mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Change for asr_datamodule.py (#241)
* change for asr_datamodule.py * fix style check * do a fix
This commit is contained in:
parent
bb7f6ed6b7
commit
d0d806560f
@ -1,4 +1,5 @@
|
|||||||
# Copyright 2021 Piotr Żelasko
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||||
#
|
#
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
#
|
#
|
||||||
@ -16,6 +17,7 @@
|
|||||||
|
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
import inspect
|
||||||
import logging
|
import logging
|
||||||
from functools import lru_cache
|
from functools import lru_cache
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
@ -210,10 +212,20 @@ class AishellAsrDataModule:
|
|||||||
logging.info(
|
logging.info(
|
||||||
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
||||||
)
|
)
|
||||||
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
|
# different.
|
||||||
|
num_frame_masks = 10
|
||||||
|
num_frame_masks_parameter = inspect.signature(
|
||||||
|
SpecAugment.__init__
|
||||||
|
).parameters["num_frame_masks"]
|
||||||
|
if num_frame_masks_parameter.default == 1:
|
||||||
|
num_frame_masks = 2
|
||||||
|
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||||
input_transforms.append(
|
input_transforms.append(
|
||||||
SpecAugment(
|
SpecAugment(
|
||||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
num_frame_masks=2,
|
num_frame_masks=num_frame_masks,
|
||||||
features_mask_size=27,
|
features_mask_size=27,
|
||||||
num_feature_masks=2,
|
num_feature_masks=2,
|
||||||
frames_mask_size=100,
|
frames_mask_size=100,
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
# Copyright 2021 Piotr Żelasko
|
# Copyright 2021 Piotr Żelasko
|
||||||
# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
# 2022 Xiaomi Corp. (authors: Fangjun Kuang
|
||||||
|
# Mingshuang Luo)
|
||||||
#
|
#
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
#
|
#
|
||||||
@ -16,6 +17,7 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
import inspect
|
||||||
import logging
|
import logging
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
@ -180,10 +182,20 @@ class AsrDataModule:
|
|||||||
logging.info(
|
logging.info(
|
||||||
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
||||||
)
|
)
|
||||||
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
|
# different.
|
||||||
|
num_frame_masks = 10
|
||||||
|
num_frame_masks_parameter = inspect.signature(
|
||||||
|
SpecAugment.__init__
|
||||||
|
).parameters["num_frame_masks"]
|
||||||
|
if num_frame_masks_parameter.default == 1:
|
||||||
|
num_frame_masks = 2
|
||||||
|
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||||
input_transforms.append(
|
input_transforms.append(
|
||||||
SpecAugment(
|
SpecAugment(
|
||||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
num_frame_masks=2,
|
num_frame_masks=num_frame_masks,
|
||||||
features_mask_size=27,
|
features_mask_size=27,
|
||||||
num_feature_masks=2,
|
num_feature_masks=2,
|
||||||
frames_mask_size=100,
|
frames_mask_size=100,
|
||||||
|
@ -1,356 +0,0 @@
|
|||||||
# Copyright 2021 Piotr Żelasko
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
from functools import lru_cache
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import List, Union
|
|
||||||
|
|
||||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
|
||||||
from lhotse.dataset import (
|
|
||||||
BucketingSampler,
|
|
||||||
CutConcatenate,
|
|
||||||
CutMix,
|
|
||||||
K2SpeechRecognitionDataset,
|
|
||||||
PrecomputedFeatures,
|
|
||||||
SingleCutSampler,
|
|
||||||
SpecAugment,
|
|
||||||
)
|
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
|
|
||||||
from icefall.dataset.datamodule import DataModule
|
|
||||||
from icefall.utils import str2bool
|
|
||||||
|
|
||||||
|
|
||||||
class LibriSpeechAsrDataModule(DataModule):
|
|
||||||
"""
|
|
||||||
DataModule for k2 ASR experiments.
|
|
||||||
It assumes there is always one train and valid dataloader,
|
|
||||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
|
||||||
and test-other).
