mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Fix conflicts
This commit is contained in:
commit
d2ae1ba060
61
README.md
61
README.md
@ -1 +1,60 @@
|
||||
Working in progress.
|
||||
|
||||
# Table of Contents
|
||||
|
||||
- [Installation](#installation)
|
||||
* [Install k2](#install-k2)
|
||||
* [Install lhotse](#install-lhotse)
|
||||
* [Install icefall](#install-icefall)
|
||||
- [Run recipes](#run-recipes)
|
||||
|
||||
## Installation
|
||||
|
||||
`icefall` depends on [k2][k2] for FSA operations and [lhotse][lhotse] for
|
||||
data preparations. To use `icefall`, you have to install its dependencies first.
|
||||
The following subsections describe how to setup the environment.
|
||||
|
||||
CAUTION: There are various ways to setup the environment. What we describe
|
||||
here is just one alternative.
|
||||
|
||||
### Install k2
|
||||
|
||||
Please refer to [k2's installation documentation][k2-install] to install k2.
|
||||
If you have any issues about installing k2, please open an issue at
|
||||
<https://github.com/k2-fsa/k2/issues>.
|
||||
|
||||
### Install lhotse
|
||||
|
||||
Please refer to [lhotse's installation documentation][lhotse-install] to install
|
||||
lhotse.
|
||||
|
||||
### Install icefall
|
||||
|
||||
`icefall` is a set of Python scripts. What you need to do is just to set
|
||||
the environment variable `PYTHONPATH`:
|
||||
|
||||
```bash
|
||||
cd $HOME/open-source
|
||||
git clone https://github.com/k2-fsa/icefall
|
||||
cd icefall
|
||||
pip install -r requirements.txt
|
||||
export PYTHONPATH=$HOME/open-source/icefall:$PYTHONPATHON
|
||||
```
|
||||
|
||||
To verify `icefall` was installed successfully, you can run:
|
||||
|
||||
```bash
|
||||
python3 -c "import icefall; print(icefall.__file__)"
|
||||
```
|
||||
|
||||
It should print the path to `icefall`.
|
||||
|
||||
## Run recipes
|
||||
|
||||
At present, only LibriSpeech recipe is provided. Please
|
||||
follow [egs/librispeech/ASR/README.md][LibriSpeech] to run it.
|
||||
|
||||
[LibriSpeech]: egs/librispeech/ASR/README.md
|
||||
[k2-install]: https://k2.readthedocs.io/en/latest/installation/index.html#
|
||||
[k2]: https://github.com/k2-fsa/k2
|
||||
[lhotse]: https://github.com/lhotse-speech/lhotse
|
||||
[lhotse-install]: https://lhotse.readthedocs.io/en/latest/getting-started.html#installation
|
||||
|
@ -1,121 +1,64 @@
|
||||
|
||||
Run `./prepare.sh` to prepare the data.
|
||||
## Data preparation
|
||||
|
||||
Run `./xxx_train.py` (to be added) to train a model.
|
||||
|
||||
## Conformer-CTC
|
||||
Results of the pre-trained model from
|
||||
`<https://huggingface.co/GuoLiyong/snowfall_bpe_model/tree/main/exp-duration-200-feat_batchnorm-bpe-lrfactor5.0-conformer-512-8-noam>`
|
||||
are given below
|
||||
|
||||
### HLG - no LM rescoring
|
||||
|
||||
(output beam size is 8)
|
||||
|
||||
#### 1-best decoding
|
||||
If you want to use `./prepare.sh` to download everything for you,
|
||||
you can just run
|
||||
|
||||
```
|
||||
[test-clean-no_rescore] %WER 3.15% [1656 / 52576, 127 ins, 377 del, 1152 sub ]
|
||||
[test-other-no_rescore] %WER 7.03% [3682 / 52343, 220 ins, 1024 del, 2438 sub ]
|
||||
./prepare.sh
|
||||
```
|
||||
|
||||
#### n-best decoding
|
||||
|
||||
For n=100,
|
||||
If you have pre-downloaded the LibriSpeech dataset, please
|
||||
read `./prepare.sh` and modify it to point to the location
|
||||
of your dataset so that it won't re-download it. After modification,
|
||||
please run
|
||||
|
||||
```
|
||||
[test-clean-no_rescore-100] %WER 3.15% [1656 / 52576, 127 ins, 377 del, 1152 sub ]
|
||||
[test-other-no_rescore-100] %WER 7.14% [3737 / 52343, 275 ins, 1020 del, 2442 sub ]
|
||||
./prepare.sh
|
||||
```
|
||||
|
||||
For n=200,
|
||||
The script `./prepare.sh` prepares features, lexicon, LMs, etc.
