mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-04 22:54:18 +00:00
Update model.py to use torchaudio's RNN-T loss.
This commit is contained in:
parent
38279d4b24
commit
d20e927e6a
@ -13,12 +13,18 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Note we use `rnnt_loss` from torchaudio, which exists only in
|
||||
torchaudio >= v0.10.0. It also means you have to use torch >= v1.10.0
|
||||
"""
|
||||
|
||||
import random
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torchaudio
|
||||
import torchaudio.functional
|
||||
from encoder_interface import EncoderInterface
|
||||
|
||||
from icefall.utils import add_sos
|
||||
@ -102,42 +108,27 @@ class Transducer(nn.Module):
|
||||
|
||||
decoder_out = self.decoder(sos_y_padded)
|
||||
|
||||
# +1 here since a blank is prepended to each utterance.
|
||||
logits = self.joiner(
|
||||
encoder_out=encoder_out,
|
||||
decoder_out=decoder_out,
|
||||
encoder_out_len=x_lens,
|
||||
decoder_out_len=y_lens + 1,
|
||||
)
|
||||
|
||||
# rnnt_loss requires 0 padded targets
|
||||
# Note: y does not start with SOS
|
||||
y_padded = y.pad(mode="constant", padding_value=0)
|
||||
|
||||
# We don't put this `import` at the beginning of the file
|
||||
# as it is required only in the training, not during the
|
||||
# reference stage
|
||||
import optimized_transducer
|
||||
assert hasattr(torchaudio.functional, "rnnt_loss"), (
|
||||
f"Current torchaudio version: {torchaudio.__version__}\n"
|
||||
"Please install a version >= 0.10.0"
|
||||
)
|
||||
|
||||
assert 0 <= modified_transducer_prob <= 1
|
||||
|
||||
if modified_transducer_prob == 0:
|
||||
one_sym_per_frame = False
|
||||
elif random.random() < modified_transducer_prob:
|
||||
# random.random() returns a float in the range [0, 1)
|
||||
one_sym_per_frame = True
|
||||
else:
|
||||
one_sym_per_frame = False
|
||||
|
||||
loss = optimized_transducer.transducer_loss(
|
||||
loss = torchaudio.functional.rnnt_loss(
|
||||
logits=logits,
|
||||
targets=y_padded,
|
||||
logit_lengths=x_lens,
|
||||
target_lengths=y_lens,
|
||||
blank=blank_id,
|
||||
reduction="sum",
|
||||
one_sym_per_frame=one_sym_per_frame,
|
||||
from_log_softmax=False,
|
||||
)
|
||||
|
||||
return loss
|
||||
|
Loading…
x
Reference in New Issue
Block a user