Merge d4708b01356e96997106323b4b643e00577c97b0 into f84270c93528f4b77b99ada9ac0c9f7fb231d6a4

This commit is contained in:
Amir Hussein 2024-10-17 14:33:34 +08:00 committed by GitHub
commit d3acf9e3de
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
30 changed files with 3582 additions and 23 deletions

View File

@ -1,5 +1,103 @@
## Results
zipformer_hat
### zipformer hybrid autoregresive transducer (HAT)
see <https://github.com/k2-fsa/icefall/pull/1291> for more details
[zipformer_hat](./zipformer_hat)
Results with RNNLM shallow fusion and internal language model subtraction on the same data (Librispeech)
Model | Train | Decode | LM scale | ILM scale | test-clean | test-other
-- | -- | -- | -- | -- | -- | --
Zipformer-HAT | train-960 | greedy_search | - | - | 2.22 | 5.01
  |   | modified_beam_search | 0 | 0 | 2.18 | 4.96
  |   | + RNNLM shallow fusion | 0.29 | 0 | 1.96 | 4.55
  |   | - ILME | 0.29 | 0.1 | 1.95 | 4.55
  |   | - ILME | 0.29 | 0.3 | 1.97 | 4.5
The training command is:
```bash
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./zipformer_hat/train.py \
--world-size 4 \
--num-epochs 40 \
--lr-batches 5000 \
--lr-epochs 4 \
--exp-dir ./zipformer_hat/exp \
--use-fp16 1 \
--bpe-model data/lang_bpe_500/bpe.model \
--max-duration 800 \
--causal 0 \
--num-encoder-layers 2,2,2,2,2,2 \
--feedforward-dim 512,768,1024,1024,1024,768 \
--encoder-dim 192,256,256,256,256,256 \
--encoder-unmasked-dim 192,192,192,192,192,192 \
--use-transducer 1
```
The decoding command is:
```bash
export CUDA_VISIBLE_DEVICES="0"
for method in modified_beam_search greedy_search; do
./zipformer_hat/decode.py \
--epoch 40 --avg 16 --use-averaged-model True \
--beam-size 4 \
--exp-dir ./zipformer_hat/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--max-contexts 4 \
--max-states 8 \
--max-duration 600 \
--decoding-method $method
done
```
The decoding with shallow LM fusion and ILM subtraction:
```bash
for method in modified_beam_search_auxlm_shallow_fusion; do
./zipformer_hat/decode.py \
--epoch 40 --avg 16 --use-averaged-model True \
--beam-size 4 \
--exp-dir ./zipformer_hat/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--max-contexts 4 \
--max-states 8 \
--max-duration 800 \
--decoding-method $method \
--subtract-ilm True\
--ilm-scale 0.1 \
--use-shallow-fusion 1 \
--lm-type rnn \
--lm-exp-dir rnn_lm/exp \
--lm-epoch 25 \
--lm-scale 0.45 \
--lm-avg 5 \
--lm-vocab-size 500 \
--rnn-lm-embedding-dim 512 \
--rnn-lm-hidden-dim 512 \
--rnn-lm-num-layers 2
done
```
for m in ctc-decoding attention-decoder-rescoring-no-ngram; do
./zipformer/ctc_decode.py \
--epoch 50 \
--avg 29 \
--exp-dir zipformer/exp-large \
--use-ctc 1 \
--use-transducer 0 \
--use-attention-decoder 1 \
--attention-decoder-loss-scale 0.9 \
--num-encoder-layers 2,2,4,5,4,2 \
--feedforward-dim 512,768,1536,2048,1536,768 \
--encoder-dim 192,256,512,768,512,256 \
--encoder-unmasked-dim 192,192,256,320,256,192 \
--max-duration 100 \
--causal 0 \
--num-paths 100 \
--decoding-method $m
done
```
### zipformer (zipformer + CTC/AED)
See <https://github.com/k2-fsa/icefall/pull/1389> for more details.
@ -155,29 +253,6 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
--master-port 12345
```
The decoding command is:
```bash
export CUDA_VISIBLE_DEVICES="0"
for m in ctc-decoding attention-decoder-rescoring-no-ngram; do
./zipformer/ctc_decode.py \
--epoch 50 \
--avg 29 \
--exp-dir zipformer/exp-large \
--use-ctc 1 \
--use-transducer 0 \
--use-attention-decoder 1 \
--attention-decoder-loss-scale 0.9 \
--num-encoder-layers 2,2,4,5,4,2 \
--feedforward-dim 512,768,1536,2048,1536,768 \
--encoder-dim 192,256,512,768,512,256 \
--encoder-unmasked-dim 192,192,256,320,256,192 \
--max-duration 100 \
--causal 0 \
--num-paths 100 \
--decoding-method $m
done
```
### zipformer (zipformer + pruned stateless transducer + CTC)

