From d074cf73c6ba428f3667ffede22a336febb72fb1 Mon Sep 17 00:00:00 2001 From: Daniel Povey Date: Wed, 9 Mar 2022 20:37:20 +0800 Subject: [PATCH] Extensions to diagnostics code --- .../ASR/transducer_stateless/diagnostics.py | 52 +++++++++++++++---- 1 file changed, 43 insertions(+), 9 deletions(-) diff --git a/egs/librispeech/ASR/transducer_stateless/diagnostics.py b/egs/librispeech/ASR/transducer_stateless/diagnostics.py index 088ef14cb..dfbc2dced 100644 --- a/egs/librispeech/ASR/transducer_stateless/diagnostics.py +++ b/egs/librispeech/ASR/transducer_stateless/diagnostics.py @@ -25,7 +25,7 @@ class TensorDiagnosticOptions(object): def stats_types(self): if self.print_pos_ratio: - return ["mean-abs", "pos-ratio"] + return ["mean-abs", "pos-ratio", "value"] else: return ["mean-abs"] @@ -49,17 +49,23 @@ def get_tensor_stats(x: Tensor, dim: int, is an integer saying how many items were counted in each element of stats. """ - if stats_type == "mean-abs" or stats_type == "abs-value": + count = x.numel() // x.shape[dim] + + if stats_type == "eigs": + x = x.transpose(dim, -1) + x = x.reshape(-1, x.shape[-1]) + # shape of returned tensor: (s, s) where s is size of dimension `dim` of original x. + return torch.matmul(x.transpose(0, 1), x), count + elif stats_type == "mean-abs" or stats_type == "abs-value": x = x.abs() elif stats_type == "pos-ratio": x = (x > 0).to(dtype=torch.float) else: assert stats_type == "value" - orig_numel = x.numel() + sum_dims = [ d for d in range(x.ndim) if d != dim ] if len(sum_dims) > 0: x = torch.sum(x, dim=sum_dims) - count = orig_numel // x.numel() x = x.flatten() return x, count @@ -73,18 +79,35 @@ def get_diagnostics_for_dim(dim: int, tensors: List[Tensor], dim: the dimension to analyze, with 0 <= dim < tensors[0].ndim options: options object sizes_same: true if all the tensor sizes are the same on this dimension - stats_type: either "mean-abs" or "pos-ratio", dictates the type of stats + stats_type: either "mean-abs" or "pos-ratio" or "eigs" or "value, + imdictates the type of stats we accumulate, mean-abs is mean absolute value, "pos-ratio" - is proportion of positive to nonnegative values. + is proportion of positive to nonnegative values, "eigs" + is eigenvalues after doing outer product on this dim, sum + over all other dimes. Returns: Diagnostic as a string, either percentiles or the actual values, - see the code. + see the code. Will return the empty string if the diagnostics did + not make sense to print out for this dimension, e.g. dimension + mismatch and stats_type == "eigs" """ # stats_and_counts is a list of pair (Tensor, int) + if tensors[0].shape[dim] > 512 and stats_type == 'eigs': + return '' # won't produce eigs stats if dim too large. stats_and_counts = [ get_tensor_stats(x, dim, stats_type) for x in tensors ] stats = [ x[0] for x in stats_and_counts ] counts = [ x[1] for x in stats_and_counts ] - if sizes_same: + + if stats_type == 'eigs': + try: + stats = torch.stack(stats).sum(dim=0) + except: + return '' + count = sum(counts) + stats = stats / count + stats, _ = torch.symeig(stats) + stats = stats.abs().sqrt() # sqrt so it reflects data magnitude, like stddev- not variance + elif sizes_same: stats = torch.stack(stats).sum(dim=0) count = sum(counts) stats = stats / count @@ -121,12 +144,16 @@ def print_diagnostics_for_dim(name: str, dim: int, tensors: List[Tensor], # normal case. stats_types = options.stats_types() if ndim > 1 else [ "value", "abs-value" ] + stats_types = stats_types + ["eigs"] + for stats_type in stats_types: sizes = [ x.shape[dim] for x in tensors ] sizes_same = all([ x == sizes[0] for x in sizes ]) s = get_diagnostics_for_dim(dim, tensors, options, sizes_same, stats_type) + if s == '': + continue min_size = min(sizes) max_size = max(sizes) @@ -181,10 +208,17 @@ class TensorDiagnostic(object): # ensure there is at least one dim. self.saved_tensors = [ x.unsqueeze(0) for x in self.saved_tensors ] + try: + device = torch.device('cuda') + torch.ones(1, 1, device) + except: + device = torch.device('cpu') + ndim = self.saved_tensors[0].ndim + tensors = [x.to(device) for x in self.saved_tensors] for dim in range(ndim): print_diagnostics_for_dim(self.name, dim, - self.saved_tensors, + tensors, self.opts)