add attention-decoder loss option for zipformer recipe

This commit is contained in:
yaozengwei 2023-11-13 21:45:10 +08:00
parent 231bbcd2b6
commit d17535f4cd
4 changed files with 718 additions and 6 deletions

View File

@ -0,0 +1,485 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# The model structure is modified from Daniel Povey's Zipformer
# https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless7/zipformer.py
import math
from typing import List, Tuple
import k2
import torch
import torch.nn as nn
from label_smoothing import LabelSmoothingLoss
from icefall.utils import add_eos, add_sos, make_pad_mask
class AttentionDecoderModel(nn.Module):
"""
Args:
vocab_size (int): Number of classes.
decoder_dim: (int,int): embedding dimension of 2 encoder stacks
attention_dim: (int,int): attention dimension of 2 encoder stacks
nhead (int, int): number of heads
dim_feedforward (int, int): feedforward dimension in 2 encoder stacks
num_encoder_layers (int): number of encoder layers
dropout (float): dropout rate
"""
def __init__(
self,
vocab_size: int,
decoder_dim: int = 512,
num_decoder_layers: int = 6,
attention_dim: int = 512,
nhead: int = 8,
feedforward_dim: int = 2048,
sos_id: int = 1,
eos_id: int = 1,
dropout: float = 0.1,
ignore_id: int = -1,
label_smoothing: float = 0.1,
):
super().__init__()
self.eos_id = eos_id
self.sos_id = sos_id
self.ignore_id = ignore_id
# For the segment of the warmup period, we let the Embedding
# layer learn something. Then we start to warm up the other encoders.
self.decoder = TransformerDecoder(
vocab_size=vocab_size,
d_model=decoder_dim,
num_decoder_layers=num_decoder_layers,
attention_dim=attention_dim,
nhead=nhead,
feedforward_dim=feedforward_dim,
dropout=dropout,
)
# Used to calculate attention-decoder loss
self.loss_fun = LabelSmoothingLoss(
ignore_index=ignore_id, label_smoothing=label_smoothing, reduction="sum"
)
def _pre_ys_in_out(self, ys: k2.RaggedTensor, ys_lens: torch.Tensor):
"""Prepare ys_in_pad and ys_out_pad."""
ys_in = add_sos(ys, sos_id=self.sos_id)
# [B, S+1], start with SOS
ys_in_pad = ys_in.pad(mode="constant", padding_value=self.eos_id)
ys_in_lens = ys_lens + 1
ys_out = add_eos(ys, eos_id=self.eos_id)
# [B, S+1], end with EOS
ys_out_pad = ys_out.pad(mode="constant", padding_value=self.ignore_id)
return ys_in_pad.to(torch.int64), ys_in_lens, ys_out_pad.to(torch.int64)
def calc_att_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys: k2.RaggedTensor,
ys_lens: torch.Tensor,
) -> torch.Tensor:
"""Calculate attention-decoder loss.
Args:
encoder_out: (batch, num_frames, encoder_dim)
encoder_out_lens: (batch,)
token_ids: A list of token id list.
Return: The attention-decoder loss.
"""
ys_in_pad, ys_in_lens, ys_out_pad = self._pre_ys_in_out(ys, ys_lens)
# decoder forward
decoder_out = self.decoder(encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens)
loss = self.loss_fun(x=decoder_out, target=ys_out_pad)
return loss
def nll(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
token_ids: List[List[int]],
) -> torch.Tensor:
"""Compute negative log likelihood(nll) from attention-decoder.
Args:
encoder_out: (batch, num_frames, encoder_dim)
encoder_out_lens: (batch,)
token_ids: A list of token id list.
Return: A tensor of shape (batch, num_tokens).