|
||||
All generated files are saved in the folder `./data`.
|
||||
|
||||
**HINT:** `./prepare.sh` supports options `--stage` and `--stop-stage`.
|
||||
|
||||
## TDNN-LSTM CTC training
|
||||
|
||||
The folder `tdnn_lstm_ctc` contains scripts for CTC training
|
||||
with TDNN-LSTM models.
|
||||
|
||||
Pre-configured parameters for training and decoding are set in the function
|
||||
`get_params()` within `tdnn_lstm_ctc/train.py`
|
||||
and `tdnn_lstm_ctc/decode.py`.
|
||||
|
||||
Parameters that can be passed from the command-line can be found by
|
||||
|
||||
```
|
||||
[test-clean-no_rescore-200] %WER 3.16% [1660 / 52576, 125 ins, 378 del, 1157 sub ]
|
||||
[test-other-no_rescore-200] %WER 7.04% [3684 / 52343, 228 ins, 1012 del, 2444 sub ]
|
||||
./tdnn_lstm_ctc/train.py --help
|
||||
./tdnn_lstm_ctc/decode.py --help
|
||||
```
|
||||
|
||||
### HLG - with LM rescoring
|
||||
|
||||
#### Whole lattice rescoring
|
||||
If you have 4 GPUs on a machine and want to use GPU 0, 2, 3 for
|
||||
mutli-GPU training, you can run
|
||||
|
||||
```
|
||||
[test-clean-lm_scale_0.8] %WER 2.77% [1456 / 52576, 150 ins, 210 del, 1096 sub ]
|
||||
[test-other-lm_scale_0.8] %WER 6.23% [3262 / 52343, 246 ins, 635 del, 2381 sub ]
|
||||
export CUDA_VISIBLE_DEVICES="0,2,3"
|
||||
./tdnn_lstm_ctc/train.py \
|
||||
--master-port 12345 \
|
||||
--world-size 3
|
||||
```
|
||||
|
||||
WERs of different LM scales are:
|
||||
If you want to decode by averaging checkpoints `epoch-8.pt`,
|
||||
`epoch-9.pt` and `epoch-10.pt`, you can run
|
||||
|
||||
```
|
||||
For test-clean, WER of different settings are:
|
||||
lm_scale_0.8 2.77 best for test-clean
|
||||
lm_scale_0.9 2.87
|
||||
lm_scale_1.0 3.06
|
||||
lm_scale_1.1 3.34
|
||||
lm_scale_1.2 3.71
|
||||
lm_scale_1.3 4.18
|
||||
lm_scale_1.4 4.8
|
||||
lm_scale_1.5 5.48
|
||||
lm_scale_1.6 6.08
|
||||
lm_scale_1.7 6.79
|
||||
lm_scale_1.8 7.49
|
||||
lm_scale_1.9 8.14
|
||||
lm_scale_2.0 8.82
|
||||
|
||||
For test-other, WER of different settings are:
|
||||
lm_scale_0.8 6.23 best for test-other
|
||||
lm_scale_0.9 6.37
|
||||
lm_scale_1.0 6.62
|
||||
lm_scale_1.1 6.99
|
||||
lm_scale_1.2 7.46
|
||||
lm_scale_1.3 8.13
|
||||
lm_scale_1.4 8.84
|
||||
lm_scale_1.5 9.61
|
||||
lm_scale_1.6 10.32
|
||||
lm_scale_1.7 11.17
|
||||
lm_scale_1.8 12.12
|
||||
lm_scale_1.9 12.93
|
||||
lm_scale_2.0 13.77
|
||||
./tdnn_lstm_ctc/decode.py \
|
||||
--epoch 10 \
|
||||
--avg 3
|
||||
```
|
||||
|
||||
#### n-best LM rescoring
|
||||
## Conformer CTC training
|
||||
|
||||
n = 100
|
||||
|
||||
```
|
||||
[test-clean-lm_scale_0.8] %WER 2.79% [1469 / 52576, 149 ins, 212 del, 1108 sub ]
|
||||
[test-other-lm_scale_0.8] %WER 6.36% [3329 / 52343, 259 ins, 666 del, 2404 sub ]
|
||||
```
|
||||
|
||||
WERs of different LM scales are:
|
||||
|
||||
```
|
||||
