mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-13 12:02:21 +00:00
Working datamodule
This commit is contained in:
parent
80b83a2a36
commit
ccab93e8e2
@ -27,7 +27,7 @@ import k2
|
|||||||
import torch
|
import torch
|
||||||
import torch.multiprocessing as mp
|
import torch.multiprocessing as mp
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from asr_datamodule import LibriSpeechAsrDataModule
|
from asr_datamodule import AsrDataModule
|
||||||
from conformer import Conformer
|
from conformer import Conformer
|
||||||
from lhotse.utils import fix_random_seed
|
from lhotse.utils import fix_random_seed
|
||||||
from torch import Tensor
|
from torch import Tensor
|
||||||
@ -620,17 +620,13 @@ def run(rank, world_size, args):
|
|||||||
if checkpoints:
|
if checkpoints:
|
||||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||||
|
|
||||||
librispeech = LibriSpeechAsrDataModule(args)
|
datamodule = AsrDataModule(args)
|
||||||
|
|
||||||
train_cuts = librispeech.train_clean_100_cuts()
|
train_cuts = datamodule.train_cuts()
|
||||||
if params.full_libri:
|
train_dl = datamodule.train_dataloaders(train_cuts)
|
||||||
train_cuts += librispeech.train_clean_360_cuts()
|
|
||||||
train_cuts += librispeech.train_other_500_cuts()
|
|
||||||
train_dl = librispeech.train_dataloaders(train_cuts)
|
|
||||||
|
|
||||||
valid_cuts = librispeech.dev_clean_cuts()
|
valid_cuts = datamodule.dev_cuts()
|
||||||
valid_cuts += librispeech.dev_other_cuts()
|
valid_dl = datamodule.valid_dataloaders(valid_cuts)
|
||||||
valid_dl = librispeech.valid_dataloaders(valid_cuts)
|
|
||||||
|
|
||||||
scan_pessimistic_batches_for_oom(
|
scan_pessimistic_batches_for_oom(
|
||||||
model=model,
|
model=model,
|
||||||
|
@ -92,7 +92,7 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|||||||
# We assume that you have downloaded the LibriSpeech corpus
|
# We assume that you have downloaded the LibriSpeech corpus
|
||||||
# to $dl_dir/LibriSpeech
|
# to $dl_dir/LibriSpeech
|
||||||
mkdir -p data/manifests/fisher
|
mkdir -p data/manifests/fisher
|
||||||
lhotse prepare fisher-english $dl_dir data/manifests/fisher
|
lhotse prepare fisher-english --absolute-paths 1 $dl_dir data/manifests/fisher
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||||
@ -100,7 +100,7 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|||||||
# We assume that you have downloaded the LibriSpeech corpus
|
# We assume that you have downloaded the LibriSpeech corpus
|
||||||
# to $dl_dir/LibriSpeech
|
# to $dl_dir/LibriSpeech
|
||||||
mkdir -p data/manifests/swbd
|
mkdir -p data/manifests/swbd
|
||||||
lhotse prepare switchboard --omit-silence $dl_dir/LDC97S62 data/manifests/swbd
|
lhotse prepare switchboard --absolute-paths 1 --omit-silence $dl_dir/LDC97S62 data/manifests/swbd
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||||
|
@ -20,14 +20,16 @@ import logging
|
|||||||
from functools import lru_cache
|
from functools import lru_cache
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||||
from lhotse.dataset import (
|
from lhotse.dataset import (
|
||||||
BucketingSampler,
|
BucketingSampler,
|
||||||
CutConcatenate,
|
|
||||||
CutMix,
|
CutMix,
|
||||||
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
|
PerturbSpeed,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
@ -36,7 +38,12 @@ from torch.utils.data import DataLoader
|
|||||||
from icefall.utils import str2bool
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
class LibriSpeechAsrDataModule:
|
class Resample16kHz:
|
||||||
|
def __call__(self, cuts: CutSet) -> CutSet:
|
||||||
|
return cuts.resample(16000).with_recording_path_prefix('download')
|
||||||
|
|
||||||
|
|
||||||
|
class AsrDataModule:
|
||||||
"""
|
"""
|
||||||
DataModule for k2 ASR experiments.