"""
ys = k2.RaggedTensor(token_ids).to(device=encoder_out.device)
row_splits = ys.shape.row_splits(1)
ys_lens = row_splits[1:] - row_splits[:-1]
ys_in_pad, ys_in_lens, ys_out_pad = self._pre_ys_in_out(ys, ys_lens)
# decoder forward
decoder_out = self.decoder(encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens)
batch_size, _, num_classes = decoder_out.size()
nll = nn.functional.cross_entropy(
decoder_out.view(-1, num_classes),
ys_out_pad.view(-1),
ignore_index=self.ignore_id,
reduction="none",
)
nll = nll.view(batch_size, -1)
return nll
class TransformerDecoder(nn.Module):
"""Transfomer decoder module.
It is modified from https://github.com/espnet/espnet/blob/master/espnet2/asr/decoder/transformer_decoder.py.
Args:
vocab_size: output dim
d_model: decoder dimension
num_decoder_layers: number of decoder layers
attention_dim: total dimension of multi head attention
n_head: number of attention heads
feedforward_dim: hidden dimension of feed_forward module
dropout: dropout rate
"""
def __init__(
self,
vocab_size: int,
d_model: int = 512,
num_decoder_layers: int = 6,
attention_dim: int = 512,
nhead: int = 8,
feedforward_dim: int = 2048,
dropout: float = 0.1,
):
super().__init__()
self.embed = nn.Embedding(num_embeddings=vocab_size, embedding_dim=d_model)
# Using absolute positional encoding
self.pos = PositionalEncoding(d_model, dropout_rate=0.1)
self.num_layers = num_decoder_layers
self.layers = nn.ModuleList(
[
DecoderLayer(d_model, attention_dim, nhead, feedforward_dim, dropout)
for _ in range(num_decoder_layers)
]
)
self.output_layer = nn.Linear(d_model, vocab_size)
def forward(
self,
memory: torch.Tensor,
memory_lens: torch.Tensor,
ys_in_pad: torch.Tensor,
ys_in_lens: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward decoder.
Args:
memory: encoded memory, (batch, maxlen_in, feat)
memory_lens: (batch,)
ys_in_pad: input token ids, (batch, maxlen_out)
ys_in_lens: (batch, )
Returns:
tgt: decoded token score before softmax (batch, maxlen_out, vocab_size)
"""
tgt = ys_in_pad
# tgt_mask: (B, 1, L)
tgt_mask = make_pad_mask(ys_in_lens)[:, None, :].to(tgt.device)
# m: (1, L, L)
m = subsequent_mask(tgt_mask.size(-1), device=tgt_mask.device).unsqueeze(0)
# tgt_mask: (B, L, L)
tgt_mask = tgt_mask | (~m)
memory_mask = make_pad_mask(memory_lens)[:, None, :].to(memory.device)
tgt = self.embed(tgt)
tgt = self.pos(tgt)
for i, mod in enumerate(self.layers):
tgt = mod(tgt, tgt_mask, memory, memory_mask)
tgt = self.output_layer(tgt)
return tgt
class DecoderLayer(nn.Module):
"""Single decoder layer module.
Args:
d_model: equal to encoder_dim
attention_dim: total dimension of multi head attention
n_head: number of attention heads
feedforward_dim: hidden dimension of feed_forward module
dropout: dropout rate
"""
def __init__(
self,
d_model: int = 512,
attention_dim: int = 512,
nhead: int = 8,
feedforward_dim: int = 2048,
dropout: float = 0.1,
):
"""Construct an DecoderLayer object."""
super(DecoderLayer, self).__init__()
self.norm_self_attn = nn.LayerNorm(d_model)
self.self_attn = MultiHeadedAttention(d_model, attention_dim, nhead, dropout=0.0)
self.norm_src_attn = nn.LayerNorm(d_model)
self.src_attn = MultiHeadedAttention(d_model, attention_dim, nhead, dropout=0.0)
self.norm_ff = nn.LayerNorm(d_model)
self.feed_forward = nn.Sequential(
nn.Linear(d_model, feedforward_dim),
Swish(),
nn.Dropout(dropout),
nn.Linear(feedforward_dim, d_model),
)
self.dropout = nn.Dropout(dropout)
def forward(self, tgt, tgt_mask, memory, memory_mask):
"""Compute decoded features.