View File

@ -0,0 +1 @@
../tdnn_lstm_ctc/asr_datamodule.py

View File

@ -0,0 +1,803 @@
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
# Xiaoyu Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple, Union
import k2
import sentencepiece as spm
import torch
from torch import nn
from icefall import ContextGraph, ContextState, NgramLm, NgramLmStateCost
from icefall.decode import Nbest, one_best_decoding
from icefall.lm_wrapper import LmScorer
from icefall.rnn_lm.model import RnnLmModel
from icefall.transformer_lm.model import TransformerLM
from icefall.utils import (
DecodingResults,
add_eos,
add_sos,
get_texts,
get_texts_with_timestamp,
)
def greedy_search_batch(
model: nn.Module,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
blank_penalty: float = 0,
return_timestamps: bool = False,
) -> Union[List[List[int]], DecodingResults]:
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
Args:
model:
The transducer model.
encoder_out:
Output from the encoder. Its shape is (N, T, C), where N >= 1.
encoder_out_lens:
A 1-D tensor of shape (N,), containing number of valid frames in
encoder_out before padding.
return_timestamps:
Whether to return timestamps.
Returns:
If return_timestamps is False, return the decoded result.
Else, return a DecodingResults object containing
decoded result and corresponding timestamps.
"""
assert encoder_out.ndim == 3
assert encoder_out.size(0) >= 1, encoder_out.size(0)
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
input=encoder_out,
lengths=encoder_out_lens.cpu(),
batch_first=True,
enforce_sorted=False,
)
device = next(model.parameters()).device
blank_id = model.decoder.blank_id
unk_id = getattr(model, "unk_id", blank_id)
context_size = model.decoder.context_size
batch_size_list = packed_encoder_out.batch_sizes.tolist()
N = encoder_out.size(0)
assert torch.all(encoder_out_lens > 0), encoder_out_lens
assert N == batch_size_list[0], (N, batch_size_list)
hyps = [[-1] * (context_size - 1) + [blank_id] for _ in range(N)]
# timestamp[n][i] is the frame index after subsampling
# on which hyp[n][i] is decoded
timestamps = [[] for _ in range(N)]
# scores[n][i] is the logits on which hyp[n][i] is decoded
scores = [[] for _ in range(N)]
decoder_input = torch.tensor(
hyps,
device=device,
dtype=torch.int64,
) # (N, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False)
decoder_out = model.joiner.decoder_proj(decoder_out)
# decoder_out: (N, 1, decoder_out_dim)
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
offset = 0
for t, batch_size in enumerate(batch_size_list):
start = offset
end = offset + batch_size
current_encoder_out = encoder_out.data[start:end]
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
offset = end
decoder_out = decoder_out[:batch_size]
logits = model.joiner(
current_encoder_out, decoder_out.unsqueeze(1), project_input=False
)
# logits'shape (batch_size, 1, 1, vocab_size)
logits = logits.squeeze(1).squeeze(1) # (batch_size, vocab_size)
assert logits.ndim == 2, logits.shape
if blank_penalty != 0:
logits[:, 0] -= blank_penalty
# If logit for blank token is positive, the output should be blank (Bernoulli)
y = torch.zeros_like(logits[:, 0], dtype=torch.int64, device=device)
# If logit for blank token is negative, the output should be the argmax
# of the rest of the logits
y += torch.where(logits[:, 0] <= 0, logits[:, 1:].argmax(dim=1) + 1, 0)
# Convert y to list
y = y.tolist()
emitted = False
for i, v in enumerate(y):
if v not in (blank_id, unk_id):
hyps[i].append(v)
timestamps[i].append(t)
scores[i].append(logits[i, v].item())
emitted = True
if emitted:
# update decoder output
decoder_input = [h[-context_size:] for h in hyps[:batch_size]]
decoder_input = torch.tensor(
decoder_input,
device=device,
dtype=torch.int64,
)
decoder_out = model.decoder(decoder_input, need_pad=False)
decoder_out = model.joiner.decoder_proj(decoder_out)
sorted_ans = [h[context_size:] for h in hyps]
ans = []
ans_timestamps = []
ans_scores = []
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
for i in range(N):
ans.append(sorted_ans[unsorted_indices[i]])
ans_timestamps.append(timestamps[unsorted_indices[i]])
ans_scores.append(scores[unsorted_indices[i]])
if not return_timestamps:
return ans
else:
return DecodingResults(
hyps=ans,
timestamps=ans_timestamps,
scores=ans_scores,
)
@dataclass
class Hypothesis:
# The predicted tokens so far.
# Newly predicted tokens are appended to `ys`.
ys: List[int]
# The log prob of ys.
# It contains only one entry.
log_prob: torch.Tensor
# timestamp[i] is the frame index after subsampling
# on which ys[i] is decoded
timestamp: List[int] = field(default_factory=list)
# the lm score for next token given the current ys
lm_score: Optional[torch.Tensor] = None
# the RNNLM states (h and c in LSTM)
state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
# N-gram LM state
state_cost: Optional[NgramLmStateCost] = None
# Context graph state
context_state: Optional[ContextState] = None
@property
def key(self) -> str:
"""Return a string representation of self.ys"""
return "_".join(map(str, self.ys))
class HypothesisList(object):
def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None:
"""
Args:
data:
A dict of Hypotheses. Its key is its `value.key`.
"""
if data is None:
self._data = {}
else:
self._data = data
@property
def data(self) -> Dict[str, Hypothesis]:
return self._data
def add(self, hyp: Hypothesis) -> None:
"""Add a Hypothesis to `self`.
If `hyp` already exists in `self`, its probability is updated using
`log-sum-exp` with the existed one.
Args:
hyp:
The hypothesis to be added.
"""
key = hyp.key
if key in self:
old_hyp = self._data[key] # shallow copy
torch.logaddexp(old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob)
else:
self._data[key] = hyp
def get_most_probable(self, length_norm: bool = False) -> Hypothesis:
"""Get the most probable hypothesis, i.e., the one with
the largest `log_prob`.
Args:
length_norm:
If True, the `log_prob` of a hypothesis is normalized by the
number of tokens in it.
Returns:
Return the hypothesis that has the largest `log_prob`.
"""
if length_norm:
return max(self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys))
else:
return max(self._data.values(), key=lambda hyp: hyp.log_prob)
def remove(self, hyp: Hypothesis) -> None:
"""Remove a given hypothesis.
Caution:
`self` is modified **in-place**.
Args:
hyp:
The hypothesis to be removed from `self`.
Note: It must be contained in `self`. Otherwise,
an exception is raised.
"""
key = hyp.key
assert key in self, f"{key} does not exist"
del self._data[key]
def filter(self, threshold: torch.Tensor) -> "HypothesisList":
"""Remove all Hypotheses whose log_prob is less than threshold.
Caution:
`self` is not modified. Instead, a new HypothesisList is returned.
Returns:
Return a new HypothesisList containing all hypotheses from `self`