|
DataModule for k2 ASR experiments.
|
||||||
It assumes there is always one train and valid dataloader,
|
It assumes there is always one train and valid dataloader,
|
||||||
@ -66,17 +73,10 @@ class LibriSpeechAsrDataModule:
|
|||||||
"effective batch sizes, sampling strategies, applied data "
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
"augmentations, etc.",
|
"augmentations, etc.",
|
||||||
)
|
)
|
||||||
group.add_argument(
|
|
||||||
"--full-libri",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, use 960h LibriSpeech. "
|
|
||||||
"Otherwise, use 100h subset.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--manifest-dir",
|
"--manifest-dir",
|
||||||
type=Path,
|
type=Path,
|
||||||
default=Path("data/fbank"),
|
default=Path("data/manifests"),
|
||||||
help="Path to directory with train/valid/test cuts.",
|
help="Path to directory with train/valid/test cuts.",
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
@ -86,13 +86,6 @@ class LibriSpeechAsrDataModule:
|
|||||||
help="Maximum pooled recordings duration (seconds) in a "
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
)
|
)
|
||||||
group.add_argument(
|
|
||||||
"--bucketing-sampler",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, the batches will come from buckets of "
|
|
||||||
"similar duration (saves padding frames).",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--num-buckets",
|
"--num-buckets",
|
||||||
type=int,
|
type=int,
|
||||||
@ -100,32 +93,10 @@ class LibriSpeechAsrDataModule:
|
|||||||
help="The number of buckets for the BucketingSampler"
|
help="The number of buckets for the BucketingSampler"
|
||||||
"(you might want to increase it for larger datasets).",
|
"(you might want to increase it for larger datasets).",
|
||||||
)
|
)
|
||||||
group.add_argument(
|
|
||||||
"--concatenate-cuts",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="When enabled, utterances (cuts) will be concatenated "
|
|
||||||
"to minimize the amount of padding.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--duration-factor",
|
|
||||||
type=float,
|
|
||||||
default=1.0,
|
|
||||||
help="Determines the maximum duration of a concatenated cut "
|
|
||||||
"relative to the duration of the longest cut in a batch.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--gap",
|
|
||||||
type=float,
|
|
||||||
default=1.0,
|
|
||||||
help="The amount of padding (in seconds) inserted between "
|
|
||||||
"concatenated cuts. This padding is filled with noise when "
|
|
||||||
"noise augmentation is used.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--on-the-fly-feats",
|
"--on-the-fly-feats",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=True,
|
||||||
help="When enabled, use on-the-fly cut mixing and feature "
|
help="When enabled, use on-the-fly cut mixing and feature "
|
||||||
"extraction. Will drop existing precomputed feature manifests "
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
"if available.",
|
"if available.",
|
||||||
@ -137,30 +108,15 @@ class LibriSpeechAsrDataModule:
|
|||||||
help="When enabled (=default), the examples will be "
|
help="When enabled (=default), the examples will be "
|
||||||
"shuffled for each epoch.",
|
"shuffled for each epoch.",
|
||||||
)
|
)
|
||||||
group.add_argument(
|
|
||||||
"--return-cuts",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, each batch will have the "
|
|
||||||
"field: batch['supervisions']['cut'] with the cuts that "
|
|
||||||
"were used to construct it.",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--num-workers",
|