Args:
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out).
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size).
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in).
Returns:
torch.Tensor: Output tensor(#batch, maxlen_out, size).
"""
# self-attn module
tgt_norm = self.norm_self_attn(tgt)
tgt = tgt + self.dropout(self.self_attn(tgt_norm, tgt_norm, tgt_norm, tgt_mask))
# cross-attn module
tgt = tgt + self.dropout(self.src_attn(self.norm_src_attn(tgt), memory, memory, memory_mask))
# feed-forward module
tgt = tgt + self.dropout(self.feed_forward(self.norm_ff(tgt)))
return tgt
class MultiHeadedAttention(nn.Module):
"""Multi-Head Attention layer.
Args:
embed_dim: total dimension of the model.
attention_dim: dimension in the attention module, may be less or more than embed_dim
but must be a multiple of num_heads.
num_heads: parallel attention heads.
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
"""
def __init__(
self, embed_dim: int, attention_dim: int, num_heads: int, dropout: float = 0.0
):
"""Construct an MultiHeadedAttention object."""
super(MultiHeadedAttention, self).__init__()
self.embed_dim = embed_dim
self.attention_dim = attention_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = attention_dim // num_heads
assert self.head_dim * num_heads == attention_dim, (
self.head_dim,
num_heads,
attention_dim,
)
self.linear_q = nn.Linear(embed_dim, attention_dim, bias=True)
self.linear_k = nn.Linear(embed_dim, attention_dim, bias=True)
self.linear_v = nn.Linear(embed_dim, attention_dim, bias=True)
self.scale = math.sqrt(self.head_dim)
self.out_proj = nn.Linear(attention_dim, embed_dim, bias=True)
def forward(self, query, key, value, mask):
"""Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
"""
bsz, tgt_len, _ = query.size()
src_len = key.size(1)
num_heads = self.num_heads
head_dim = self.head_dim
q = self.linear_q(query)
k = self.linear_k(key)
v = self.linear_v(value)
q = q.reshape(bsz, tgt_len, num_heads, head_dim)
q = q.transpose(1, 2) # (batch, head, time1, head_dim)
k = k.reshape(bsz, src_len, num_heads, head_dim)
k = k.permute(0, 2, 3, 1) # (batch, head, head_dim, time2)
v = v.reshape(bsz, src_len, num_heads, head_dim)
v = v.transpose(1, 2).reshape(bsz * num_heads, src_len, head_dim)
# (batch, head, time1, time2)
attn_output_weights = torch.matmul(q, k) / self.scale
if mask is not None:
attn_output_weights = attn_output_weights.masked_fill(
mask.unsqueeze(1), float("-inf")
)
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)
attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
attn_output_weights = nn.functional.dropout(
attn_output_weights, p=self.dropout, training=self.training
)
# (bsz * head, time1, head_dim_v)
attn_output = torch.bmm(attn_output_weights, v)
assert attn_output.shape == (bsz * num_heads, tgt_len, head_dim)
attn_output = (
attn_output.reshape(bsz, num_heads, tgt_len, head_dim)
.transpose(1, 2)
.reshape(bsz, tgt_len, self.attention_dim)
)
attn_output = self.out_proj(attn_output)
return attn_output
class PositionalEncoding(nn.Module):
"""Positional encoding.
Copied from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py#L35.
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_len (int): Maximum input length.