with `log_prob` being greater than the given `threshold`.
"""
ans = HypothesisList()
for _, hyp in self._data.items():
if hyp.log_prob > threshold:
ans.add(hyp) # shallow copy
return ans
def topk(self, k: int, length_norm: bool = False) -> "HypothesisList":
"""Return the top-k hypothesis.
Args:
length_norm:
If True, the `log_prob` of a hypothesis is normalized by the
number of tokens in it.
"""
hyps = list(self._data.items())
if length_norm:
hyps = sorted(
hyps, key=lambda h: h[1].log_prob / len(h[1].ys), reverse=True
)[:k]
else:
hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k]
ans = HypothesisList(dict(hyps))
return ans
def __contains__(self, key: str):
return key in self._data
def __iter__(self):
return iter(self._data.values())
def __len__(self) -> int:
return len(self._data)
def __str__(self) -> str:
s = []
for key in self:
s.append(key)
return ", ".join(s)
def get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape:
"""Return a ragged shape with axes [utt][num_hyps].
Args:
hyps:
len(hyps) == batch_size. It contains the current hypothesis for
each utterance in the batch.
Returns:
Return a ragged shape with 2 axes [utt][num_hyps]. Note that
the shape is on CPU.
"""
num_hyps = [len(h) for h in hyps]
# torch.cumsum() is inclusive sum, so we put a 0 at the beginning
# to get exclusive sum later.
num_hyps.insert(0, 0)
num_hyps = torch.tensor(num_hyps)
row_splits = torch.cumsum(num_hyps, dim=0, dtype=torch.int32)
ans = k2.ragged.create_ragged_shape2(
row_splits=row_splits, cached_tot_size=row_splits[-1].item()
)
return ans
def modified_beam_search(
model: nn.Module,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
beam: int = 4,
temperature: float = 1.0,
return_timestamps: bool = False,
) -> Union[List[List[int]], DecodingResults]:
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
Args:
model:
The transducer model.
encoder_out:
Output from the encoder. Its shape is (N, T, C).
encoder_out_lens:
A 1-D tensor of shape (N,), containing number of valid frames in
encoder_out before padding.
beam:
Number of active paths during the beam search.
temperature:
Softmax temperature.
return_timestamps:
Whether to return timestamps.
Returns:
If return_timestamps is False, return the decoded result.
Else, return a DecodingResults object containing
decoded result and corresponding timestamps.
"""
assert encoder_out.ndim == 3, encoder_out.shape
assert encoder_out.size(0) >= 1, encoder_out.size(0)
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
input=encoder_out,
lengths=encoder_out_lens.cpu(),
batch_first=True,
enforce_sorted=False,
)
blank_id = model.decoder.blank_id
unk_id = getattr(model, "unk_id", blank_id)
context_size = model.decoder.context_size
device = next(model.parameters()).device
batch_size_list = packed_encoder_out.batch_sizes.tolist()
N = encoder_out.size(0)
assert torch.all(encoder_out_lens > 0), encoder_out_lens
assert N == batch_size_list[0], (N, batch_size_list)
B = [HypothesisList() for _ in range(N)]
for i in range(N):
B[i].add(
Hypothesis(
ys=[blank_id] * context_size,
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
timestamp=[],
)
)
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
offset = 0
finalized_B = []
for (t, batch_size) in enumerate(batch_size_list):
start = offset
end = offset + batch_size
current_encoder_out = encoder_out.data[start:end]
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
offset = end
finalized_B = B[batch_size:] + finalized_B
B = B[:batch_size]
hyps_shape = get_hyps_shape(B).to(device)
A = [list(b) for b in B]
B = [HypothesisList() for _ in range(batch_size)]
ys_log_probs = torch.cat(
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
) # (num_hyps, 1)
decoder_input = torch.tensor(
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
device=device,
dtype=torch.int64,
) # (num_hyps, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
decoder_out = model.joiner.decoder_proj(decoder_out)
# decoder_out is of shape (num_hyps, 1, 1, joiner_dim)
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
# as index, so we use `to(torch.int64)` below.
current_encoder_out = torch.index_select(
current_encoder_out,
dim=0,
index=hyps_shape.row_ids(1).to(torch.int64),
) # (num_hyps, 1, 1, encoder_out_dim)
logits = model.joiner(
current_encoder_out,
decoder_out,
project_input=False,
) # (num_hyps, 1, 1, vocab_size)
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
# For blank symbol, log-prob is log-sigmoid of the score
logp_b = torch.nn.functional.logsigmoid(logits[..., 0])
# Additionally, to ensure the the probs of blank and non-blank sum to 1, we
# need to add the following term to the log-probs of non-blank symbols. This
# is equivalent to log(1 - sigmoid(logits[..., 0])).
nb_shift = logp_b - logits[..., 0]
nb_shift = nb_shift.unsqueeze(-1)
log_probs1 = (logits[..., 1:] / temperature).log_softmax(
dim=-1
) + nb_shift # (num_hyps, vocab_size-1)
log_probs = torch.cat((logp_b.unsqueeze(-1), log_probs1), dim=-1)
log_probs.add_(ys_log_probs)
vocab_size = log_probs.size(-1)
log_probs = log_probs.reshape(-1)
row_splits = hyps_shape.row_splits(1) * vocab_size
log_probs_shape = k2.ragged.create_ragged_shape2(
row_splits=row_splits, cached_tot_size=log_probs.numel()
)
ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
for i in range(batch_size):
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
topk_token_indexes = (topk_indexes % vocab_size).tolist()
for k in range(len(topk_hyp_indexes)):
hyp_idx = topk_hyp_indexes[k]
hyp = A[i][hyp_idx]
new_ys = hyp.ys[:]
new_token = topk_token_indexes[k]
new_timestamp = hyp.timestamp[:]
if new_token not in (blank_id, unk_id):
new_ys.append(new_token)
new_timestamp.append(t)
new_log_prob = topk_log_probs[k]
new_hyp = Hypothesis(
ys=new_ys, log_prob=new_log_prob, timestamp=new_timestamp
)
B[i].add(new_hyp)
B = B + finalized_B
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
sorted_ans = [h.ys[context_size:] for h in best_hyps]
sorted_timestamps = [h.timestamp for h in best_hyps]
ans = []
ans_timestamps = []
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
for i in range(N):
ans.append(sorted_ans[unsorted_indices[i]])
ans_timestamps.append(sorted_timestamps[unsorted_indices[i]])
if not return_timestamps:
return ans
else:
return DecodingResults(
hyps=ans,
timestamps=ans_timestamps,
)
def modified_beam_search_lm_shallow_fusion(
model: nn.Module,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
LM: LmScorer,
beam: int = 4,
return_timestamps: bool = False,
subtract_ilm: bool = True,
ilm_scale: float = 0.1,
temperature: float = 1.0,
) -> List[List[int]]:
"""Modified_beam_search + NN LM shallow fusion
Args:
model (Transducer):
The transducer model
encoder_out (torch.Tensor):
Encoder output in (N,T,C)
encoder_out_lens (torch.Tensor):
A 1-D tensor of shape (N,), containing the number of
