mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-07 08:04:18 +00:00
Minor fixes.
This commit is contained in:
parent
a6f7814019
commit
d11e01e190
@ -30,13 +30,11 @@ class LstmEncoder(EncoderInterface):
|
|||||||
hidden_size: int,
|
hidden_size: int,
|
||||||
output_dim: int,
|
output_dim: int,
|
||||||
subsampling_factor: int = 4,
|
subsampling_factor: int = 4,
|
||||||
num_encoder_layers: int = 12,
|
num_encoder_layers: int = 6,
|
||||||
dropout: float = 0.1,
|
dropout: float = 0.1,
|
||||||
vgg_frontend: bool = False,
|
vgg_frontend: bool = False,
|
||||||
proj_size: int = 0,
|
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
real_hidden_size = proj_size if proj_size > 0 else hidden_size
|
|
||||||
assert (
|
assert (
|
||||||
subsampling_factor == 4
|
subsampling_factor == 4
|
||||||
), "Only subsampling_factor==4 is supported at present"
|
), "Only subsampling_factor==4 is supported at present"
|
||||||
@ -47,28 +45,21 @@ class LstmEncoder(EncoderInterface):
|
|||||||
# (1) subsampling: T -> T//subsampling_factor
|
# (1) subsampling: T -> T//subsampling_factor
|
||||||
# (2) embedding: num_features -> d_model
|
# (2) embedding: num_features -> d_model
|
||||||
if vgg_frontend:
|
if vgg_frontend:
|
||||||
self.encoder_embed = VggSubsampling(num_features, real_hidden_size)
|
self.encoder_embed = VggSubsampling(num_features, output_dim)
|
||||||
else:
|
else:
|
||||||
self.encoder_embed = Conv2dSubsampling(
|
self.encoder_embed = Conv2dSubsampling(num_features, output_dim)
|
||||||
num_features, real_hidden_size
|
|
||||||
)
|
|
||||||
|
|
||||||
self.rnn = nn.LSTM(
|
self.rnn = nn.LSTM(
|
||||||
input_size=hidden_size,
|
input_size=output_dim,
|
||||||
hidden_size=hidden_size,
|
hidden_size=hidden_size,
|
||||||
num_layers=num_encoder_layers,
|
num_layers=num_encoder_layers,
|
||||||
bias=True,
|
bias=True,
|
||||||
proj_size=proj_size,
|
proj_size=output_dim,
|
||||||
batch_first=True,
|
batch_first=True,
|
||||||
dropout=dropout,
|
dropout=dropout,
|
||||||
bidirectional=False,
|
bidirectional=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
self.encoder_output_layer = nn.Sequential(
|
|
||||||
nn.Dropout(p=dropout),
|
|
||||||
nn.Linear(real_hidden_size, output_dim),
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
@ -96,23 +87,18 @@ class LstmEncoder(EncoderInterface):
|
|||||||
lengths.max(),
|
lengths.max(),
|
||||||
)
|
)
|
||||||
|
|
||||||
if False:
|
if True:
