mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-19 05:54:20 +00:00
Slight refactoring, preparing for batching.
This commit is contained in:
parent
d9a6180ae0
commit
d25df4af5e
@ -21,7 +21,6 @@ import torch
|
|||||||
import random
|
import random
|
||||||
from torch import Tensor
|
from torch import Tensor
|
||||||
from torch.optim import Optimizer
|
from torch.optim import Optimizer
|
||||||
from icefall import diagnostics # only for testing code
|
|
||||||
import logging
|
import logging
|
||||||
|
|
||||||
class PrAdam(Optimizer):
|
class PrAdam(Optimizer):
|
||||||
@ -120,15 +119,8 @@ param_rms_smooth1: Smoothing proportion for parameter matrix, if assumed rank of
|
|||||||
loss = closure()
|
loss = closure()
|
||||||
|
|
||||||
for group in self.param_groups:
|
for group in self.param_groups:
|
||||||
lr = group["lr"]
|
|
||||||
size_lr = lr * group["size_lr_scale"]
|
|
||||||
beta1, beta2 = group["betas"]
|
|
||||||
scalar_max = group["scalar_max"]
|
|
||||||
eps = group["eps"]
|
eps = group["eps"]
|
||||||
size_update_period = group["size_update_period"]
|
size_update_period = group["size_update_period"]
|
||||||
param_min_rms = group["param_min_rms"]
|
|
||||||
param_max_rms = group["param_max_rms"]
|
|
||||||
lr_update_period = group["lr_update_period"]
|
|
||||||
|
|
||||||
for p in group["params"]:
|
for p in group["params"]:
|
||||||
if p.grad is None:
|
if p.grad is None:
|
||||||
@ -207,7 +199,25 @@ param_rms_smooth1: Smoothing proportion for parameter matrix, if assumed rank of
|
|||||||
# instead of just using a temporary and smoothing the scalar factor.
|
# instead of just using a temporary and smoothing the scalar factor.
|
||||||
state[f"grad_cov_{dim}"] = torch.zeros(size, size, **kwargs)
|
state[f"grad_cov_{dim}"] = torch.zeros(size, size, **kwargs)
|
||||||
|
|
||||||
|
self._step_one_param(group, p, state)
|
||||||
|
|
||||||
|
return loss
|
||||||
|
|
||||||
|
def _step_one_param(self,
|
||||||
|
group: dict,
|
||||||
|
p: Tensor,
|
||||||
|
state: dict):
|
||||||
|
lr = group["lr"]
|
||||||
|
size_lr = lr * group["size_lr_scale"]
|
||||||
|
beta1, beta2 = group["betas"]
|
||||||
|
scalar_max = group["scalar_max"]
|
||||||
|
eps = group["eps"]
|
||||||
|
size_update_period = group["size_update_period"]
|
||||||
|
param_min_rms = group["param_min_rms"]
|
||||||
|
param_max_rms = group["param_max_rms"]
|
||||||
|
lr_update_period = group["lr_update_period"]
|
||||||
|
|
||||||
|
grad = p.grad
|
||||||
step = state["step"]
|
step = state["step"]
|
||||||
delta = state["delta"]
|
delta = state["delta"]
|
||||||
delta.mul_(beta1)
|
delta.mul_(beta1)
|
||||||
@ -227,7 +237,6 @@ param_rms_smooth1: Smoothing proportion for parameter matrix, if assumed rank of
|
|||||||
beta1, beta2, step, size_lr,
|
beta1, beta2, step, size_lr,
|
||||||
param_min_rms, param_max_rms)
|
param_min_rms, param_max_rms)
|
||||||
|
|
||||||
|
|
||||||
if numel == 1:
|
if numel == 1:
|
||||||
# For parameters with very few elements we just use a form
|
# For parameters with very few elements we just use a form
|
||||||
# of Adam with a scale factor to reflect the overall
|
# of Adam with a scale factor to reflect the overall
|
||||||
@ -242,7 +251,6 @@ param_rms_smooth1: Smoothing proportion for parameter matrix, if assumed rank of
|
|||||||
p.add_(delta)
|
p.add_(delta)
|
||||||
state["step"] = step + 1
|
state["step"] = step + 1
|
||||||
|
|
||||||
return loss
|
|
||||||
|
|
||||||
def _size_update(self,
|
def _size_update(self,
|
||||||
p: Tensor,
|
p: Tensor,
|
||||||
@ -1343,7 +1351,8 @@ def _test_eve_cain():
|
|||||||
B = 4
|
B = 4
|
||||||
T = 2
|
T = 2
|
||||||
logging.info("in test_eve_cain")
|
logging.info("in test_eve_cain")
|
||||||
device = torch.device('cuda')
|
#device = torch.device('cuda')
|
||||||
|
device = torch.device('cpu')
|
||||||
dtype = torch.float32
|
dtype = torch.float32
|
||||||
|
|
||||||
fix_random_seed(42)
|
fix_random_seed(42)
|
||||||
@ -1376,11 +1385,11 @@ def _test_eve_cain():
|
|||||||
#if epoch == 100 and iter in [2,3]:
|
#if epoch == 100 and iter in [2,3]:
|
||||||
# optim.reset_speedup() # check it doesn't crash.
|
# optim.reset_speedup() # check it doesn't crash.
|
||||||
|
|
||||||
if epoch == 130:
|
#if epoch == 130:
|
||||||
opts = diagnostics.TensorDiagnosticOptions(
|
# opts = diagnostics.TensorDiagnosticOptions(
|
||||||
2 ** 22
|
# 2 ** 22
|
||||||
) # allow 4 megabytes per sub-module
|
# ) # allow 4 megabytes per sub-module
|
||||||
diagnostic = diagnostics.attach_diagnostics(m, opts)
|
# diagnostic = diagnostics.attach_diagnostics(m, opts)
|
||||||
|
|
||||||
|
|
||||||
for n, (x,y) in enumerate(train_pairs):
|
for n, (x,y) in enumerate(train_pairs):
|
||||||
|
Loading…
x
Reference in New Issue
Block a user