valid frames in encoder_out before padding.
sp:
Sentence piece generator.
LM (LmScorer):
A neural net LM, e.g RNN or Transformer
beam (int, optional):
Beam size. Defaults to 4.
Returns:
Return a list-of-list of token IDs. ans[i] is the decoding results
for the i-th utterance.
"""
assert encoder_out.ndim == 3, encoder_out.shape
assert encoder_out.size(0) >= 1, encoder_out.size(0)
assert LM is not None
lm_scale = LM.lm_scale
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
input=encoder_out,
lengths=encoder_out_lens.cpu(),
batch_first=True,
enforce_sorted=False,
)
blank_id = model.decoder.blank_id
sos_id = getattr(LM, "sos_id", 1)
unk_id = getattr(model, "unk_id", blank_id)
context_size = model.decoder.context_size
device = next(model.parameters()).device
batch_size_list = packed_encoder_out.batch_sizes.tolist()
N = encoder_out.size(0)
assert torch.all(encoder_out_lens > 0), encoder_out_lens
assert N == batch_size_list[0], (N, batch_size_list)
# get initial lm score and lm state by scoring the "sos" token
sos_token = torch.tensor([[sos_id]]).to(torch.int64).to(device)
lens = torch.tensor([1]).to(device)
init_score, init_states = LM.score_token(sos_token, lens)
B = [HypothesisList() for _ in range(N)]
for i in range(N):
B[i].add(
Hypothesis(
ys=[blank_id] * context_size,
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
state=init_states,
lm_score=init_score.reshape(-1),
timestamp=[],
)
)
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
offset = 0
finalized_B = []
for (t, batch_size) in enumerate(batch_size_list):
start = offset
end = offset + batch_size
current_encoder_out = encoder_out.data[start:end] # get batch
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
offset = end
finalized_B = B[batch_size:] + finalized_B
B = B[:batch_size]
hyps_shape = get_hyps_shape(B).to(device)
A = [list(b) for b in B]
B = [HypothesisList() for _ in range(batch_size)]
ys_log_probs = torch.cat(
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
)
decoder_input = torch.tensor(
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
device=device,
dtype=torch.int64,
) # (num_hyps, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
decoder_out = model.joiner.decoder_proj(decoder_out)
current_encoder_out = torch.index_select(
current_encoder_out,
dim=0,
index=hyps_shape.row_ids(1).to(torch.int64),
) # (num_hyps, 1, 1, encoder_out_dim)
logits = model.joiner(
current_encoder_out,
decoder_out,
project_input=False,
) # (num_hyps, 1, 1, vocab_size)
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
# For blank symbol, log-prob is log-sigmoid of the score
logp_b = torch.nn.functional.logsigmoid(logits[..., 0])
# Additionally, to ensure the the probs of blank and non-blank sum to 1, we
# need to add the following term to the log-probs of non-blank symbols. This
# is equivalent to log(1 - sigmoid(logits[..., 0])).
nb_shift = logp_b - logits[..., 0]
nb_shift = nb_shift.unsqueeze(-1)
log_probs1 = (logits[..., 1:]).log_softmax(dim=-1) + nb_shift
if subtract_ilm:
ilm_logits = model.joiner(
torch.zeros_like(
current_encoder_out, device=current_encoder_out.device
),
decoder_out,
project_input=False,
)
ilm_logits = ilm_logits.squeeze(1).squeeze(1)
ilm_logp_b = torch.nn.functional.logsigmoid(ilm_logits[..., 0])
ilm_nb_shift = ilm_logp_b - ilm_logits[..., 0]
ilm_nb_shift = ilm_nb_shift.unsqueeze(-1)
ilm_log_probs = (ilm_logits[..., 1:]).log_softmax(dim=-1) + ilm_nb_shift
log_probs1 -= ilm_scale * ilm_log_probs
log_probs = torch.cat((logp_b.unsqueeze(-1), log_probs1), dim=-1)
log_probs.add_(ys_log_probs)
vocab_size = log_probs.size(-1)
log_probs = log_probs.reshape(-1)
row_splits = hyps_shape.row_splits(1) * vocab_size
log_probs_shape = k2.ragged.create_ragged_shape2(
row_splits=row_splits, cached_tot_size=log_probs.numel()
)
ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
"""
for all hyps with a non-blank new token, score this token.
It is a little confusing here because this for-loop
looks very similar to the one below. Here, we go through all
top-k tokens and only add the non-blanks ones to the token_list.
`LM` will score those tokens given the LM states. Note that
the variable `scores` is the LM score after seeing the new
non-blank token.
"""
token_list = [] # a list of list
hs = []
cs = []
for i in range(batch_size):
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
topk_token_indexes = (topk_indexes % vocab_size).tolist()
for k in range(len(topk_hyp_indexes)):
hyp_idx = topk_hyp_indexes[k]
hyp = A[i][hyp_idx]
new_token = topk_token_indexes[k]
if new_token not in (blank_id, unk_id):
if LM.lm_type == "rnn":
token_list.append([new_token])
# store the LSTM states
hs.append(hyp.state[0])
cs.append(hyp.state[1])
else:
# for transformer LM
token_list.append(
[sos_id] + hyp.ys[context_size:] + [new_token]
)
if len(token_list) != 0:
x_lens = torch.tensor([len(tokens) for tokens in token_list]).to(device)
if LM.lm_type == "rnn":
tokens_to_score = (
torch.tensor(token_list).to(torch.int64).to(device).reshape(-1, 1)
)
hs = torch.cat(hs, dim=1).to(device)
cs = torch.cat(cs, dim=1).to(device)
state = (hs, cs)
else:
# for transformer LM
tokens_list = [torch.tensor(tokens) for tokens in token_list]
tokens_to_score = (
torch.nn.utils.rnn.pad_sequence(
tokens_list, batch_first=True, padding_value=0.0
)
.to(device)
.to(torch.int64)
)
state = None
scores, lm_states = LM.score_token(tokens_to_score, x_lens, state)
count = 0 # index, used to locate score and lm states
for i in range(batch_size):
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
topk_token_indexes = (topk_indexes % vocab_size).tolist()
for k in range(len(topk_hyp_indexes)):
hyp_idx = topk_hyp_indexes[k]
hyp = A[i][hyp_idx]
ys = hyp.ys[:]
lm_score = hyp.lm_score
state = hyp.state
hyp_log_prob = topk_log_probs[k] # get score of current hyp
new_token = topk_token_indexes[k]
new_timestamp = hyp.timestamp[:]
if new_token not in (blank_id, unk_id):
ys.append(new_token)
new_timestamp.append(t)
hyp_log_prob += lm_score[new_token] * lm_scale # add the lm score
lm_score = scores[count]
if LM.lm_type == "rnn":
state = (
lm_states[0][:, count, :].unsqueeze(1),
lm_states[1][:, count, :].unsqueeze(1),
)
count += 1
new_hyp = Hypothesis(
ys=ys,
log_prob=hyp_log_prob,
state=state,
lm_score=lm_score,
timestamp=new_timestamp,
)
B[i].add(new_hyp)
B = B + finalized_B
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
sorted_ans = [h.ys[context_size:] for h in best_hyps]
sorted_timestamps = [h.timestamp for h in best_hyps]
ans = []
ans_timestamps = []
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
for i in range(N):
ans.append(sorted_ans[unsorted_indices[i]])
ans_timestamps.append(sorted_timestamps[unsorted_indices[i]])
if not return_timestamps:
return ans
else:
return DecodingResults(
hyps=ans,
timestamps=ans_timestamps,
)