|
||||||
# It is commented out as DPP complains that not all parameters are
|
# This branch is more efficient than the else branch
|
||||||
# used. Need more checks later for the reason.
|
|
||||||
#
|
|
||||||
# Caution: We assume the dataloader returns utterances with
|
|
||||||
# duration being sorted in decreasing order
|
|
||||||
packed_x = pack_padded_sequence(
|
packed_x = pack_padded_sequence(
|
||||||
input=x,
|
input=x,
|
||||||
lengths=lengths.cpu(),
|
lengths=lengths.cpu(),
|
||||||
batch_first=True,
|
batch_first=True,
|
||||||
enforce_sorted=True,
|
enforce_sorted=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
packed_rnn_out, _ = self.rnn(packed_x)
|
packed_rnn_out, _ = self.rnn(packed_x)
|
||||||
rnn_out, _ = pad_packed_sequence(packed_x, batch_first=True)
|
rnn_out, _ = pad_packed_sequence(packed_rnn_out, batch_first=True)
|
||||||
else:
|
else:
|
||||||
rnn_out, _ = self.rnn(x)
|
rnn_out, _ = self.rnn(x)
|
||||||
|
|
||||||
logits = self.encoder_output_layer(rnn_out)
|
return rnn_out, lengths
|
||||||
return logits, lengths
|
|
||||||
|
65
egs/librispeech/ASR/transducer_lstm/test_encoder.py
Executable file
65
egs/librispeech/ASR/transducer_lstm/test_encoder.py
Executable file
@ -0,0 +1,65 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
To run this file, do:
|
||||||
|
|
||||||
|
cd icefall/egs/librispeech/ASR
|
||||||
|
python ./transducer_lstm/test_model.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from train import get_encoder_model, get_params
|
||||||
|
|
||||||
|
|
||||||
|
def test_encoder_model():
|
||||||
|
params = get_params()
|
||||||
|
params.vocab_size = 500
|
||||||
|
params.blank_id = 0
|
||||||
|
params.context_size = 2
|
||||||
|
encoder = get_encoder_model(params)
|
||||||
|
num_param = sum([p.numel() for p in encoder.parameters()])
|
||||||
|
print(f"Number of encoder model parameters: {num_param}")
|
||||||
|
|
||||||
|
N = 3
|
||||||
|
T = 500
|
||||||
|
C = 80
|
||||||
|
|
||||||
|
x = torch.rand(N, T, C)
|
||||||
|
x_lens = torch.tensor([100, 500, 300])
|
||||||
|
|
||||||
|
y, y_lens = encoder(x, x_lens)
|
||||||
|
print(y.shape)
|
||||||
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter("ignore")
|
||||||
|
expected_y_lens = ((x_lens - 1) // 2 - 1) // 2
|
||||||
|
|
||||||
|
assert torch.all(torch.eq(y_lens, expected_y_lens)), (
|
||||||
|
y_lens,
|
||||||
|
expected_y_lens,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
test_encoder_model()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -20,7 +20,7 @@
|
|||||||
To run this file, do:
|
To run this file, do:
|
||||||
|
|
||||||
cd icefall/egs/librispeech/ASR
|
cd icefall/egs/librispeech/ASR
|
||||||
python ./pruned_transducer_stateless4/test_model.py
|
python ./transducer_lstm/test_model.py
|
||||||
"""
|
"""
|
||||||
|
|
||||||
from train import get_params, get_transducer_model
|
from train import get_params, get_transducer_model
|
||||||
|
@ -42,7 +42,6 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
import warnings
|
import warnings
|
||||||
@ -339,9 +338,9 @@ def get_params() -> AttributeDict:
|
|||||||
"feature_dim": 80,
|
"feature_dim": 80,
|
||||||
"subsampling_factor": 4,
|
"subsampling_factor": 4,
|
||||||
"encoder_dim": 512,
|
"encoder_dim": 512,
|
||||||
"encoder_hidden_size": 1024,
|
"encoder_hidden_size": 2048,
|
||||||
"num_encoder_layers": 4,
|
"num_encoder_layers": 6,
|
||||||
"proj_size": 512,
|
"dropout": 0.1,
|
||||||
"vgg_frontend": False,
|
"vgg_frontend": False,
|
||||||
# parameters for decoder
|
# parameters for decoder
|
||||||
"decoder_dim": 512,
|
"decoder_dim": 512,
|
||||||
@ -363,6 +362,7 @@ def get_encoder_model(params: AttributeDict) -> nn.Module:
|
|||||||
output_dim=params.encoder_dim,
|
output_dim=params.encoder_dim,
|
||||||
subsampling_factor=params.subsampling_factor,
|
subsampling_factor=params.subsampling_factor,
|
||||||
num_encoder_layers=params.num_encoder_layers,
|
num_encoder_layers=params.num_encoder_layers,
|
||||||
|
dropout=params.dropout,
|
||||||
vgg_frontend=params.vgg_frontend,
|
vgg_frontend=params.vgg_frontend,
|
||||||
)
|
)
|
||||||
return encoder
|
return encoder
|
||||||
|
Loading…
x
Reference in New Issue
Block a user