For test-clean, WER of different settings are:
|
||||
lm_scale_0.8 2.79 best for test-clean
|
||||
lm_scale_0.9 2.89
|
||||
lm_scale_1.0 3.03
|
||||
lm_scale_1.1 3.28
|
||||
lm_scale_1.2 3.52
|
||||
lm_scale_1.3 3.78
|
||||
lm_scale_1.4 4.04
|
||||
lm_scale_1.5 4.24
|
||||
lm_scale_1.6 4.45
|
||||
lm_scale_1.7 4.58
|
||||
lm_scale_1.8 4.7
|
||||
lm_scale_1.9 4.8
|
||||
lm_scale_2.0 4.92
|
||||
For test-other, WER of different settings are:
|
||||
lm_scale_0.8 6.36 best for test-other
|
||||
lm_scale_0.9 6.45
|
||||
lm_scale_1.0 6.64
|
||||
lm_scale_1.1 6.92
|
||||
lm_scale_1.2 7.25
|
||||
lm_scale_1.3 7.59
|
||||
lm_scale_1.4 7.88
|
||||
lm_scale_1.5 8.13
|
||||
lm_scale_1.6 8.36
|
||||
lm_scale_1.7 8.54
|
||||
lm_scale_1.8 8.71
|
||||
lm_scale_1.9 8.88
|
||||
lm_scale_2.0 9.02
|
||||
```
|
||||
The folder `conformer-ctc` contains scripts for CTC training
|
||||
with conformer models. The steps of running the training and
|
||||
decoding are similar to `tdnn_lstm_ctc`.
|
||||
|
@ -316,6 +316,7 @@ def decode_dataset(
|
||||
logging.info(
|
||||
f"batch {batch_idx}/{tot_num_batches}, cuts processed until now is "
|
||||
f"{num_cuts}"
|
||||
f"batch {batch_idx}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
return results
|
||||
|
||||
@ -398,7 +399,9 @@ def main():
|
||||
sos_id = graph_compiler.sos_id
|
||||
eos_id = graph_compiler.eos_id
|
||||
|
||||
HLG = k2.Fsa.from_dict(torch.load(f"{params.lang_dir}/HLG.pt"))
|
||||
HLG = k2.Fsa.from_dict(
|
||||
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
|
||||
)
|
||||
HLG = HLG.to(device)
|
||||
assert HLG.requires_grad is False
|
||||
|
||||
@ -429,7 +432,7 @@ def main():
|
||||
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
|
||||
else:
|
||||
logging.info("Loading pre-compiled G_4_gram.pt")
|
||||
d = torch.load(params.lm_dir / "G_4_gram.pt")
|
||||
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location="cpu")
|
||||
G = k2.Fsa.from_dict(d).to(device)
|
||||
|
||||
if params.method in ["whole-lattice-rescoring", "attention-decoder"]:
|
||||
|
@ -17,6 +17,7 @@ from conformer import Conformer
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_value_
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from transformer import Noam
|
||||
|
||||
@ -127,13 +128,13 @@ def get_params() -> AttributeDict:
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"exp_dir": Path("conformer_ctc/exp"),
|
||||
"exp_dir": Path("conformer_ctc/exp_new"),
|
||||
"lang_dir": Path("data/lang_bpe"),
|
||||
"feature_dim": 80,
|
||||
"weight_decay": 1e-6,
|
||||
"subsampling_factor": 4,
|
||||
"start_epoch": 0,
|
||||
"num_epochs": 50,
|
||||
"num_epochs": 20,
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
|
@ -4,12 +4,9 @@
|
||||
import math
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from subsampling import Conv2dSubsampling, VggSubsampling