View File

@ -0,0 +1,908 @@
#!/usr/bin/env python3
#
# Copyright 2021-2023 Johns Hopkins University (Author: Amir Hussein,
# Desh Raj)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
(1) greedy search
./zipformer_hat/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./zipformer/exp \
--max-duration 600 \
--decoding-method greedy_search
(2) beam search (not recommended)
./zipformer_hat/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./zipformer/exp \
--max-duration 600 \
--decoding-method beam_search \
--beam-size 4
(3) modified beam search
./zipformer_hat/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./zipformer/exp \
--max-duration 600 \
--decoding-method modified_beam_search \
--beam-size 4
(4) fast beam search (one best)
./zipformer_hat/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./zipformer/exp \
--max-duration 600 \
--decoding-method fast_beam_search \
--beam 20.0 \
--max-contexts 8 \
--max-states 64
(5) fast beam search (nbest)
./zipformer_hat/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./zipformer/exp \
--max-duration 600 \
--decoding-method fast_beam_search_nbest \
--beam 20.0 \
--max-contexts 8 \
--max-states 64 \
--num-paths 200 \
--nbest-scale 0.5
(6) fast beam search (nbest oracle WER)
./zipformer_hat/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./zipformer/exp \
--max-duration 600 \
--decoding-method fast_beam_search_nbest_oracle \
--beam 20.0 \
--max-contexts 8 \
--max-states 64 \
--num-paths 200 \
--nbest-scale 0.5
(7) fast beam search (with LG)
./zipformer_hat/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./zipformer/exp \
--max-duration 600 \
--decoding-method fast_beam_search_nbest_LG \
--beam 20.0 \
--max-contexts 8 \
--max-states 64
"""
import argparse
import logging
import math
import os
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import k2
import sentencepiece as spm
import torch
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from beam_search import (
greedy_search_batch,
modified_beam_search,
modified_beam_search_lm_shallow_fusion,
)
from train import add_model_arguments, get_model, get_params
from icefall import ContextGraph, LmScorer, NgramLm
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
make_pad_mask,
setup_logger,
store_transcripts,
str2bool,
write_error_stats,
)
LOG_EPS = math.log(1e-10)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="zipformer/exp",
help="The experiment dir",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--lang-dir",
type=Path,
default="data/lang_bpe_500",
help="The lang dir containing word table and LG graph",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
- modified_beam_search_LODR
- fast_beam_search
- fast_beam_search_nbest
- fast_beam_search_nbest_oracle
- fast_beam_search_nbest_LG
If you use fast_beam_search_nbest_LG, you have to specify
`--lang-dir`, which should contain `LG.pt`.
""",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --decoding-method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=20.0,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is fast_beam_search,
fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle
""",
)
parser.add_argument(
"--ngram-lm-scale",
type=float,
default=0.01,
help="""
Used only when --decoding-method is fast_beam_search_nbest_LG.
It specifies the scale for n-gram LM scores.
""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=8,
help="""Used only when --decoding-method is
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--max-states",
type=int,
default=64,
help="""Used only when --decoding-method is
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame.
Used only when --decoding-method is greedy_search""",
)
parser.add_argument(
"--num-paths",
type=int,
default=200,
help="""Number of paths for nbest decoding.
Used only when the decoding method is fast_beam_search_nbest,
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--nbest-scale",
type=float,
default=0.5,
help="""Scale applied to lattice scores when computing nbest paths.
Used only when the decoding method is fast_beam_search_nbest,
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--use-shallow-fusion",
type=str2bool,
default=False,
help="""Use neural network LM for shallow fusion.
If you want to use LODR, you will also need to set this to true
""",
)
parser.add_argument(
"--lm-type",
type=str,
default="rnn",
help="Type of NN lm",
choices=["rnn", "transformer"],
)
parser.add_argument(
"--lm-scale",
type=float,
default=0.3,
help="""The scale of the neural network LM
Used only when `--use-shallow-fusion` is set to True.
""",
)
parser.add_argument(
"--subtract-ilm",
type=str2bool,
default=False,
help="""Subtract the ILME LM score from the NN LM score.
Used only when `--use-shallow-fusion` is set to True.
""",
)
parser.add_argument(
"--ilm-scale",
type=float,
default=0.1,
help="""The scale of the ILME LM that will be subtracted.""",
)
parser.add_argument(
"--tokens-ngram",
type=int,
default=2,
help="""The order of the ngram lm.
""",
)
parser.add_argument(
"--backoff-id",
type=int,
default=500,
help="ID of the backoff symbol in the ngram LM",
)
parser.add_argument(
"--context-score",
type=float,
default=2,
help="""
The bonus score of each token for the context biasing words/phrases.
Used only when --decoding-method is modified_beam_search and
modified_beam_search_LODR.
""",
)
parser.add_argument(
"--context-file",
type=str,
default="",
help="""
The path of the context biasing lists, one word/phrase each line
Used only when --decoding-method is modified_beam_search and
modified_beam_search_LODR.
""",
)
add_model_arguments(parser)
return parser
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
batch: dict,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
context_graph: Optional[ContextGraph] = None,
LM: Optional[LmScorer] = None,
ngram_lm=None,
ngram_lm_scale: float = 0.0,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
- key: It indicates the setting used for decoding. For example,
if greedy_search is used, it would be "greedy_search"
If beam search with a beam size of 7 is used, it would be
"beam_7"
- value: It contains the decoding result. `len(value)` equals to
batch size. `value[i]` is the decoding result for the i-th
utterance in the given batch.
Args:
params:
It's the return value of :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
word_table:
The word symbol table.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding-method is fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
LM:
A neural network language model.
ngram_lm:
A ngram language model
ngram_lm_scale:
The scale for the ngram language model.
Returns:
Return the decoding result. See above description for the format of
the returned dict.
"""
device = next(model.parameters()).device
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device)
# at entry, feature is (N, T, C)
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
if params.causal:
# this seems to cause insertions at the end of the utterance if used with zipformer.
pad_len = 30
