mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-04 14:44:18 +00:00
Minor fixes.
This commit is contained in:
parent
a6f7814019
commit
d11e01e190
@ -30,13 +30,11 @@ class LstmEncoder(EncoderInterface):
|
||||
hidden_size: int,
|
||||
output_dim: int,
|
||||
subsampling_factor: int = 4,
|
||||
num_encoder_layers: int = 12,
|
||||
num_encoder_layers: int = 6,
|
||||
dropout: float = 0.1,
|
||||
vgg_frontend: bool = False,
|
||||
proj_size: int = 0,
|
||||
):
|
||||
super().__init__()
|
||||
real_hidden_size = proj_size if proj_size > 0 else hidden_size
|
||||
assert (
|
||||
subsampling_factor == 4
|
||||
), "Only subsampling_factor==4 is supported at present"
|
||||
@ -47,28 +45,21 @@ class LstmEncoder(EncoderInterface):
|
||||
# (1) subsampling: T -> T//subsampling_factor
|
||||
# (2) embedding: num_features -> d_model
|
||||
if vgg_frontend:
|
||||
self.encoder_embed = VggSubsampling(num_features, real_hidden_size)
|
||||
self.encoder_embed = VggSubsampling(num_features, output_dim)
|
||||
else:
|
||||
self.encoder_embed = Conv2dSubsampling(
|
||||
num_features, real_hidden_size
|
||||
)
|
||||
self.encoder_embed = Conv2dSubsampling(num_features, output_dim)
|
||||
|
||||
self.rnn = nn.LSTM(
|
||||
input_size=hidden_size,
|
||||
input_size=output_dim,
|
||||
hidden_size=hidden_size,
|
||||
num_layers=num_encoder_layers,
|
||||
bias=True,
|
||||
proj_size=proj_size,
|
||||
proj_size=output_dim,
|
||||
batch_first=True,
|
||||
dropout=dropout,
|
||||
bidirectional=False,
|
||||
)
|
||||
|
||||
self.encoder_output_layer = nn.Sequential(
|
||||
nn.Dropout(p=dropout),
|
||||
nn.Linear(real_hidden_size, output_dim),
|
||||
)
|
||||
|
||||
def forward(
|
||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
@ -96,23 +87,18 @@ class LstmEncoder(EncoderInterface):
|
||||
lengths.max(),
|
||||
)
|
||||
|
||||
if False:
|
||||
# It is commented out as DPP complains that not all parameters are
|
||||
# used. Need more checks later for the reason.
|
||||
#
|
||||
# Caution: We assume the dataloader returns utterances with
|
||||
# duration being sorted in decreasing order
|
||||
if True:
|
||||
# This branch is more efficient than the else branch
|
||||
packed_x = pack_padded_sequence(
|
||||
input=x,
|
||||
lengths=lengths.cpu(),
|
||||
batch_first=True,
|
||||
enforce_sorted=True,
|
||||
enforce_sorted=False,
|
||||
)
|
||||
|
||||
packed_rnn_out, _ = self.rnn(packed_x)
|
||||
rnn_out, _ = pad_packed_sequence(packed_x, batch_first=True)
|
||||
rnn_out, _ = pad_packed_sequence(packed_rnn_out, batch_first=True)
|
||||
else:
|
||||
rnn_out, _ = self.rnn(x)
|
||||
|
||||
logits = self.encoder_output_layer(rnn_out)
|
||||
return logits, lengths
|
||||
return rnn_out, lengths
|
||||
|
65
egs/librispeech/ASR/transducer_lstm/test_encoder.py
Executable file
65
egs/librispeech/ASR/transducer_lstm/test_encoder.py
Executable file
@ -0,0 +1,65 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./transducer_lstm/test_model.py
|
||||
"""
|
||||
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
from train import get_encoder_model, get_params
|
||||
|
||||
|
||||
def test_encoder_model():
|
||||
params = get_params()
|
||||
params.vocab_size = 500
|
||||
params.blank_id = 0
|
||||
params.context_size = 2
|
||||
encoder = get_encoder_model(params)
|
||||
num_param = sum([p.numel() for p in encoder.parameters()])
|
||||
print(f"Number of encoder model parameters: {num_param}")
|
||||
|
||||
N = 3
|
||||
T = 500
|
||||
C = 80
|
||||
|
||||
x = torch.rand(N, T, C)
|
||||
x_lens = torch.tensor([100, 500, 300])
|
||||
|
||||
y, y_lens = encoder(x, x_lens)
|
||||
print(y.shape)
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
expected_y_lens = ((x_lens - 1) // 2 - 1) // 2
|
||||
|
||||
assert torch.all(torch.eq(y_lens, expected_y_lens)), (
|
||||
y_lens,
|
||||
expected_y_lens,
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
test_encoder_model()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -20,7 +20,7 @@
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./pruned_transducer_stateless4/test_model.py
|
||||
python ./transducer_lstm/test_model.py
|
||||
"""
|
||||
|
||||
from train import get_params, get_transducer_model
|
||||
|
@ -42,7 +42,6 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import warnings
|
||||
@ -339,9 +338,9 @@ def get_params() -> AttributeDict:
|
||||
"feature_dim": 80,
|
||||
"subsampling_factor": 4,
|
||||
"encoder_dim": 512,
|
||||
"encoder_hidden_size": 1024,
|
||||
"num_encoder_layers": 4,
|
||||
"proj_size": 512,
|
||||
"encoder_hidden_size": 2048,
|
||||
"num_encoder_layers": 6,
|
||||
"dropout": 0.1,
|
||||
"vgg_frontend": False,
|
||||
# parameters for decoder
|
||||
"decoder_dim": 512,
|
||||
@ -363,6 +362,7 @@ def get_encoder_model(params: AttributeDict) -> nn.Module:
|
||||
output_dim=params.encoder_dim,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
dropout=params.dropout,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
)
|
||||
return encoder
|
||||
|
Loading…
x
Reference in New Issue
Block a user