"""
def __init__(self, d_model, dropout_rate, max_len=5000):
"""Construct an PositionalEncoding object."""
super(PositionalEncoding, self).__init__()
self.d_model = d_model
self.xscale = math.sqrt(self.d_model)
self.dropout = torch.nn.Dropout(p=dropout_rate)
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
def extend_pe(self, x):
"""Reset the positional encodings."""
if self.pe is not None:
if self.pe.size(1) >= x.size(1):
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
pe = torch.zeros(x.size(1), self.d_model)
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, x: torch.Tensor):
"""Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
"""
self.extend_pe(x)
x = x * self.xscale + self.pe[:, : x.size(1)]
return self.dropout(x)
class Swish(torch.nn.Module):
"""Construct an Swish object."""
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Return Swich activation function."""
return x * torch.sigmoid(x)
def subsequent_mask(size, device="cpu", dtype=torch.bool):
"""Create mask for subsequent steps (size, size).
:param int size: size of mask
:param str device: "cpu" or "cuda" or torch.Tensor.device
:param torch.dtype dtype: result dtype
:rtype: torch.Tensor
>>> subsequent_mask(3)
[[1, 0, 0],
[1, 1, 0],
[1, 1, 1]]
"""
ret = torch.ones(size, size, device=device, dtype=dtype)
return torch.tril(ret, out=ret)
def _test_attention_decoder_model():
m = AttentionDecoderModel(
vocab_size=500,
decoder_dim=512,
num_decoder_layers=6,
attention_dim=512,
nhead=8,
feedforward_dim=2048,
dropout=0.1,
sos_id=1,
eos_id=1,
ignore_id=-1,
)
num_param = sum([p.numel() for p in m.parameters()])
print(f"Number of model parameters: {num_param}")
m.eval()
encoder_out = torch.randn(2, 50, 512)
encoder_out_lens = torch.full((2,), 50)
token_ids = [[1, 2, 3, 4], [2, 3, 10]]
nll = m.nll(encoder_out, encoder_out_lens, token_ids)
print(nll)
if __name__ == "__main__":
_test_attention_decoder_model()

View File

@ -0,0 +1,109 @@
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
class LabelSmoothingLoss(torch.nn.Module):
"""
Implement the LabelSmoothingLoss proposed in the following paper
https://arxiv.org/pdf/1512.00567.pdf
(Rethinking the Inception Architecture for Computer Vision)
"""
def __init__(
self,
ignore_index: int = -1,
label_smoothing: float = 0.1,
reduction: str = "sum",
) -> None:
"""
Args:
ignore_index:
ignored class id
label_smoothing:
smoothing rate (0.0 means the conventional cross entropy loss)
reduction:
It has the same meaning as the reduction in
`torch.nn.CrossEntropyLoss`. It can be one of the following three
values: (1) "none": No reduction will be applied. (2) "mean": the
mean of the output is taken. (3) "sum": the output will be summed.
"""
super().__init__()
assert 0.0 <= label_smoothing < 1.0, f"{label_smoothing}"
assert reduction in ("none", "sum", "mean"), reduction
self.ignore_index = ignore_index
self.label_smoothing = label_smoothing
self.reduction = reduction
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""
Compute loss between x and target.
Args:
x:
prediction of dimension
(batch_size, input_length, number_of_classes).
target:
target masked with self.ignore_index of
dimension (batch_size, input_length).
Returns:
A scalar tensor containing the loss without normalization.