|
|
||||||
|
|
||||||
It contains all the common data pipeline modules used in ASR
|
|
||||||
experiments, e.g.:
|
|
||||||
- dynamic batch size,
|
|
||||||
- bucketing samplers,
|
|
||||||
- cut concatenation,
|
|
||||||
- augmentation,
|
|
||||||
- on-the-fly feature extraction
|
|
||||||
|
|
||||||
This class should be derived for specific corpora used in ASR tasks.
|
|
||||||
"""
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
|
||||||
super().add_arguments(parser)
|
|
||||||
group = parser.add_argument_group(
|
|
||||||
title="ASR data related options",
|
|
||||||
description="These options are used for the preparation of "
|
|
||||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
|
||||||
"effective batch sizes, sampling strategies, applied data "
|
|
||||||
"augmentations, etc.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--full-libri",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, use 960h LibriSpeech. "
|
|
||||||
"Otherwise, use 100h subset.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--feature-dir",
|
|
||||||
type=Path,
|
|
||||||
default=Path("data/fbank"),
|
|
||||||
help="Path to directory with train/valid/test cuts.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--max-duration",
|
|
||||||
type=int,
|
|
||||||
default=200.0,
|
|
||||||
help="Maximum pooled recordings duration (seconds) in a "
|
|
||||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--bucketing-sampler",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, the batches will come from buckets of "
|
|
||||||
"similar duration (saves padding frames).",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--num-buckets",
|
|
||||||
type=int,
|
|
||||||
default=30,
|
|
||||||
help="The number of buckets for the BucketingSampler"
|
|
||||||
"(you might want to increase it for larger datasets).",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--concatenate-cuts",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="When enabled, utterances (cuts) will be concatenated "
|
|
||||||
"to minimize the amount of padding.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--duration-factor",
|
|
||||||
type=float,
|
|
||||||
default=1.0,
|
|
||||||
help="Determines the maximum duration of a concatenated cut "
|
|
||||||
"relative to the duration of the longest cut in a batch.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--gap",
|
|
||||||
type=float,
|
|
||||||
default=1.0,
|
|
||||||
help="The amount of padding (in seconds) inserted between "
|
|
||||||
"concatenated cuts. This padding is filled with noise when "
|
|
||||||
"noise augmentation is used.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--on-the-fly-feats",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="When enabled, use on-the-fly cut mixing and feature "
|
|
||||||
"extraction. Will drop existing precomputed feature manifests "
|
|
||||||
"if available.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--shuffle",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled (=default), the examples will be "
|
|
||||||
"shuffled for each epoch.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--return-cuts",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, each batch will have the "
|
|
||||||
"field: batch['supervisions']['cut'] with the cuts that "
|
|
||||||
"were used to construct it.",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--num-workers",
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help="The number of training dataloader workers that "
|
|
||||||
"collect the batches.",
|
|
||||||
)
|
|
||||||
|
|
||||||
def train_dataloaders(self) -> DataLoader:
|
|
||||||
logging.info("About to get train cuts")
|
|
||||||
cuts_train = self.train_cuts()
|
|
||||||
|
|
||||||
logging.info("About to get Musan cuts")
|
|
||||||
cuts_musan = load_manifest(self.args.feature_dir / "cuts_musan.json.gz")
|
|
||||||
|
|
||||||
logging.info("About to create train dataset")
|
|
||||||
transforms = [
|
|
||||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
|
||||||
]
|
|
||||||
if self.args.concatenate_cuts:
|
|
||||||
logging.info(
|
|
||||||
f"Using cut concatenation with duration factor "
|
|
||||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
|
||||||
)
|
|
||||||
# Cut concatenation should be the first transform in the list,
|
|
||||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
|
||||||
# different utterances.
|
|
||||||
transforms = [
|
|
||||||
CutConcatenate(
|
|
||||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
|
||||||
)
|
|
||||||
] + transforms
|
|
||||||
|
|
||||||
input_transforms = [
|
|
||||||
SpecAugment(
|
|
||||||
num_frame_masks=2,
|
|
||||||
features_mask_size=27,
|
|
||||||
num_feature_masks=2,
|
|
||||||
frames_mask_size=100,
|
|
||||||
)
|
|
||||||
]
|
|
||||||
|
|
||||||
train = K2SpeechRecognitionDataset(
|
|
||||||
cut_transforms=transforms,
|
|
||||||
input_transforms=input_transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.args.on_the_fly_feats:
|
|
||||||
# NOTE: the PerturbSpeed transform should be added only if we
|
|
||||||
# remove it from data prep stage.
|
|
||||||
# Add on-the-fly speed perturbation; since originally it would
|
|
||||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
|
||||||
# 3x more epochs.
|
|
||||||
# Speed perturbation probably should come first before
|
|
||||||
# concatenation, but in principle the transforms order doesn't have
|
|
||||||
# to be strict (e.g. could be randomized)
|
|
||||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
|
||||||
# Drop feats to be on the safe side.
|
|
||||||
train = K2SpeechRecognitionDataset(
|
|
||||||
cut_transforms=transforms,
|
|
||||||
input_strategy=OnTheFlyFeatures(
|
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
input_transforms=input_transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.args.bucketing_sampler:
|
|
||||||
logging.info("Using BucketingSampler.")
|
|
||||||
train_sampler = BucketingSampler(
|
|
||||||
cuts_train,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
shuffle=self.args.shuffle,
|
|
||||||
num_buckets=self.args.num_buckets,
|
|
||||||
bucket_method="equal_duration",
|
|
||||||
drop_last=True,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
logging.info("Using SingleCutSampler.")
|
|
||||||
train_sampler = SingleCutSampler(
|
|
||||||
cuts_train,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
shuffle=self.args.shuffle,
|
|
||||||
)
|
|
||||||
logging.info("About to create train dataloader")
|
|
||||||
|
|
||||||
train_dl = DataLoader(
|
|
||||||
train,
|
|
||||||
sampler=train_sampler,
|
|
||||||
batch_size=None,
|
|
||||||
num_workers=self.args.num_workers,
|
|
||||||
persistent_workers=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
return train_dl
|
|
||||||
|
|
||||||
def valid_dataloaders(self) -> DataLoader:
|
|
||||||
logging.info("About to get dev cuts")
|
|
||||||
cuts_valid = self.valid_cuts()
|
|
||||||
|
|
||||||
transforms = []
|
|
||||||
if self.args.concatenate_cuts:
|
|
||||||
transforms = [
|
|
||||||
CutConcatenate(
|
|
||||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
|
||||||
)
|
|
||||||
] + transforms
|
|
||||||
|
|
||||||
logging.info("About to create dev dataset")
|
|
||||||
if self.args.on_the_fly_feats:
|
|
||||||
validate = K2SpeechRecognitionDataset(
|
|
||||||
cut_transforms=transforms,
|
|
||||||
input_strategy=OnTheFlyFeatures(
|
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
validate = K2SpeechRecognitionDataset(
|
|
||||||
cut_transforms=transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
valid_sampler = SingleCutSampler(
|
|
||||||
cuts_valid,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
shuffle=False,
|
|
||||||
)
|
|
||||||
logging.info("About to create dev dataloader")
|
|
||||||
valid_dl = DataLoader(
|
|
||||||
validate,
|
|
||||||
sampler=valid_sampler,
|
|
||||||
batch_size=None,
|
|
||||||
num_workers=2,
|
|
||||||
persistent_workers=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
return valid_dl
|
|
||||||
|
|
||||||
def test_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
|
|
||||||
cuts = self.test_cuts()
|
|
||||||
is_list = isinstance(cuts, list)
|
|
||||||
test_loaders = []
|
|
||||||
if not is_list:
|
|
||||||
cuts = [cuts]
|
|
||||||
|
|
||||||
for cuts_test in cuts:
|
|
||||||
logging.debug("About to create test dataset")
|
|
||||||
test = K2SpeechRecognitionDataset(
|
|
||||||
input_strategy=OnTheFlyFeatures(
|
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
)
|
|
||||||
if self.args.on_the_fly_feats
|
|
||||||
else PrecomputedFeatures(),
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
sampler = SingleCutSampler(
|
|
||||||
cuts_test, max_duration=self.args.max_duration
|
|
||||||
)
|
|
||||||
logging.debug("About to create test dataloader")
|
|
||||||
test_dl = DataLoader(
|
|
||||||