|
||||
|
||||
from icefall.utils import get_texts
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
# Note: TorchScript requires Dict/List/etc. to be fully typed.
|
||||
|
@ -1,18 +1,18 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
"""
|
||||
This script compiles HLG from
|
||||
This script takes as input lang_dir and generates HLG from
|
||||
|
||||
- H, the ctc topology, built from tokens contained in lexicon.txt
|
||||
- L, the lexicon, built from L_disambig.pt
|
||||
- H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt
|
||||
- L, the lexicon, built from lang_dir/L_disambig.pt
|
||||
|
||||
Caution: We use a lexicon that contains disambiguation symbols
|
||||
|
||||
- G, the LM, built from data/lm/G_3_gram.fst.txt
|
||||
|
||||
The generated HLG is saved in data/lm/HLG.pt (phone based)
|
||||
or data/lm/HLG_bpe.pt (BPE based)
|
||||
The generated HLG is saved in $lang_dir/HLG.pt
|
||||
"""
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
@ -22,11 +22,23 @@ import torch
|
||||
from icefall.lexicon import Lexicon
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def compile_HLG(lang_dir: str) -> k2.Fsa:
|
||||
"""
|
||||
Args:
|
||||
lang_dir:
|
||||
The language directory, e.g., data/lang_phone or data/lang_bpe.
|
||||
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
|
||||
|
||||
Return:
|
||||
An FSA representing HLG.
|
||||
@ -104,17 +116,18 @@ def compile_HLG(lang_dir: str) -> k2.Fsa:
|
||||
|
||||
|
||||
def main():
|
||||
for d in ["data/lang_phone", "data/lang_bpe"]:
|
||||
d = Path(d)
|
||||
logging.info(f"Processing {d}")
|
||||
args = get_args()
|
||||
lang_dir = Path(args.lang_dir)
|
||||
|
||||
if (d / "HLG.pt").is_file():
|
||||
logging.info(f"{d}/HLG.pt already exists - skipping")
|
||||
continue
|
||||
if (lang_dir / "HLG.pt").is_file():
|
||||
logging.info(f"{lang_dir}/HLG.pt already exists - skipping")
|
||||
return
|
||||
|
||||
HLG = compile_HLG(d)
|
||||
logging.info(f"Saving HLG.pt to {d}")
|
||||
torch.save(HLG.as_dict(), f"{d}/HLG.pt")
|
||||
logging.info(f"Processing {lang_dir}")
|
||||
|
||||
HLG = compile_HLG(lang_dir)
|
||||
logging.info(f"Saving HLG.pt to {lang_dir}")
|
||||
torch.save(HLG.as_dict(), f"{lang_dir}/HLG.pt")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -3,12 +3,13 @@
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
|
||||
"""
|
||||
This script takes as inputs the following two files:
|
||||
|
||||
- data/lang_bpe/bpe.model,
|
||||
- data/lang_bpe/words.txt
|
||||
This script takes as input `lang_dir`, which should contain::
|
||||
|
||||
and generates the following files in the directory data/lang_bpe:
|
||||
- lang_dir/bpe.model,
|
||||
- lang_dir/words.txt
|
||||
|
||||
and generates the following files in the directory `lang_dir`:
|
||||
|
||||
- lexicon.txt
|
||||
- lexicon_disambig.txt
|
||||
@ -17,6 +18,7 @@ and generates the following files in the directory data/lang_bpe:
|
||||
- tokens.txt
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
@ -141,8 +143,22 @@ def generate_lexicon(
|
||||
return lexicon, token2id
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
It should contain the bpe.model and words.txt
|
||||
""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
lang_dir = Path("data/lang_bpe")
|
||||
args = get_args()
|
||||
lang_dir = Path(args.lang_dir)
|
||||
model_file = lang_dir / "bpe.model"
|
||||
|
||||
word_sym_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||
@ -189,15 +205,6 @@ def main():
|
||||
torch.save(L.as_dict(), lang_dir / "L.pt")
|
||||
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
||||
|
||||
if False:
|
||||
# Just for debugging, will remove it
|
||||
L.labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
||||
L.aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||
L_disambig.labels_sym = L.labels_sym
|
||||
L_disambig.aux_labels_sym = L.aux_labels_sym
|
||||
L.draw(lang_dir / "L.svg", title="L")
|
||||
L_disambig.draw(lang_dir / "L_disambig.svg", title="L_disambig")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@ -1,10 +1,5 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
"""
|
||||
This script takes as input "data/lang/bpe/train.txt"
|
||||
and generates "data/lang/bpe/bep.model".