"""
assert x.ndim == 3
assert target.ndim == 2
assert x.shape[:2] == target.shape
num_classes = x.size(-1)
x = x.reshape(-1, num_classes)
# Now x is of shape (N*T, C)
# We don't want to change target in-place below,
# so we make a copy of it here
target = target.clone().reshape(-1)
ignored = target == self.ignore_index
# See https://github.com/k2-fsa/icefall/issues/240
# and https://github.com/k2-fsa/icefall/issues/297
# for why we don't use target[ignored] = 0 here
target = torch.where(ignored, torch.zeros_like(target), target)
true_dist = torch.nn.functional.one_hot(target, num_classes=num_classes).to(x)
true_dist = (
true_dist * (1 - self.label_smoothing) + self.label_smoothing / num_classes
)
# Set the value of ignored indexes to 0
#
# See https://github.com/k2-fsa/icefall/issues/240
# and https://github.com/k2-fsa/icefall/issues/297
# for why we don't use true_dist[ignored] = 0 here
true_dist = torch.where(
ignored.unsqueeze(1).repeat(1, true_dist.shape[1]),
torch.zeros_like(true_dist),
true_dist,
)
loss = -1 * (torch.log_softmax(x, dim=1) * true_dist)
if self.reduction == "sum":
return loss.sum()
elif self.reduction == "mean":
return loss.sum() / (~ignored).sum()
else:
return loss.sum(dim=-1)

View File

@ -34,11 +34,13 @@ class AsrModel(nn.Module):
encoder: EncoderInterface, encoder: EncoderInterface,
decoder: Optional[nn.Module] = None, decoder: Optional[nn.Module] = None,
joiner: Optional[nn.Module] = None, joiner: Optional[nn.Module] = None,
attention_decoder: Optional[nn.Module] = None,
encoder_dim: int = 384, encoder_dim: int = 384,
decoder_dim: int = 512, decoder_dim: int = 512,
vocab_size: int = 500, vocab_size: int = 500,
use_transducer: bool = True, use_transducer: bool = True,
use_ctc: bool = False, use_ctc: bool = False,
use_attention_decoder: bool = False,
): ):
"""A joint CTC & Transducer ASR model. """A joint CTC & Transducer ASR model.
@ -111,6 +113,12 @@ class AsrModel(nn.Module):
nn.LogSoftmax(dim=-1), nn.LogSoftmax(dim=-1),
) )
self.use_attention_decoder = use_attention_decoder
if use_attention_decoder:
self.attention_decoder = attention_decoder
else:
assert attention_decoder is None
def forward_encoder( def forward_encoder(
self, x: torch.Tensor, x_lens: torch.Tensor self, x: torch.Tensor, x_lens: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]: ) -> Tuple[torch.Tensor, torch.Tensor]:
@ -286,7 +294,7 @@ class AsrModel(nn.Module):
prune_range: int = 5, prune_range: int = 5,
am_scale: float = 0.0, am_scale: float = 0.0,
lm_scale: float = 0.0, lm_scale: float = 0.0,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
""" """
Args: Args:
x: x:
@ -308,7 +316,7 @@ class AsrModel(nn.Module):
part part
Returns: Returns:
Return the transducer losses and CTC loss, Return the transducer losses and CTC loss,
in form of (simple_loss, pruned_loss, ctc_loss) in form of (simple_loss, pruned_loss, ctc_loss, attention_decoder_loss)
Note: Note:
Regarding am_scale & lm_scale, it will make the loss-function one of Regarding am_scale & lm_scale, it will make the loss-function one of
@ -322,6 +330,8 @@ class AsrModel(nn.Module):
assert x.size(0) == x_lens.size(0) == y.dim0, (x.shape, x_lens.shape, y.dim0) assert x.size(0) == x_lens.size(0) == y.dim0, (x.shape, x_lens.shape, y.dim0)
device = x.device
# Compute encoder outputs # Compute encoder outputs
encoder_out, encoder_out_lens = self.forward_encoder(x, x_lens) encoder_out, encoder_out_lens = self.forward_encoder(x, x_lens)