test, batch_size=None, sampler=sampler, num_workers=1
|
|
||||||
)
|
|
||||||
test_loaders.append(test_dl)
|
|
||||||
|
|
||||||
if is_list:
|
|
||||||
return test_loaders
|
|
||||||
else:
|
|
||||||
return test_loaders[0]
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def train_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get train cuts")
|
|
||||||
cuts_train = load_manifest(
|
|
||||||
self.args.feature_dir / "cuts_train-clean-100.json.gz"
|
|
||||||
)
|
|
||||||
if self.args.full_libri:
|
|
||||||
cuts_train = (
|
|
||||||
cuts_train
|
|
||||||
+ load_manifest(
|
|
||||||
self.args.feature_dir / "cuts_train-clean-360.json.gz"
|
|
||||||
)
|
|
||||||
+ load_manifest(
|
|
||||||
self.args.feature_dir / "cuts_train-other-500.json.gz"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
return cuts_train
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def valid_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get dev cuts")
|
|
||||||
cuts_valid = load_manifest(
|
|
||||||
self.args.feature_dir / "cuts_dev-clean.json.gz"
|
|
||||||
) + load_manifest(self.args.feature_dir / "cuts_dev-other.json.gz")
|
|
||||||
return cuts_valid
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def test_cuts(self) -> List[CutSet]:
|
|
||||||
test_sets = ["test-clean", "test-other"]
|
|
||||||
cuts = []
|
|
||||||
for test_set in test_sets:
|
|
||||||
logging.debug("About to get test cuts")
|
|
||||||
cuts.append(
|
|
||||||
load_manifest(
|
|
||||||
self.args.feature_dir / f"cuts_{test_set}.json.gz"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
return cuts
|
|
1
egs/librispeech/ASR/conformer_mmi/asr_datamodule.py
Symbolic link
1
egs/librispeech/ASR/conformer_mmi/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../conformer_ctc/asr_datamodule.py
|
@ -1,4 +1,5 @@
|
|||||||
# Copyright 2021 Piotr Żelasko
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||||
#
|
#
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
#
|
#
|
||||||
@ -16,6 +17,7 @@
|
|||||||
|
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
import inspect
|
||||||
import logging
|
import logging
|
||||||
from functools import lru_cache
|
from functools import lru_cache
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
@ -216,10 +218,20 @@ class LibriSpeechAsrDataModule:
|
|||||||
logging.info(
|
logging.info(
|
||||||
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
||||||
)
|
)
|
||||||
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
|
# different.
|
||||||
|
num_frame_masks = 10
|
||||||
|
num_frame_masks_parameter = inspect.signature(
|
||||||
|
SpecAugment.__init__
|
||||||
|
).parameters["num_frame_masks"]
|
||||||
|
if num_frame_masks_parameter.default == 1:
|
||||||
|
num_frame_masks = 2
|
||||||
|
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||||
input_transforms.append(
|
input_transforms.append(
|
||||||
SpecAugment(
|
SpecAugment(
|
||||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
num_frame_masks=2,
|
num_frame_masks=num_frame_masks,
|
||||||
features_mask_size=27,
|
features_mask_size=27,
|
||||||
num_feature_masks=2,
|
num_feature_masks=2,
|
||||||
frames_mask_size=100,
|
frames_mask_size=100,
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
# Copyright 2021 Piotr Żelasko
|
# Copyright 2021 Piotr Żelasko
|
||||||
# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
# 2022 Xiaomi Corp. (authors: Fangjun Kuang
|
||||||
|
# Mingshuang Luo)
|
||||||
#
|
#
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
#
|
#
|
||||||
@ -16,6 +17,7 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
import inspect
|
||||||
import logging
|
import logging
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
@ -180,10 +182,20 @@ class AsrDataModule:
|
|||||||
logging.info(
|
logging.info(
|
||||||
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
||||||
)
|
)
