mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-18 21:44:18 +00:00
delete commented lines
This commit is contained in:
parent
0c455db55d
commit
d1362a5a2f
@ -303,10 +303,8 @@ class ConformerEncoder(nn.Module):
|
||||
assert num_layers - 1 not in aux_layers
|
||||
self.aux_layers = set(aux_layers + [num_layers - 1])
|
||||
|
||||
# num_channels = encoder_layer.norm_final.num_channels
|
||||
self.combiner = RandomCombine(
|
||||
num_inputs=len(self.aux_layers),
|
||||
# num_channels=num_channels,
|
||||
final_weight=0.5,
|
||||
pure_prob=0.333,
|
||||
stddev=2.0,
|
||||
@ -1080,7 +1078,6 @@ class RandomCombine(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
num_inputs: int,
|
||||
# num_channels: int,
|
||||
final_weight: float = 0.5,
|
||||
pure_prob: float = 0.5,
|
||||
stddev: float = 2.0,
|
||||
@ -1091,8 +1088,6 @@ class RandomCombine(nn.Module):
|
||||
The number of tensor inputs, which equals the number of layers'
|
||||
outputs that are fed into this module. E.g. in an 18-layer neural
|
||||
net if we output layers 16, 12, 18, num_inputs would be 3.
|
||||
num_channels:
|
||||
The number of channels on the input, e.g. 512.
|
||||
final_weight:
|
||||
The amount of weight or probability we assign to the
|
||||
final layer when randomly choosing layers or when choosing
|
||||
@ -1123,13 +1118,6 @@ class RandomCombine(nn.Module):
|
||||
assert 0 < final_weight < 1, final_weight
|
||||
assert num_inputs >= 1
|
||||
|
||||
# self.linear = nn.ModuleList(
|
||||
# [
|
||||
# nn.Linear(num_channels, num_channels, bias=True)
|
||||
# for _ in range(num_inputs - 1)
|
||||
# ]
|
||||
# )
|
||||
|
||||
self.num_inputs = num_inputs
|
||||
self.final_weight = final_weight
|
||||
self.pure_prob = pure_prob
|
||||
@ -1143,13 +1131,6 @@ class RandomCombine(nn.Module):
|
||||
.item()
|
||||
)
|
||||
|
||||
# self._reset_parameters()
|
||||
|
||||
# def _reset_parameters(self):
|
||||
# for i in range(len(self.linear)):
|
||||
# nn.init.eye_(self.linear[i].weight)
|
||||
# nn.init.constant_(self.linear[i].bias, 0.0)
|
||||
|
||||
def forward(self, inputs: List[Tensor]) -> Tensor:
|
||||
"""Forward function.
|
||||
Args:
|
||||
@ -1171,7 +1152,6 @@ class RandomCombine(nn.Module):
|
||||
|
||||
mod_inputs = []
|
||||
for i in range(num_inputs - 1):
|
||||
# mod_inputs.append(self.linear[i](inputs[i]))
|
||||
mod_inputs.append(inputs[i])
|
||||
mod_inputs.append(inputs[num_inputs - 1])
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user