@ -333,7 +343,7 @@ class AsrModel(nn.Module):
simple_loss, pruned_loss = self.forward_transducer( simple_loss, pruned_loss = self.forward_transducer(
encoder_out=encoder_out, encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens, encoder_out_lens=encoder_out_lens,
y=y.to(x.device), y=y.to(device),
y_lens=y_lens, y_lens=y_lens,
prune_range=prune_range, prune_range=prune_range,
am_scale=am_scale, am_scale=am_scale,
@ -355,4 +365,14 @@ class AsrModel(nn.Module):
else: else:
ctc_loss = torch.empty(0) ctc_loss = torch.empty(0)
return simple_loss, pruned_loss, ctc_loss if self.use_attention_decoder:
attention_decoder_loss = self.attention_decoder.calc_att_loss(
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
ys=y.to(device),
ys_lens=y_lens.to(device),
)
else:
attention_decoder_loss = torch.empty(0)
return simple_loss, pruned_loss, ctc_loss, attention_decoder_loss

View File

@ -66,6 +66,7 @@ import torch
import torch.multiprocessing as mp import torch.multiprocessing as mp
import torch.nn as nn import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule from asr_datamodule import LibriSpeechAsrDataModule
from attention_decoder import AttentionDecoderModel
from decoder import Decoder from decoder import Decoder
from joiner import Joiner from joiner import Joiner
from lhotse.cut import Cut from lhotse.cut import Cut
@ -220,6 +221,41 @@ def add_model_arguments(parser: argparse.ArgumentParser):
""", """,
) )
parser.add_argument(
"--attention-decoder-dim",
type=int,
default=512,
help="""Dimension used in the attention decoder""",
)
parser.add_argument(
"--attention-decoder-num-layers",
type=int,
default=6,
help="""Number of transformer layers used in attention decoder""",
)
parser.add_argument(
"--attention-decoder-attention-dim",
type=int,
default=512,
help="""Attention dimension used in attention decoder""",
)
parser.add_argument(
"--attention-decoder-num-heads",
type=int,
default=8,
help="""Number of attention heads used in attention decoder""",
)
parser.add_argument(
"--attention-decoder-feedforward-dim",
type=int,
default=2048,
help="""Feedforward dimension used in attention decoder""",
)
parser.add_argument( parser.add_argument(
"--causal", "--causal",
type=str2bool, type=str2bool,
@ -258,6 +294,13 @@ def add_model_arguments(parser: argparse.ArgumentParser):
help="If True, use CTC head.", help="If True, use CTC head.",
) )
parser.add_argument(
"--use-attention-decoder",
type=str2bool,
default=False,
help="If True, use attention-decoder head.",
)
def get_parser(): def get_parser():
parser = argparse.ArgumentParser( parser = argparse.ArgumentParser(
@ -403,6 +446,21 @@ def get_parser():
help="Scale for CTC loss.", help="Scale for CTC loss.",
) )
parser.add_argument(
"--attention-decoder-loss-scale",
type=float,
default=0.8,
help="Scale for attention-decoder loss.",
)
parser.add_argument(
"--label-smoothing",
type=float,
default=0.1,
help="""Label smoothing rate used in attention decoder,
(0.0 means the conventional cross entropy loss)""",
)
parser.add_argument( parser.add_argument(
"--seed", "--seed",
type=int, type=int,
@ -531,6 +589,8 @@ def get_params() -> AttributeDict:
# parameters for zipformer # parameters for zipformer
"feature_dim": 80, "feature_dim": 80,
"subsampling_factor": 4, # not passed in, this is fixed. "subsampling_factor": 4, # not passed in, this is fixed.
