", file=f)
|
|
||||||
for key, val in test_set_wers:
|
|
||||||
print("{}\t{}".format(key, val), file=f)
|
|
||||||
|
|
||||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
|
||||||
note = "\tbest for {}".format(test_set_name)
|
|
||||||
for key, val in test_set_wers:
|
|
||||||
s += "{}\t{}{}\n".format(key, val, note)
|
|
||||||
note = ""
|
|
||||||
logging.info(s)
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def main():
|
|
||||||
parser = get_parser()
|
|
||||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
|
||||||
args = parser.parse_args()
|
|
||||||
args.exp_dir = Path(args.exp_dir)
|
|
||||||
|
|
||||||
params = get_params()
|
|
||||||
params.update(vars(args))
|
|
||||||
|
|
||||||
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
|
||||||
|
|
||||||
if params.iter > 0:
|
|
||||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
|
||||||
else:
|
|
||||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
|
||||||
|
|
||||||
assert params.causal, params.causal
|
|
||||||
assert (
|
|
||||||
"," not in params.chunk_size
|
|
||||||
), "chunk_size should be one value in decoding."
|
|
||||||
assert (
|
|
||||||
"," not in params.left_context_frames
|
|
||||||
), "left_context_frames should be one value in decoding."
|
|
||||||
params.suffix += f"-chunk-{params.chunk_size}"
|
|
||||||
params.suffix += f"-left-context-{params.left_context_frames}"
|
|
||||||
|
|
||||||
# for fast_beam_search
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
|
||||||
params.suffix += f"-beam-{params.beam}"
|
|
||||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
|
||||||
params.suffix += f"-max-states-{params.max_states}"
|
|
||||||
|
|
||||||
if params.use_averaged_model:
|
|
||||||
params.suffix += "-use-averaged-model"
|
|
||||||
|
|
||||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
|
||||||
logging.info("Decoding started")
|
|
||||||
|
|
||||||
device = torch.device("cpu")
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
device = torch.device("cuda", 0)
|
|
||||||
|
|
||||||
logging.info(f"Device: {device}")
|
|
||||||
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(params.bpe_model)
|
|
||||||
|
|
||||||
# <blk> and <unk> is defined in local/train_bpe_model.py
|
|
||||||
params.blank_id = sp.piece_to_id("<blk>")
|
|
||||||
params.unk_id = sp.piece_to_id("<unk>")
|
|
||||||
params.vocab_size = sp.get_piece_size()
|
|
||||||
|
|
||||||
logging.info(params)
|
|
||||||
|
|
||||||
logging.info("About to create model")
|
|
||||||
model = get_model(params)
|
|
||||||
|
|
||||||
if not params.use_averaged_model:
|
|
||||||
if params.iter > 0:
|
|
||||||
filenames = find_checkpoints(
|
|
||||||
params.exp_dir, iteration=-params.iter
|
|
||||||
)[: params.avg]
|
|
||||||
if len(filenames) == 0:
|
|
||||||
raise ValueError(
|
|
||||||
f"No checkpoints found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
elif len(filenames) < params.avg:
|
|
||||||
raise ValueError(
|
|
||||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
logging.info(f"averaging {filenames}")
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
||||||
elif params.avg == 1:
|
|
||||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
||||||
else:
|
|
||||||
start = params.epoch - params.avg + 1
|
|
||||||
filenames = []
|
|
||||||
for i in range(start, params.epoch + 1):
|
|
||||||
if start >= 0:
|
|
||||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
||||||
logging.info(f"averaging {filenames}")
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
||||||
else:
|
|
||||||
if params.iter > 0:
|
|
||||||
filenames = find_checkpoints(
|
|
||||||
params.exp_dir, iteration=-params.iter
|
|
||||||
)[: params.avg + 1]
|
|
||||||
if len(filenames) == 0:
|
|
||||||
raise ValueError(
|
|
||||||
f"No checkpoints found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
elif len(filenames) < params.avg + 1:
|
|
||||||
raise ValueError(
|
|
||||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
filename_start = filenames[-1]
|
|
||||||
filename_end = filenames[0]
|
|
||||||
logging.info(
|
|
||||||
"Calculating the averaged model over iteration checkpoints"
|
|
||||||
f" from {filename_start} (excluded) to {filename_end}"
|
|
||||||
)
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(
|
|
||||||
average_checkpoints_with_averaged_model(
|
|
||||||
filename_start=filename_start,
|
|
||||||
filename_end=filename_end,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
assert params.avg > 0, params.avg
|
|
||||||
start = params.epoch - params.avg
|
|
||||||
assert start >= 1, start
|
|
||||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
||||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
||||||
logging.info(
|
|
||||||
f"Calculating the averaged model over epoch range from "
|
|
||||||
f"{start} (excluded) to {params.epoch}"
|
|
||||||
)
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(
|
|
||||||
average_checkpoints_with_averaged_model(
|
|
||||||
filename_start=filename_start,
|
|
||||||
filename_end=filename_end,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
model.to(device)
|
|
||||||
model.eval()
|
|
||||||
model.device = device
|
|
||||||
|
|
||||||
decoding_graph = None
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
|
||||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
|
||||||
|
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
|
||||||
logging.info(f"Number of model parameters: {num_param}")
|
|
||||||
|
|
||||||
librispeech = LibriSpeechAsrDataModule(args)
|
|
||||||
|
|
||||||
test_clean_cuts = librispeech.test_clean_cuts()
|
|
||||||
test_other_cuts = librispeech.test_other_cuts()
|
|
||||||
|
|
||||||
test_sets = ["test-clean", "test-other"]
|
|
||||||
test_cuts = [test_clean_cuts, test_other_cuts]
|
|
||||||
|
|
||||||
for test_set, test_cut in zip(test_sets, test_cuts):
|
|
||||||
results_dict = decode_dataset(
|
|
||||||
cuts=test_cut,
|
|
||||||
params=params,
|
|
||||||
model=model,
|
|
||||||
sp=sp,
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
)
|
|
||||||
|
|
||||||
save_results(
|
|
||||||
params=params,
|
|
||||||
test_set_name=test_set,
|
|
||||||
results_dict=results_dict,
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.info("Done!")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
1
egs/librispeech/ASR/zipformer/streaming_decode.py
Symbolic link
1
egs/librispeech/ASR/zipformer/streaming_decode.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/streaming_beam_search.py
|
Loading…
x
Reference in New Issue
Block a user