|
||||||
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
|
# different.
|
||||||
|
num_frame_masks = 10
|
||||||
|
num_frame_masks_parameter = inspect.signature(
|
||||||
|
SpecAugment.__init__
|
||||||
|
).parameters["num_frame_masks"]
|
||||||
|
if num_frame_masks_parameter.default == 1:
|
||||||
|
num_frame_masks = 2
|
||||||
|
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||||
input_transforms.append(
|
input_transforms.append(
|
||||||
SpecAugment(
|
SpecAugment(
|
||||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
num_frame_masks=2,
|
num_frame_masks=num_frame_masks,
|
||||||
features_mask_size=27,
|
features_mask_size=27,
|
||||||
num_feature_masks=2,
|
num_feature_masks=2,
|
||||||
frames_mask_size=100,
|
frames_mask_size=100,
|
||||||
|
@ -1,330 +0,0 @@
|
|||||||
# Copyright 2021 Piotr Żelasko
|
|
||||||
# 2021 Xiaomi Corp. (authors: Mingshuang Luo)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
from functools import lru_cache
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import List, Union
|
|
||||||
|
|
||||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
|
||||||
from lhotse.dataset import (
|
|
||||||
BucketingSampler,
|
|
||||||
CutConcatenate,
|
|
||||||
CutMix,
|
|
||||||
K2SpeechRecognitionDataset,
|
|
||||||
PrecomputedFeatures,
|
|
||||||
SingleCutSampler,
|
|
||||||
SpecAugment,
|
|
||||||
)
|
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
|
|
||||||
from icefall.dataset.datamodule import DataModule
|
|
||||||
from icefall.utils import str2bool
|
|
||||||
|
|
||||||
|
|
||||||
class TimitAsrDataModule(DataModule):
|
|
||||||
"""
|
|
||||||
DataModule for k2 ASR experiments.
|
|
||||||
It assumes there is always one train and valid dataloader,
|
|
||||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
|
||||||
and test-other).
|
|
||||||
|
|
||||||
It contains all the common data pipeline modules used in ASR
|
|
||||||
experiments, e.g.:
|
|
||||||
- dynamic batch size,
|
|
||||||
- bucketing samplers,
|
|
||||||
- cut concatenation,
|
|
||||||
- augmentation,
|
|
||||||
- on-the-fly feature extraction
|
|
||||||
|
|
||||||
This class should be derived for specific corpora used in ASR tasks.
|
|
||||||
"""
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
|
||||||
super().add_arguments(parser)
|
|
||||||
group = parser.add_argument_group(
|
|
||||||
title="ASR data related options",
|
|
||||||
description="These options are used for the preparation of "
|
|
||||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
|
||||||
"effective batch sizes, sampling strategies, applied data "
|
|
||||||
"augmentations, etc.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--feature-dir",
|
|
||||||
type=Path,
|
|
||||||
default=Path("data/fbank"),
|
|
||||||
help="Path to directory with train/valid/test cuts.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--max-duration",
|
|
||||||
type=int,
|
|
||||||
default=200.0,
|
|
||||||
help="Maximum pooled recordings duration (seconds) in a "
|
|
||||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--bucketing-sampler",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, the batches will come from buckets of "
|
|
||||||
"similar duration (saves padding frames).",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--num-buckets",
|
|
||||||
type=int,
|
|
||||||
default=30,
|
|
||||||
help="The number of buckets for the BucketingSampler"
|
|
||||||
"(you might want to increase it for larger datasets).",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--concatenate-cuts",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="When enabled, utterances (cuts) will be concatenated "
|
|
||||||
"to minimize the amount of padding.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--duration-factor",
|
|
||||||
type=float,
|
|
||||||
default=1.0,
|
|
||||||
help="Determines the maximum duration of a concatenated cut "
|
|
||||||
"relative to the duration of the longest cut in a batch.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--gap",
|
|
||||||
type=float,
|
|
||||||
default=1.0,
|
|
||||||
help="The amount of padding (in seconds) inserted between "
|
|
||||||
"concatenated cuts. This padding is filled with noise when "
|
|
||||||
"noise augmentation is used.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--on-the-fly-feats",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="When enabled, use on-the-fly cut mixing and feature "
|
|
||||||
"extraction. Will drop existing precomputed feature manifests "
|
|
||||||
"if available.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--shuffle",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled (=default), the examples will be "
|
|
||||||
"shuffled for each epoch.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--return-cuts",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, each batch will have the "
|
|
||||||
"field: batch['supervisions']['cut'] with the cuts that "
|
|
||||||
"were used to construct it.",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--num-workers",
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help="The number of training dataloader workers that "
|
|
||||||
"collect the batches.",
|
|
||||||
)
|
|
||||||
|
|
||||||
def train_dataloaders(self) -> DataLoader:
|
|
||||||
logging.info("About to get train cuts")
|
|
||||||
cuts_train = self.train_cuts()
|
|
||||||
|
|
||||||
logging.info("About to get Musan cuts")
|
|
||||||
cuts_musan = load_manifest(self.args.feature_dir / "cuts_musan.json.gz")
|
|
||||||
|
|
||||||
logging.info("About to create train dataset")
|
|
||||||
transforms = [CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20))]
|
|
||||||
if self.args.concatenate_cuts:
|
|
||||||
logging.info(
|
|
||||||
f"Using cut concatenation with duration factor "
|
|
||||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
|
||||||
)