# parameters for attention-decoder
"ignore_id": -1,
"warm_step": 2000, "warm_step": 2000,
"env_info": get_env_info(), "env_info": get_env_info(),
} }
@ -603,6 +663,25 @@ def get_joiner_model(params: AttributeDict) -> nn.Module:
return joiner return joiner
def get_attention_decoder_model(params: AttributeDict) -> nn.Module:
encoder_dim = max(_to_int_tuple(params.encoder_dim))
assert params.attention_decoder_dim == encoder_dim, (params.attention_decoder_dim, encoder_dim)
decoder = AttentionDecoderModel(
vocab_size=params.vocab_size,
decoder_dim=params.attention_decoder_dim,
num_decoder_layers=params.attention_decoder_num_layers,
attention_dim=params.attention_decoder_attention_dim,
nhead=params.attention_decoder_num_heads,
feedforward_dim=params.attention_decoder_feedforward_dim,
sos_id=params.sos_id,
eos_id=params.eos_id,
ignore_id=params.ignore_id,
label_smoothing=params.label_smoothing,
)
return decoder
def get_model(params: AttributeDict) -> nn.Module: def get_model(params: AttributeDict) -> nn.Module:
assert params.use_transducer or params.use_ctc, ( assert params.use_transducer or params.use_ctc, (
f"At least one of them should be True, " f"At least one of them should be True, "
@ -620,16 +699,23 @@ def get_model(params: AttributeDict) -> nn.Module:
decoder = None decoder = None
joiner = None joiner = None
if params.use_attention_decoder:
attention_decoder = get_attention_decoder_model(params)
else:
attention_decoder = None
model = AsrModel( model = AsrModel(
encoder_embed=encoder_embed, encoder_embed=encoder_embed,
encoder=encoder, encoder=encoder,
decoder=decoder, decoder=decoder,
joiner=joiner, joiner=joiner,
attention_decoder=attention_decoder,
encoder_dim=max(_to_int_tuple(params.encoder_dim)), encoder_dim=max(_to_int_tuple(params.encoder_dim)),
decoder_dim=params.decoder_dim, decoder_dim=params.decoder_dim,
vocab_size=params.vocab_size, vocab_size=params.vocab_size,
use_transducer=params.use_transducer, use_transducer=params.use_transducer,
use_ctc=params.use_ctc, use_ctc=params.use_ctc,
use_attention_decoder=params.use_attention_decoder,
) )
return model return model
@ -792,7 +878,7 @@ def compute_loss(
y = k2.RaggedTensor(y) y = k2.RaggedTensor(y)
with torch.set_grad_enabled(is_training): with torch.set_grad_enabled(is_training):
simple_loss, pruned_loss, ctc_loss = model( simple_loss, pruned_loss, ctc_loss, attention_decoder_loss = model(
x=feature, x=feature,
x_lens=feature_lens, x_lens=feature_lens,
y=y, y=y,
@ -822,6 +908,9 @@ def compute_loss(
if params.use_ctc: if params.use_ctc:
loss += params.ctc_loss_scale * ctc_loss loss += params.ctc_loss_scale * ctc_loss
if params.use_attention_decoder:
loss += params.attention_decoder_loss_scale * attention_decoder_loss
assert loss.requires_grad == is_training assert loss.requires_grad == is_training
info = MetricsTracker() info = MetricsTracker()
@ -836,6 +925,8 @@ def compute_loss(
info["pruned_loss"] = pruned_loss.detach().cpu().item() info["pruned_loss"] = pruned_loss.detach().cpu().item()
if params.use_ctc: if params.use_ctc:
info["ctc_loss"] = ctc_loss.detach().cpu().item() info["ctc_loss"] = ctc_loss.detach().cpu().item()
if params.use_attention_decoder:
info["attn_deocder_loss"] = attention_decoder_loss.detach().cpu().item()
return loss, info return loss, info
@ -1114,10 +1205,17 @@ def run(rank, world_size, args):
# <blk> is defined in local/train_bpe_model.py # <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>") params.blank_id = sp.piece_to_id("<blk>")
params.eos_id = sp.piece_to_id("<sos/eos>")
params.sos_id = sp.piece_to_id("<sos/eos>")
params.vocab_size = sp.get_piece_size() params.vocab_size = sp.get_piece_size()
if not params.use_transducer: if not params.use_transducer:
if not params.use_attention_decoder:
params.ctc_loss_scale = 1.0 params.ctc_loss_scale = 1.0
else:
assert params.ctc_loss_scale + params.attention_decoder_loss_scale == 1.0, (
params.ctc_loss_scale, params.attention_decoder_loss_scale
)
logging.info(params) logging.info(params)