"--num-workers",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=8,
|
||||||
help="The number of training dataloader workers that "
|
help="The number of training dataloader workers that "
|
||||||
"collect the batches.",
|
"collect the batches.",
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--enable-spec-aug",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, use SpecAugment for training dataset.",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--spec-aug-time-warp-factor",
|
"--spec-aug-time-warp-factor",
|
||||||
type=int,
|
type=int,
|
||||||
@ -171,52 +127,28 @@ class LibriSpeechAsrDataModule:
|
|||||||
"A value less than 1 means to disable time warp.",
|
"A value less than 1 means to disable time warp.",
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--enable-musan",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, select noise from MUSAN and mix it"
|
|
||||||
"with training dataset. ",
|
|
||||||
)
|
|
||||||
|
|
||||||
def train_dataloaders(self, cuts_train: CutSet) -> DataLoader:
|
def train_dataloaders(self, cuts_train: CutSet) -> DataLoader:
|
||||||
logging.info("About to get Musan cuts")
|
logging.info("About to get Musan cuts")
|
||||||
cuts_musan = load_manifest(
|
cuts_musan = load_manifest(
|
||||||
self.args.manifest_dir / "cuts_musan.json.gz"
|
self.args.manifest_dir / "musan_cuts.jsonl.gz"
|
||||||
)
|
)
|
||||||
|
|
||||||
transforms = []
|
input_strategy = PrecomputedFeatures()
|
||||||
if self.args.enable_musan:
|
if self.args.on_the_fly_feats:
|
||||||
logging.info("Enable MUSAN")
|
input_strategy = OnTheFlyFeatures(
|
||||||
transforms.append(
|
Fbank(FbankConfig(num_mel_bins=80, sampling_rate=16000)),
|
||||||
|
)
|
||||||
|
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=input_strategy,
|
||||||
|
cut_transforms=[
|
||||||
|
PerturbSpeed(factors=[0.9, 1.1], p=2 / 3, preserve_id=True),
|
||||||
|
Resample16kHz(),
|
||||||
CutMix(
|
CutMix(
|
||||||
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
||||||
)
|
),
|
||||||
)
|
],
|
||||||
else:
|
input_transforms=[
|
||||||
logging.info("Disable MUSAN")
|
|
||||||
|
|
||||||
if self.args.concatenate_cuts:
|
|
||||||
logging.info(
|
|
||||||
f"Using cut concatenation with duration factor "
|
|
||||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
|
||||||
)
|
|
||||||
# Cut concatenation should be the first transform in the list,
|
|
||||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
|
||||||
# different utterances.
|
|
||||||
transforms = [
|
|
||||||
CutConcatenate(
|
|
||||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
|
||||||
)
|
|
||||||
] + transforms
|
|
||||||
|
|
||||||
input_transforms = []
|
|
||||||
if self.args.enable_spec_aug:
|
|
||||||
logging.info("Enable SpecAugment")
|
|
||||||
logging.info(
|
|
||||||
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
|
||||||
)
|
|
||||||
input_transforms.append(
|
|
||||||
SpecAugment(
|
SpecAugment(
|
||||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
num_frame_masks=2,
|
num_frame_masks=2,
|
||||||
@ -224,56 +156,19 @@ class LibriSpeechAsrDataModule:
|
|||||||
num_feature_masks=2,
|
num_feature_masks=2,
|
||||||
frames_mask_size=100,
|
frames_mask_size=100,
|
||||||
)
|
)
|
||||||
)
|
],
|
||||||
else:
|
return_cuts=True,
|
||||||
logging.info("Disable SpecAugment")
|
|
||||||
|
|
||||||
logging.info("About to create train dataset")
|
|
||||||
train = K2SpeechRecognitionDataset(
|
|
||||||
cut_transforms=transforms,
|
|
||||||
input_transforms=input_transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
if self.args.on_the_fly_feats:
|
train_sampler = DynamicBucketingSampler(
|
||||||
# NOTE: the PerturbSpeed transform should be added only if we
|
cuts_train,
|
||||||
# remove it from data prep stage.
|
max_duration=self.args.max_duration,
|
||||||
# Add on-the-fly speed perturbation; since originally it would
|
shuffle=self.args.shuffle,
|
||||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
num_buckets=self.args.num_buckets,
|
||||||
# 3x more epochs.
|
drop_last=True,
|
||||||
# Speed perturbation probably should come first before
|
)
|
||||||
# concatenation, but in principle the transforms order doesn't have
|
|
||||||
# to be strict (e.g. could be randomized)
|
|
||||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
|
||||||
# Drop feats to be on the safe side.
|
|
||||||
train = K2SpeechRecognitionDataset(
|
|
||||||
cut_transforms=transforms,
|
|
||||||
input_strategy=OnTheFlyFeatures(
|
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
input_transforms=input_transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.args.bucketing_sampler:
|
|
||||||
logging.info("Using BucketingSampler.")
|
|
||||||
train_sampler = BucketingSampler(
|
|
||||||
cuts_train,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
shuffle=self.args.shuffle,
|
|
||||||
num_buckets=self.args.num_buckets,
|
|
||||||
bucket_method="equal_duration",
|
|
||||||
drop_last=True,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
logging.info("Using SingleCutSampler.")
|
|
||||||
train_sampler = SingleCutSampler(
|
|
||||||
cuts_train,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
shuffle=self.args.shuffle,
|
|
||||||
)
|
|
||||||
logging.info("About to create train dataloader")
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
train_dl = DataLoader(
|
train_dl = DataLoader(
|
||||||
train,
|
train,
|
||||||
sampler=train_sampler,
|
sampler=train_sampler,
|
||||||
@ -285,39 +180,34 @@ class LibriSpeechAsrDataModule:
|
|||||||
return train_dl
|
return train_dl
|
||||||
|
|
||||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||||
transforms = []
|
|
||||||
if self.args.concatenate_cuts:
|
|
||||||
transforms = [
|
|
||||||
CutConcatenate(
|
|
||||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
|
||||||
)
|
|
||||||
] + transforms
|
|
||||||
|
|
||||||
logging.info("About to create dev dataset")
|
logging.info("About to create dev dataset")
|
||||||
|
input_strategy = PrecomputedFeatures()
|
||||||
if self.args.on_the_fly_feats:
|
if self.args.on_the_fly_feats:
|
||||||
validate = K2SpeechRecognitionDataset(
|
input_strategy = OnTheFlyFeatures(
|
||||||
cut_transforms=transforms,
|
Fbank(FbankConfig(num_mel_bins=80, sampling_rate=16000)),
|
||||||
input_strategy=OnTheFlyFeatures(
|
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
validate = K2SpeechRecognitionDataset(
|
|
||||||
cut_transforms=transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
return_cuts=True,
|
||||||
|
input_strategy=input_strategy,
|
||||||
|
cut_transforms=[
|
||||||
|
Resample16kHz(),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
valid_sampler = BucketingSampler(
|
valid_sampler = BucketingSampler(
|
||||||
cuts_valid,
|
cuts_valid,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=False,
|
shuffle=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
logging.info("About to create dev dataloader")
|
logging.info("About to create dev dataloader")
|
||||||
valid_dl = DataLoader(
|
valid_dl = DataLoader(
|
||||||
validate,
|
validate,
|
||||||
sampler=valid_sampler,
|
sampler=valid_sampler,
|
||||||
batch_size=None,
|
batch_size=None,
|
||||||
num_workers=2,
|
num_workers=self.args.num_workers,
|
||||||
persistent_workers=False,
|
persistent_workers=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -325,11 +215,19 @@ class LibriSpeechAsrDataModule:
|
|||||||
|
|
