Update model.py to use torchaudio's RNN-T loss.

This commit is contained in:
Fangjun Kuang 2022-04-14 11:41:51 +08:00
parent 38279d4b24
commit d20e927e6a

View File

@ -13,12 +13,18 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Note we use `rnnt_loss` from torchaudio, which exists only in
torchaudio >= v0.10.0. It also means you have to use torch >= v1.10.0
"""
import random
import k2
import torch
import torch.nn as nn
import torchaudio
import torchaudio.functional
from encoder_interface import EncoderInterface
from icefall.utils import add_sos
@ -102,42 +108,27 @@ class Transducer(nn.Module):
decoder_out = self.decoder(sos_y_padded)
# +1 here since a blank is prepended to each utterance.
logits = self.joiner(
encoder_out=encoder_out,
decoder_out=decoder_out,
encoder_out_len=x_lens,
decoder_out_len=y_lens + 1,
)
# rnnt_loss requires 0 padded targets
# Note: y does not start with SOS
y_padded = y.pad(mode="constant", padding_value=0)
# We don't put this `import` at the beginning of the file
# as it is required only in the training, not during the
# reference stage
import optimized_transducer
assert hasattr(torchaudio.functional, "rnnt_loss"), (
f"Current torchaudio version: {torchaudio.__version__}\n"
"Please install a version >= 0.10.0"
)
assert 0 <= modified_transducer_prob <= 1
if modified_transducer_prob == 0:
one_sym_per_frame = False
elif random.random() < modified_transducer_prob:
# random.random() returns a float in the range [0, 1)
one_sym_per_frame = True
else:
one_sym_per_frame = False
loss = optimized_transducer.transducer_loss(
loss = torchaudio.functional.rnnt_loss(
logits=logits,
targets=y_padded,
logit_lengths=x_lens,
target_lengths=y_lens,
blank=blank_id,
reduction="sum",
one_sym_per_frame=one_sym_per_frame,
from_log_softmax=False,
)
return loss