|
|
||||||
# Cut concatenation should be the first transform in the list,
|
|
||||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
|
||||||
# different utterances.
|
|
||||||
transforms = [
|
|
||||||
CutConcatenate(
|
|
||||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
|
||||||
)
|
|
||||||
] + transforms
|
|
||||||
|
|
||||||
input_transforms = [
|
|
||||||
SpecAugment(
|
|
||||||
num_frame_masks=2,
|
|
||||||
features_mask_size=27,
|
|
||||||
num_feature_masks=2,
|
|
||||||
frames_mask_size=100,
|
|
||||||
)
|
|
||||||
]
|
|
||||||
|
|
||||||
train = K2SpeechRecognitionDataset(
|
|
||||||
cut_transforms=transforms,
|
|
||||||
input_transforms=input_transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.args.on_the_fly_feats:
|
|
||||||
# NOTE: the PerturbSpeed transform should be added only if we
|
|
||||||
# remove it from data prep stage.
|
|
||||||
# Add on-the-fly speed perturbation; since originally it would
|
|
||||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
|
||||||
# 3x more epochs.
|
|
||||||
# Speed perturbation probably should come first before
|
|
||||||
# concatenation, but in principle the transforms order doesn't have
|
|
||||||
# to be strict (e.g. could be randomized)
|
|
||||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
|
||||||
# Drop feats to be on the safe side.
|
|
||||||
train = K2SpeechRecognitionDataset(
|
|
||||||
cut_transforms=transforms,
|
|
||||||
input_strategy=OnTheFlyFeatures(
|
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
input_transforms=input_transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.args.bucketing_sampler:
|
|
||||||
logging.info("Using BucketingSampler.")
|
|
||||||
train_sampler = BucketingSampler(
|
|
||||||
cuts_train,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
shuffle=self.args.shuffle,
|
|
||||||
num_buckets=self.args.num_buckets,
|
|
||||||
bucket_method="equal_duration",
|
|
||||||
drop_last=True,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
logging.info("Using SingleCutSampler.")
|
|
||||||
train_sampler = SingleCutSampler(
|
|
||||||
cuts_train,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
shuffle=self.args.shuffle,
|
|
||||||
)
|
|
||||||
logging.info("About to create train dataloader")
|
|
||||||
|
|
||||||
train_dl = DataLoader(
|
|
||||||
train,
|
|
||||||
sampler=train_sampler,
|
|
||||||
batch_size=None,
|
|
||||||
num_workers=self.args.num_workers,
|
|
||||||
persistent_workers=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
return train_dl
|
|
||||||
|
|
||||||
def valid_dataloaders(self) -> DataLoader:
|
|
||||||
logging.info("About to get dev cuts")
|
|
||||||
cuts_valid = self.valid_cuts()
|
|
||||||
|
|
||||||
transforms = []
|
|
||||||
if self.args.concatenate_cuts:
|
|
||||||
transforms = [
|
|
||||||
CutConcatenate(
|
|
||||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
|
||||||
)
|
|
||||||
] + transforms
|
|
||||||
|
|
||||||
logging.info("About to create dev dataset")
|
|
||||||
if self.args.on_the_fly_feats:
|
|
||||||
validate = K2SpeechRecognitionDataset(
|
|
||||||
cut_transforms=transforms,
|
|
||||||
input_strategy=OnTheFlyFeatures(
|
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
validate = K2SpeechRecognitionDataset(
|
|
||||||
cut_transforms=transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
valid_sampler = SingleCutSampler(
|
|
||||||
cuts_valid,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
shuffle=False,
|
|
||||||
)
|
|
||||||
logging.info("About to create dev dataloader")
|
|
||||||
valid_dl = DataLoader(
|
|
||||||
validate,
|
|
||||||