||||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
logging.debug("About to create test dataset")
|
logging.debug("About to create test dataset")
|
||||||
|
|
||||||
|
input_strategy = PrecomputedFeatures()
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
input_strategy = OnTheFlyFeatures(
|
||||||
|
Fbank(FbankConfig(num_mel_bins=80, sampling_rate=16000)),
|
||||||
|
)
|
||||||
|
|
||||||
test = K2SpeechRecognitionDataset(
|
test = K2SpeechRecognitionDataset(
|
||||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
return_cuts=True,
|
||||||
if self.args.on_the_fly_feats
|
input_strategy=input_strategy,
|
||||||
else PrecomputedFeatures(),
|
cut_transforms=[
|
||||||
return_cuts=self.args.return_cuts,
|
Resample16kHz(),
|
||||||
|
],
|
||||||
)
|
)
|
||||||
sampler = BucketingSampler(
|
sampler = BucketingSampler(
|
||||||
cuts, max_duration=self.args.max_duration, shuffle=False
|
cuts, max_duration=self.args.max_duration, shuffle=False
|
||||||
@ -344,42 +242,44 @@ class LibriSpeechAsrDataModule:
|
|||||||
return test_dl
|
return test_dl
|
||||||
|
|
||||||
@lru_cache()
|
@lru_cache()
|
||||||
def train_clean_100_cuts(self) -> CutSet:
|
def train_cuts(self) -> CutSet:
|
||||||
logging.info("About to get train-clean-100 cuts")
|
logging.info("About to get train Fisher + SWBD cuts")
|
||||||
return load_manifest(
|
return load_manifest_lazy(
|
||||||
self.args.manifest_dir / "cuts_train-clean-100.json.gz"
|
self.args.manifest_dir
|
||||||
|
/ "train_utterances_fisher-swbd_cuts.jsonl.gz"
|
||||||
)
|
)
|
||||||
|
|
||||||
@lru_cache()
|
@lru_cache()
|
||||||
def train_clean_360_cuts(self) -> CutSet:
|
def dev_cuts(self) -> CutSet:
|
||||||
logging.info("About to get train-clean-360 cuts")
|
logging.info("About to get dev Fisher + SWBD cuts")
|
||||||
return load_manifest(
|
return load_manifest_lazy(
|
||||||
self.args.manifest_dir / "cuts_train-clean-360.json.gz"
|
self.args.manifest_dir / "dev_utterances_fisher-swbd_cuts.jsonl.gz"
|
||||||
)
|
)
|
||||||
|
|
||||||
@lru_cache()
|
@lru_cache()
|
||||||
def train_other_500_cuts(self) -> CutSet:
|
def test_cuts(self) -> CutSet:
|
||||||
logging.info("About to get train-other-500 cuts")
|
|
||||||
return load_manifest(
|
|
||||||
self.args.manifest_dir / "cuts_train-other-500.json.gz"
|
|
||||||
)
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def dev_clean_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get dev-clean cuts")
|
|
||||||
return load_manifest(self.args.manifest_dir / "cuts_dev-clean.json.gz")
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def dev_other_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get dev-other cuts")
|
|
||||||
return load_manifest(self.args.manifest_dir / "cuts_dev-other.json.gz")
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def test_clean_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get test-clean cuts")
|
logging.info("About to get test-clean cuts")
|
||||||
return load_manifest(self.args.manifest_dir / "cuts_test-clean.json.gz")
|
raise NotImplemented
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def test_other_cuts(self) -> CutSet:
|
def test():
|
||||||
logging.info("About to get test-other cuts")
|
parser = argparse.ArgumentParser()
|
||||||
return load_manifest(self.args.manifest_dir / "cuts_test-other.json.gz")
|
AsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
adm = AsrDataModule(args)
|
||||||
|
|
||||||
|
cuts = adm.train_cuts()
|
||||||
|
dl = adm.train_dataloaders(cuts)
|
||||||
|
for i, batch in tqdm(enumerate(dl)):
|
||||||
|
if i == 100:
|
||||||
|
break
|
||||||
|
|
||||||
|
cuts = adm.dev_cuts()
|
||||||
|
dl = adm.valid_dataloaders(cuts)
|
||||||
|
for i, batch in tqdm(enumerate(dl)):
|
||||||
|
if i == 100:
|
||||||
|
break
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user