|
||||
"""
|
||||
|
||||
# You can install sentencepiece via:
|
||||
#
|
||||
# pip install sentencepiece
|
||||
@ -14,17 +9,41 @@ and generates "data/lang/bpe/bep.model".
|
||||
#
|
||||
# Please install a version >=0.1.96
|
||||
|
||||
import argparse
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import sentencepiece as spm
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
It should contain the training corpus: train.txt.
|
||||
The generated bpe.model is saved to this directory.
|
||||
""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
help="Vocabulary size for BPE training",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
vocab_size = args.vocab_size
|
||||
lang_dir = Path(args.lang_dir)
|
||||
|
||||
model_type = "unigram"
|
||||
vocab_size = 5000
|
||||
model_prefix = f"data/lang_bpe/{model_type}_{vocab_size}"
|
||||
train_text = "data/lang_bpe/train.txt"
|
||||
|
||||
model_prefix = f"{lang_dir}/{model_type}_{vocab_size}"
|
||||
train_text = f"{lang_dir}/train.txt"
|
||||
character_coverage = 1.0
|
||||
input_sentence_size = 100000000
|
||||
|
||||
@ -49,10 +68,7 @@ def main():
|
||||
eos_id=-1,
|
||||
)
|
||||
|
||||
sp = spm.SentencePieceProcessor(model_file=str(model_file))
|
||||
vocab_size = sp.vocab_size()
|
||||
|
||||
shutil.copyfile(model_file, "data/lang_bpe/bpe.model")
|
||||
shutil.copyfile(model_file, f"{lang_dir}/bpe.model")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -25,7 +25,7 @@ stop_stage=100
|
||||
# - librispeech-vocab.txt
|
||||
# - librispeech-lexicon.txt
|
||||
#
|
||||
# - $do_dir/musan
|
||||
# - $dl_dir/musan
|
||||
# This directory contains the following directories downloaded from
|
||||
# http://www.openslr.org/17/
|
||||
#
|
||||
@ -36,8 +36,15 @@ dl_dir=$PWD/download
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
# vocab size for sentence piece models.
|
||||
# It will generate data/lang_bpe_xxx,
|
||||
# data/lang_bpe_yyy if the array contains xxx, yyy
|
||||
vocab_sizes=(
|
||||
5000
|
||||
)
|
||||
|
||||
# All generated files by this script are saved in "data"
|
||||
# All files generated by this script are saved in "data".
|
||||
# You can safely remove "data" and rerun this script to regenerate it.
|
||||
mkdir -p data
|
||||
|
||||
log() {
|
||||
@ -50,6 +57,7 @@ log "dl_dir: $dl_dir"
|
||||
|
||||
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
||||
log "stage -1: Download LM"
|
||||
[ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm
|
||||
./local/download_lm.py --out-dir=$dl_dir/lm
|
||||
fi
|
||||
|
||||
@ -118,28 +126,34 @@ fi
|
||||
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
log "State 6: Prepare BPE based lang"
|
||||
mkdir -p data/lang_bpe
|
||||
# We reuse words.txt from phone based lexicon
|
||||
# so that the two can share G.pt later.
|
||||
cp data/lang_phone/words.txt data/lang_bpe/
|
||||
|
||||
if [ ! -f data/lang_bpe/train.txt ]; then
|
||||
log "Generate data for BPE training"
|
||||
files=$(
|
||||
find "data/LibriSpeech/train-clean-100" -name "*.trans.txt"
|
||||
find "data/LibriSpeech/train-clean-360" -name "*.trans.txt"
|
||||
find "data/LibriSpeech/train-other-500" -name "*.trans.txt"
|
||||
)