feature_lens += pad_len
feature = torch.nn.functional.pad(
feature,
pad=(0, 0, 0, pad_len),
value=LOG_EPS,
)
encoder_out, encoder_out_lens = model.forward_encoder(feature, feature_lens)
hyps = []
if params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
# context_graph=context_graph,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search_lm_shallow_fusion":
hyp_tokens = modified_beam_search_lm_shallow_fusion(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
LM=LM,
subtract_ilm=params.subtract_ilm,
ilm_scale=params.ilm_scale,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
else:
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
if params.decoding_method == "greedy_search":
return {"greedy_search": hyps}
elif "modified_beam_search" in params.decoding_method:
prefix = f"beam_size_{params.beam_size}"
if params.has_contexts:
prefix += f"-context-score-{params.context_score}"
return {prefix: hyps}
else:
return {f"beam_size_{params.beam_size}": hyps}
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
context_graph: Optional[ContextGraph] = None,
LM: Optional[LmScorer] = None,
ngram_lm=None,
ngram_lm_scale: float = 0.0,
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
word_table:
The word symbol table.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding-method is fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
Returns:
Return a dict, whose key may be "greedy_search" if greedy search
is used, or it may be "beam_7" if beam size of 7 is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
if params.decoding_method == "greedy_search":
log_interval = 50
else:
log_interval = 20
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
hyps_dict = decode_one_batch(
params=params,
model=model,
sp=sp,
decoding_graph=decoding_graph,
context_graph=context_graph,
word_table=word_table,
batch=batch,
LM=LM,
ngram_lm=ngram_lm,
ngram_lm_scale=ngram_lm_scale,
)
for name, hyps in hyps_dict.items():
this_batch = []
assert len(hyps) == len(texts)
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
ref_words = ref_text.split()
this_batch.append((cut_id, ref_words, hyp_words))
results[name].extend(this_batch)
num_cuts += len(texts)
if batch_idx % log_interval == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
return results
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
):
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = (
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = (
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True
)
test_set_wers[key] = wer
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = (
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
LmScorer.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
assert params.decoding_method in (
"greedy_search",
"modified_beam_search",
"modified_beam_search_lm_shallow_fusion",
)
params.res_dir = params.exp_dir / params.decoding_method
if os.path.exists(params.context_file):
params.has_contexts = True
else:
params.has_contexts = False
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
if params.causal:
assert (
"," not in params.chunk_size
), "chunk_size should be one value in decoding."
assert (
"," not in params.left_context_frames
), "left_context_frames should be one value in decoding."
params.suffix += f"-chunk-{params.chunk_size}"
params.suffix += f"-left-context-{params.left_context_frames}"
if "beam_search" in params.decoding_method:
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
if params.decoding_method in (
"modified_beam_search",
"modified_beam_search_LODR",
):
if params.has_contexts:
params.suffix += f"-context-score-{params.context_score}"
else:
params.suffix += f"-context-{params.context_size}"
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
if params.use_shallow_fusion:
params.suffix += f"-{params.lm_type}-lm-scale-{params.lm_scale}"
if "LODR" in params.decoding_method:
params.suffix += (
f"-LODR-{params.tokens_ngram}gram-scale-{params.ngram_lm_scale}"
)
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> and <unk> are defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
logging.info(params)
logging.info("About to create model")
model = get_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device)
model.eval()
# only load the neural network LM if required
if (
params.use_shallow_fusion
or params.decoding_method == "modified_beam_search_lm_shallow_fusion"
):
LM = LmScorer(
lm_type=params.lm_type,
params=params,
device=device,
lm_scale=params.lm_scale,
)
LM.to(device)
LM.eval()
else:
LM = None
# only load N-gram LM when needed
if params.decoding_method == "modified_beam_search_lm_rescore_LODR":
try:
import kenlm
except ImportError:
print("Please install kenlm first. You can use")
print(" pip install https://github.com/kpu/kenlm/archive/master.zip")
print("to install it")
import sys
sys.exit(-1)
ngram_file_name = str(params.lang_dir / f"{params.tokens_ngram}gram.arpa")
logging.info(f"lm filename: {ngram_file_name}")
ngram_lm = kenlm.Model(ngram_file_name)
ngram_lm_scale = None # use a list to search
elif params.decoding_method == "modified_beam_search_LODR":
lm_filename = f"{params.tokens_ngram}gram.fst.txt"
logging.info(f"Loading token level lm: {lm_filename}")
ngram_lm = NgramLm(
str(params.lang_dir / lm_filename),
backoff_id=params.backoff_id,
is_binary=False,
)
logging.info(f"num states: {ngram_lm.lm.num_states}")
ngram_lm_scale = params.ngram_lm_scale
else:
ngram_lm = None
ngram_lm_scale = None
if "fast_beam_search" in params.decoding_method:
if params.decoding_method == "fast_beam_search_nbest_LG":
lexicon = Lexicon(params.lang_dir)
word_table = lexicon.word_table
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
)
decoding_graph.scores *= params.ngram_lm_scale
else:
word_table = None
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
else:
decoding_graph = None
word_table = None
if "modified_beam_search" in params.decoding_method:
if os.path.exists(params.context_file):
contexts = []
for line in open(params.context_file).readlines():
contexts.append(line.strip())
context_graph = ContextGraph(params.context_score)
context_graph.build(sp.encode(contexts))
else:
context_graph = None
else:
context_graph = None
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
# we need cut ids to display recognition results.
args.return_cuts = True
librispeech = LibriSpeechAsrDataModule(args)
test_clean_cuts = librispeech.test_clean_cuts()
test_other_cuts = librispeech.test_other_cuts()
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
test_sets = ["test-clean", "test-other"]
test_dl = [test_clean_dl, test_other_dl]
for test_set, test_dl in zip(test_sets, test_dl):
results_dict = decode_dataset(
dl=test_dl,
params=params,
model=model,
sp=sp,
word_table=word_table,
decoding_graph=decoding_graph,
context_graph=context_graph,
LM=LM,
ngram_lm=ngram_lm,
ngram_lm_scale=ngram_lm_scale,
)
save_results(
params=params,
test_set_name=test_set,
results_dict=results_dict,
)
logging.info("Done!")
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../zipformer/decoder.py