sampler=valid_sampler,
|
|
||||||
batch_size=None,
|
|
||||||
num_workers=2,
|
|
||||||
persistent_workers=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
return valid_dl
|
|
||||||
|
|
||||||
def test_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
|
|
||||||
cuts = self.test_cuts()
|
|
||||||
is_list = isinstance(cuts, list)
|
|
||||||
test_loaders = []
|
|
||||||
if not is_list:
|
|
||||||
cuts = [cuts]
|
|
||||||
|
|
||||||
for cuts_test in cuts:
|
|
||||||
logging.debug("About to create test dataset")
|
|
||||||
test = K2SpeechRecognitionDataset(
|
|
||||||
input_strategy=OnTheFlyFeatures(
|
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
)
|
|
||||||
if self.args.on_the_fly_feats
|
|
||||||
else PrecomputedFeatures(),
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
sampler = SingleCutSampler(
|
|
||||||
cuts_test, max_duration=self.args.max_duration
|
|
||||||
)
|
|
||||||
logging.debug("About to create test dataloader")
|
|
||||||
test_dl = DataLoader(
|
|
||||||
test, batch_size=None, sampler=sampler, num_workers=1
|
|
||||||
)
|
|
||||||
test_loaders.append(test_dl)
|
|
||||||
|
|
||||||
if is_list:
|
|
||||||
return test_loaders
|
|
||||||
else:
|
|
||||||
return test_loaders[0]
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def train_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get train cuts")
|
|
||||||
cuts_train = load_manifest(self.args.feature_dir / "cuts_TRAIN.json.gz")
|
|
||||||
|
|
||||||
return cuts_train
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def valid_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get dev cuts")
|
|
||||||
cuts_valid = load_manifest(self.args.feature_dir / "cuts_DEV.json.gz")
|
|
||||||
|
|
||||||
return cuts_valid
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def test_cuts(self) -> CutSet:
|
|
||||||
logging.debug("About to get test cuts")
|
|
||||||
cuts_test = load_manifest(self.args.feature_dir / "cuts_TEST.json.gz")
|
|
||||||
|
|
||||||
return cuts_test
|
|
1
egs/timit/ASR/tdnn_ligru_ctc/asr_datamodule.py
Symbolic link
1
egs/timit/ASR/tdnn_ligru_ctc/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../tdnn_lstm_ctc/asr_datamodule.py
|
@ -1,5 +1,5 @@
|
|||||||
# Copyright 2021 Piotr Żelasko
|
# Copyright 2021 Piotr Żelasko
|
||||||
# 2021 Xiaomi Corp. (authors: Mingshuang Luo)
|
# 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||||
#
|
#
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
#
|
#
|
||||||
@ -17,6 +17,7 @@
|
|||||||
|
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
import inspect
|
||||||
import logging
|
import logging
|
||||||
from functools import lru_cache
|
from functools import lru_cache
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
@ -171,9 +172,19 @@ class TimitAsrDataModule(DataModule):
|
|||||||
)
|
)
|
||||||
] + transforms
|
] + transforms
|
||||||
|
|
||||||
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
|
# different.
|
||||||
|
num_frame_masks = 10
|
||||||
|
num_frame_masks_parameter = inspect.signature(
|
||||||
|
SpecAugment.__init__
|
||||||
|
).parameters["num_frame_masks"]
|
||||||
|
if num_frame_masks_parameter.default == 1:
|
||||||
|
num_frame_masks = 2
|
||||||
|
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||||
input_transforms = [
|
input_transforms = [
|
||||||
SpecAugment(
|
SpecAugment(
|
||||||
num_frame_masks=2,
|
num_frame_masks=num_frame_masks,
|
||||||
features_mask_size=27,
|
features_mask_size=27,
|
||||||
num_feature_masks=2,
|
num_feature_masks=2,
|
||||||
frames_mask_size=100,
|
frames_mask_size=100,
|
||||||
|
Loading…
x
Reference in New Issue
Block a user