Change for memory efficiency

This commit is contained in:
Daniel Povey 2022-12-22 15:17:56 +08:00
parent 903955f5d9
commit d31e2e12c6
2 changed files with 20 additions and 8 deletions

View File

@ -439,23 +439,29 @@ class BasicNormFunction(torch.autograd.Function):
# some other reason, related to the next operation, so we can save memory).
@staticmethod
@custom_fwd
def forward(ctx, x: Tensor, bias: Tensor, eps: Tensor, channel_dim: int) -> Tensor:
def forward(ctx, x: Tensor, bias: Tensor, eps: Tensor, channel_dim: int,
store_output_for_backprop: bool) -> Tensor:
assert bias.ndim == 1
if channel_dim < 0:
channel_dim = channel_dim + x.ndim
ctx.store_output_for_backprop = store_output_for_backprop
ctx.channel_dim = channel_dim
for _ in range(channel_dim + 1, x.ndim):
bias = bias.unsqueeze(-1)
scales = (torch.mean((x + bias) ** 2, dim=channel_dim, keepdim=True) + eps.exp()) ** -0.5
ans = x * scales
ctx.save_for_backward(ans, scales, bias, eps)
ctx.save_for_backward(ans if store_output_for_backprop else x,
scales, bias, eps)
return ans
@staticmethod
@custom_bwd
def backward(ctx, ans_grad: Tensor) -> Tensor:
ans, scales, bias, eps = ctx.saved_tensors
x = ans / scales
ans_or_x, scales, bias, eps = ctx.saved_tensors
if ctx.store_output_for_backprop:
x = ans_or_x / scales
else:
x = ans_or_x
x = x.detach()
bias = bias.detach()
eps = eps.detach()
@ -467,7 +473,7 @@ class BasicNormFunction(torch.autograd.Function):
scales = (torch.mean((x + bias) ** 2, dim=ctx.channel_dim, keepdim=True) + eps.exp()) ** -0.5
ans = x * scales
ans.backward(gradient=ans_grad)
return x.grad, bias.grad.flatten(), eps.grad, None
return x.grad, bias.grad.flatten(), eps.grad, None, None
@ -497,10 +503,13 @@ class BasicNorm(torch.nn.Module):
to indicate the connection with conventional LayerNorm.
learn_eps: if true, we learn epsilon; if false, we keep it
at the initial value.
store_output_for_backprop: this option makes no difference
to the output, but may affect memory usage; determines
whether, for backprop purposes, we store the input or the output
of this module.
eps_min: float
eps_max: float
"""
def __init__(
self,
num_channels: int,
@ -509,6 +518,7 @@ class BasicNorm(torch.nn.Module):
learn_eps: bool = True,
eps_min: float = -3.0,
eps_max: float = 3.0,
store_output_for_backprop: bool = True
) -> None:
super(BasicNorm, self).__init__()
self.num_channels = num_channels
@ -520,6 +530,7 @@ class BasicNorm(torch.nn.Module):
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps_min = eps_min
self.eps_max = eps_max
self.store_output_for_backprop = store_output_for_backprop
def forward(self, x: Tensor) -> Tensor:
assert x.shape[self.channel_dim] == self.num_channels
@ -544,7 +555,8 @@ class BasicNorm(torch.nn.Module):
# region if it happens to exit it.
eps = eps.clamp(min=self.eps_min, max=self.eps_max)
return BasicNormFunction.apply(x, self.bias, eps, self.channel_dim)
return BasicNormFunction.apply(x, self.bias, eps, self.channel_dim,
self.store_output_for_backprop)

View File

@ -451,7 +451,7 @@ class ZipformerEncoderLayer(nn.Module):
self.attention_squeeze = AttentionSqueeze(embed_dim, embed_dim // 2)
self.norm_final = BasicNorm(embed_dim)
self.norm_final = BasicNorm(embed_dim, store_output_for_backprop=False)
self.bypass_scale = nn.Parameter(torch.full((embed_dim,), 0.5))