View File

@ -0,0 +1 @@
../zipformer/encoder_interface.py

View File

@ -0,0 +1 @@
../zipformer/export-onnx-streaming.py

View File

@ -0,0 +1 @@
../zipformer/export-onnx.py

View File

@ -0,0 +1 @@
../zipformer/export.py

View File

@ -0,0 +1 @@
../zipformer/generate_averaged_model.py

View File

@ -0,0 +1 @@
../zipformer/jit_pretrained.py

View File

@ -0,0 +1 @@
../zipformer/jit_pretrained_ctc.py

View File

@ -0,0 +1 @@
../zipformer/jit_pretrained_streaming.py

View File

@ -0,0 +1 @@
../zipformer/joiner.py

View File

@ -0,0 +1,359 @@
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang,
# Wei Kang,
# Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple
import k2
import torch
import torch.nn as nn
from encoder_interface import EncoderInterface
from icefall.utils import add_sos, make_pad_mask
from scaling import ScaledLinear
class AsrModel(nn.Module):
def __init__(
self,
encoder_embed: nn.Module,
encoder: EncoderInterface,
decoder: Optional[nn.Module] = None,
joiner: Optional[nn.Module] = None,
encoder_dim: int = 384,
decoder_dim: int = 512,
vocab_size: int = 500,
use_transducer: bool = True,
use_ctc: bool = False,
):
"""A joint CTC & Transducer ASR model.
- Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks (http://imagine.enpc.fr/~obozinsg/teaching/mva_gm/papers/ctc.pdf)
- Sequence Transduction with Recurrent Neural Networks (https://arxiv.org/pdf/1211.3711.pdf)
- Pruned RNN-T for fast, memory-efficient ASR training (https://arxiv.org/pdf/2206.13236.pdf)
Args:
encoder_embed:
It is a Convolutional 2D subsampling module. It converts
an input of shape (N, T, idim) to an output of of shape
(N, T', odim), where T' = (T-3)//2-2 = (T-7)//2.
encoder:
It is the transcription network in the paper. Its accepts
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
It returns two tensors: `logits` of shape (N, T, encoder_dim) and
`logit_lens` of shape (N,).
decoder:
It is the prediction network in the paper. Its input shape
is (N, U) and its output shape is (N, U, decoder_dim).
It should contain one attribute: `blank_id`.
It is used when use_transducer is True.
joiner:
It has two inputs with shapes: (N, T, encoder_dim) and (N, U, decoder_dim).
Its output shape is (N, T, U, vocab_size). Note that its output contains
unnormalized probs, i.e., not processed by log-softmax.
It is used when use_transducer is True.
use_transducer:
Whether use transducer head. Default: True.
use_ctc:
Whether use CTC head. Default: False.
"""
super().__init__()
assert (
use_transducer or use_ctc
), f"At least one of them should be True, but got use_transducer={use_transducer}, use_ctc={use_ctc}"
assert isinstance(encoder, EncoderInterface), type(encoder)
self.encoder_embed = encoder_embed
self.encoder = encoder
self.use_transducer = use_transducer
if use_transducer:
# Modules for Transducer head
assert decoder is not None
assert hasattr(decoder, "blank_id")
assert joiner is not None
self.decoder = decoder
self.joiner = joiner
self.simple_am_proj = ScaledLinear(
encoder_dim, vocab_size, initial_scale=0.25
)
self.simple_lm_proj = ScaledLinear(
decoder_dim, vocab_size, initial_scale=0.25
)
else:
assert decoder is None
assert joiner is None
self.use_ctc = use_ctc
if use_ctc:
# Modules for CTC head
self.ctc_output = nn.Sequential(
nn.Dropout(p=0.1),
nn.Linear(encoder_dim, vocab_size),
nn.LogSoftmax(dim=-1),
)
def forward_encoder(
self, x: torch.Tensor, x_lens: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute encoder outputs.
Args:
x:
A 3-D tensor of shape (N, T, C).
x_lens:
A 1-D tensor of shape (N,). It contains the number of frames in `x`
before padding.
Returns:
encoder_out:
Encoder output, of shape (N, T, C).
encoder_out_lens:
Encoder output lengths, of shape (N,).
"""
# logging.info(f"Memory allocated at entry: {torch.cuda.memory_allocated() // 1000000}M")
x, x_lens = self.encoder_embed(x, x_lens)
# logging.info(f"Memory allocated after encoder_embed: {torch.cuda.memory_allocated() // 1000000}M")
src_key_padding_mask = make_pad_mask(x_lens)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
assert torch.all(encoder_out_lens > 0), (x_lens, encoder_out_lens)
return encoder_out, encoder_out_lens
def forward_ctc(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
targets: torch.Tensor,
target_lengths: torch.Tensor,
) -> torch.Tensor:
"""Compute CTC loss.
Args:
encoder_out:
Encoder output, of shape (N, T, C).
encoder_out_lens:
Encoder output lengths, of shape (N,).
targets:
Target Tensor of shape (sum(target_lengths)). The targets are assumed
to be un-padded and concatenated within 1 dimension.
"""
# Compute CTC log-prob
ctc_output = self.ctc_output(encoder_out) # (N, T, C)
ctc_loss = torch.nn.functional.ctc_loss(
log_probs=ctc_output.permute(1, 0, 2), # (T, N, C)
targets=targets,
input_lengths=encoder_out_lens,
target_lengths=target_lengths,
reduction="sum",
)
return ctc_loss
def forward_transducer(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
y: k2.RaggedTensor,
y_lens: torch.Tensor,
prune_range: int = 5,
am_scale: float = 0.0,
lm_scale: float = 0.0,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute Transducer loss.
Args:
encoder_out:
Encoder output, of shape (N, T, C).