|
||||
for f in ${files[@]}; do
|
||||
cat $f | cut -d " " -f 2-
|
||||
done > data/lang_bpe/train.txt
|
||||
fi
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
lang_dir=data/lang_bpe_${vocab_size}
|
||||
mkdir -p $lang_dir
|
||||
# We reuse words.txt from phone based lexicon
|
||||
# so that the two can share G.pt later.
|
||||
cp data/lang_phone/words.txt $lang_dir
|
||||
|
||||
python3 ./local/train_bpe_model.py
|
||||
if [ ! -f $lang_dir/train.txt ]; then
|
||||
log "Generate data for BPE training"
|
||||
files=$(
|
||||
find "$dl_dir/LibriSpeech/train-clean-100" -name "*.trans.txt"
|
||||
find "$dl_dir/LibriSpeech/train-clean-360" -name "*.trans.txt"
|
||||
find "$dl_dir/LibriSpeech/train-other-500" -name "*.trans.txt"
|
||||
)
|
||||
for f in ${files[@]}; do
|
||||
cat $f | cut -d " " -f 2-
|
||||
done > $lang_dir/train.txt
|
||||
fi
|
||||
|
||||
if [ ! -f data/lang_bpe/L_disambig.pt ]; then
|
||||
./local/prepare_lang_bpe.py
|
||||
fi
|
||||
./local/train_bpe_model.py \
|
||||
--lang-dir $lang_dir \
|
||||
--vocab-size $vocab_size
|
||||
|
||||
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||
./local/prepare_lang_bpe.py --lang-dir $lang_dir
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||
@ -169,5 +183,12 @@ fi
|
||||
|
||||
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||
log "Stage 8: Compile HLG"
|
||||
python3 ./local/compile_hlg.py
|
||||
./local/compile_hlg.py --lang-dir data/lang_phone
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
lang_dir=data/lang_bpe_${vocab_size}
|
||||
./local/compile_hlg.py --lang-dir $lang_dir
|
||||
done
|
||||
fi
|
||||
|
||||
cd data && ln -sfv lang_bpe_5000 lang_bpe
|
||||
|
@ -1,22 +1,2 @@
|
||||
## (To be filled in)
|
||||
|
||||
It will contain:
|
||||
|
||||
- How to run
|
||||
- WERs
|
||||
|
||||
```bash
|
||||
cd $PWD/..
|
||||
|
||||
./prepare.sh
|
||||
|
||||
./tdnn_lstm_ctc/train.py
|
||||
```
|
||||
|
||||
If you have 4 GPUs and want to use GPU 1 and GPU 3 for DDP training,
|
||||
you can do the following:
|
||||
|
||||
```
|
||||
export CUDA_VISIBLE_DEVICES="1,3"
|
||||
./tdnn_lstm_ctc/train.py --world-size=2
|
||||
```
|
||||
Will add results later.
|
||||
|
@ -236,7 +236,6 @@ def decode_dataset(
|
||||
results = []
|
||||
|
||||
num_cuts = 0
|
||||
tot_num_cuts = len(dl.dataset.cuts)
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
@ -264,9 +263,7 @@ def decode_dataset(
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
logging.info(
|
||||
f"batch {batch_idx}, cuts processed until now is "
|
||||
f"{num_cuts}/{tot_num_cuts} "
|
||||
f"({float(num_cuts)/tot_num_cuts*100:.6f}%)"
|
||||
f"batch {batch_idx}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
return results
|
||||
|
||||
@ -328,7 +325,9 @@ def main():
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
HLG = k2.Fsa.from_dict(torch.load("data/lang_phone/HLG.pt"))
|
||||
HLG = k2.Fsa.from_dict(
|
||||
torch.load("data/lang_phone/HLG.pt", map_location="cpu")
|
||||
)
|
||||
HLG = HLG.to(device)
|
||||
assert HLG.requires_grad is False
|
||||
|
||||
@ -355,7 +354,7 @@ def main():
|
||||
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
|
||||
else:
|
||||
logging.info("Loading pre-compiled G_4_gram.pt")
|
||||
d = torch.load(params.lm_dir / "G_4_gram.pt")
|
||||
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location="cpu")
|
||||
G = k2.Fsa.from_dict(d).to(device)
|
||||
|
||||
if params.method == "whole-lattice-rescoring":
|
||||
|
@ -1,3 +1,4 @@
|
||||
kaldilm
|
||||
kaldialign
|
||||
sentencepiece>=0.1.96
|
||||
tensorboard
|
||||
|
Loading…
x
Reference in New Issue
Block a user