From d2afe0ed221f41790e4ebf208806fcf89346b291 Mon Sep 17 00:00:00 2001 From: dohe0342 Date: Tue, 10 Jan 2023 01:10:05 +0900 Subject: [PATCH] from local --- .../ASR/incremental_transf/.train.py.swp | Bin 61440 -> 61440 bytes .../ASR/incremental_transf/train.py | 17 +++++++++++++++++ 2 files changed, 17 insertions(+) diff --git a/egs/librispeech/ASR/incremental_transf/.train.py.swp b/egs/librispeech/ASR/incremental_transf/.train.py.swp index b5a1e3ce72ed604a271ecca0451ff7e5151cb46a..3cebdc975c43af3c43182d38bf46afc6ab7609a9 100644 GIT binary patch delta 936 zcmZp8z})bFSv1KY%+puFQqO<^2m}}y1g-ZZ@7^dXEyx(U*--FuAMZXU1_nJAh-Bzy z!3F$`UX$1v7~Fu^0*JYQ_!=7n!$Keq17bNKe!|MYFa?O4fY=L&{{yuj2jX5JwgqAv zAhrf#J(kT`3y(0>Df?(GaxzO&Qy^AOHdrpF8*Lm5 zR9jq9qycg}rc$81roO%rLPveH0Z4~BP&v@l)VyS%2aD8E9Fm$-oN9$4q5uR`3ME8j zpa&CeLJ8z_7yt#&WQXN^q=%XtG}H=8um@RYngZ_dS5Q?jQn0mEFtD1ezg!<40GPo{ Yr62}-7iZ{lK@y=+bYAS{gUjtb01l`GRsaA1 delta 198 zcmZp8z})bFSv1KY%+puFQqO<^2m}}y*sS*?PuwUfEy(Dy*--FuA8#}p14BDIMABum z-~xU|uPHz-NT>~n7Xoo65GMn15)k_Wu^AAH0P!=R)~7(c9Eg_zaUu{W0I@C*|6pZc w*u%OxYvB>5%@1CEW#Uyp0t}P=mdZ`mSS~R6;Bs|-BncoBCMU7^)N(Tq0Q*lYGynhq diff --git a/egs/librispeech/ASR/incremental_transf/train.py b/egs/librispeech/ASR/incremental_transf/train.py index 10b3ad142..c852b9951 100755 --- a/egs/librispeech/ASR/incremental_transf/train.py +++ b/egs/librispeech/ASR/incremental_transf/train.py @@ -976,7 +976,24 @@ def run(rank, world_size, args): for n, p in model.named_parameters(): if 'layer' not in n: + try: p.data = pre_trained_model2[n] + except: print(f'pre-trained model has no parameter named {n}.') + else: layer_name_splited = n.split('.') + if int(layer_name_splited[3]) % 2 == 0: + layer_name_splited[0] = 'pt_encoder' + layer_name_splited[3] = str(int(layer_name_splited[3])//2) + old_name = '.'.join(layer_name_splited) + try: p.data = pre_trained_model[old_name] + except: print(f'pre-trained model has no parameter named {n}.') + else: + layer_name_splited[0] = 'inter_encoder' + layer_name_splited[3] = str(int(layer_name_splited[3])//2) + old_name = '.'.join(layer_name_splited) + try: p.data = pre_trained_model[old_name] + except: print(f'pre-trained model has no parameter named {n}.') + + num_param = sum([p.numel() for p in model.parameters()])