encoder_out_lens:
Encoder output lengths, of shape (N,).
y:
A ragged tensor with 2 axes [utt][label]. It contains labels of each
utterance.
prune_range:
The prune range for rnnt loss, it means how many symbols(context)
we are considering for each frame to compute the loss.
am_scale:
The scale to smooth the loss with am (output of encoder network)
part
lm_scale:
The scale to smooth the loss with lm (output of predictor network)
part
"""
# Now for the decoder, i.e., the prediction network
blank_id = self.decoder.blank_id
sos_y = add_sos(y, sos_id=blank_id)
# sos_y_padded: [B, S + 1], start with SOS.
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
# decoder_out: [B, S + 1, decoder_dim]
decoder_out = self.decoder(sos_y_padded)
# Note: y does not start with SOS
# y_padded : [B, S]
y_padded = y.pad(mode="constant", padding_value=0)
y_padded = y_padded.to(torch.int64)
boundary = torch.zeros(
(encoder_out.size(0), 4),
dtype=torch.int64,
device=encoder_out.device,
)
boundary[:, 2] = y_lens
boundary[:, 3] = encoder_out_lens
lm = self.simple_lm_proj(decoder_out)
am = self.simple_am_proj(encoder_out)
# if self.training and random.random() < 0.25:
# lm = penalize_abs_values_gt(lm, 100.0, 1.0e-04)
# if self.training and random.random() < 0.25:
# am = penalize_abs_values_gt(am, 30.0, 1.0e-04)
with torch.cuda.amp.autocast(enabled=False):
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
lm=lm.float(),
am=am.float(),
symbols=y_padded,
termination_symbol=blank_id,
lm_only_scale=lm_scale,
am_only_scale=am_scale,
boundary=boundary,
reduction="sum",
return_grad=True,
)
# ranges : [B, T, prune_range]
ranges = k2.get_rnnt_prune_ranges(
px_grad=px_grad,
py_grad=py_grad,
boundary=boundary,
s_range=prune_range,
)
# am_pruned : [B, T, prune_range, encoder_dim]
# lm_pruned : [B, T, prune_range, decoder_dim]
am_pruned, lm_pruned = k2.do_rnnt_pruning(
am=self.joiner.encoder_proj(encoder_out),
lm=self.joiner.decoder_proj(decoder_out),
ranges=ranges,
)
# logits : [B, T, prune_range, vocab_size]
# project_input=False since we applied the decoder's input projections
# prior to do_rnnt_pruning (this is an optimization for speed).
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
with torch.cuda.amp.autocast(enabled=False):
pruned_loss = k2.rnnt_loss_pruned(
logits=logits.float(),
symbols=y_padded,
ranges=ranges,
termination_symbol=blank_id,
boundary=boundary,
reduction="sum",
use_hat_loss=True,
)
return simple_loss, pruned_loss
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
y: k2.RaggedTensor,
prune_range: int = 5,
am_scale: float = 0.0,
lm_scale: float = 0.0,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Args:
x:
A 3-D tensor of shape (N, T, C).
x_lens:
A 1-D tensor of shape (N,). It contains the number of frames in `x`
before padding.
y:
A ragged tensor with 2 axes [utt][label]. It contains labels of each
utterance.
prune_range:
The prune range for rnnt loss, it means how many symbols(context)
we are considering for each frame to compute the loss.
am_scale:
The scale to smooth the loss with am (output of encoder network)
part
lm_scale:
The scale to smooth the loss with lm (output of predictor network)
part
Returns:
Return the transducer losses and CTC loss,
in form of (simple_loss, pruned_loss, ctc_loss)
Note:
Regarding am_scale & lm_scale, it will make the loss-function one of
the form:
lm_scale * lm_probs + am_scale * am_probs +
(1-lm_scale-am_scale) * combined_probs
"""
assert x.ndim == 3, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert y.num_axes == 2, y.num_axes
assert x.size(0) == x_lens.size(0) == y.dim0, (x.shape, x_lens.shape, y.dim0)
# Compute encoder outputs
encoder_out, encoder_out_lens = self.forward_encoder(x, x_lens)
row_splits = y.shape.row_splits(1)
y_lens = row_splits[1:] - row_splits[:-1]
if self.use_transducer:
# Compute transducer loss
simple_loss, pruned_loss = self.forward_transducer(
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
y=y.to(x.device),
y_lens=y_lens,
prune_range=prune_range,
am_scale=am_scale,
lm_scale=lm_scale,
)
else:
simple_loss = torch.empty(0)
pruned_loss = torch.empty(0)
if self.use_ctc:
# Compute CTC loss
targets = y.values
ctc_loss = self.forward_ctc(
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
targets=targets,
target_lengths=y_lens,
)
else:
ctc_loss = torch.empty(0)
return simple_loss, pruned_loss, ctc_loss

View File

@ -0,0 +1 @@
../zipformer/onnx_check.py

View File

@ -0,0 +1 @@
../zipformer/onnx_decode.py

View File

@ -0,0 +1 @@
../zipformer/onnx_pretrained-streaming.py

View File

@ -0,0 +1 @@
../zipformer/onnx_pretrained.py

View File

@ -0,0 +1 @@
../zipformer/optim.py

View File

@ -0,0 +1 @@
../zipformer/pretrained.py

View File

@ -0,0 +1 @@
../zipformer/pretrained_ctc.py

View File

@ -0,0 +1 @@
../zipformer/profile.py

View File

@ -0,0 +1 @@
../zipformer/scaling.py

View File

@ -0,0 +1 @@
../zipformer/scaling_converter.py

View File

@ -0,0 +1 @@
../zipformer/subsampling.py

View File

@ -0,0 +1 @@
../zipformer/test_scaling.py

View File

@ -0,0 +1 @@
../zipformer/test_subsampling.py

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
../zipformer/zipformer.py