Implement memory-saving measure in randomized modules

This commit is contained in:
Daniel Povey 2022-12-17 18:21:00 +08:00
parent 86bb0623e9
commit cc739b193a

View File

@ -20,7 +20,7 @@ from itertools import repeat
from typing import Optional, Tuple, Union
from functools import reduce
import logging
from torch.cuda.amp import custom_fwd, custom_bwd
import random
import torch
import torch.nn as nn
@ -230,6 +230,96 @@ def random_cast_to_half(x: Tensor,
return torch.where(is_too_small, random_val, x).to(torch.float16)
class CutoffEstimator:
"""
Estimates cutoffs of an arbitrary numerical quantity such that a specified
proportion of items will be above the cutoff on average.
p is the proportion of items that should be above the cutoff.
"""
def __init__(self, p: float):
self.p = p
# total count of items
self.count = 0
# total count of items that were above the cutoff
self.count_above = 0
# initial cutoff value
self.cutoff = 0
def __call__(self, x: float) -> bool:
"""
Returns true if x is above the cutoff.
"""
ans = (x > self.cutoff)
self.count += 1
if ans:
self.count_above += 1
cur_p = self.count_above / self.count
delta_p = cur_p - self.p
if (delta_p > 0) == ans:
q = abs(delta_p)
self.cutoff = x * q + self.cutoff * (1-q)
return ans
class CachingEvalFunction(torch.autograd.Function):
# @custom_fwd and @custom_bwd related to automatic mixed precision (amp) an ensure
# that the backward path runs with the same autocast context as the forward pass.
@staticmethod
@custom_fwd
def forward(ctx, x: Tensor, m) -> Tensor:
"""
m might be an nn.Module
"""
ctx.x_requires_grad = x.requires_grad
ctx.m = m
# we need any random numbers used in this evaluation and the next evaluation to be identical.
# Caution: this assumes you are not going to use any random numbers from torch (for any purpose
# that matters in the forward pass), e.g. there should be no dropout.
ctx.random_state = random.getstate()
# we are inside torch.no_grad() here, so the following won't create the computation graph.
with torch.no_grad():
y = m(x)
ctx.save_for_backward(x, y)
return y
@staticmethod
@custom_bwd
def backward(ctx, y_grad: Tensor):
x, y = ctx.saved_tensors
x = x.detach()
x.requires_grad = ctx.x_requires_grad
m = ctx.m # e.g. a nn.Module
random_state = random.getstate()
# set the state to what we used in the 1st forward pass.
random.setstate(ctx.random_state)
with torch.enable_grad():
y2 = m(x)
assert torch.allclose(y, y2, atol=1.0e-02)
# this call to backward() should create grads in the module's parameters
y2.backward(gradient=y_grad)
# restore the state from before we entered this function
random.setstate(random_state)
return x.grad, None # x.grad will be None if x.requires_grad is False.
def caching_eval(x: Tensor, m: nn.Module) -> Tensor:
if m.training:
# The purpose of this code is to make all parameters of m reachable in
# the computation graph, so that if we give find_unused_parameters=True
# to PyTorch's autograd code it does not assign them zero gradient.
tot = 0.0
for p in m.parameters():
tot = tot + 0.0 * p.flatten()[0]
x = x + tot # tot will be 0, this does nothing.
return CachingEvalFunction.apply(x, m)
class RandomGradFunction(torch.autograd.Function):
"""
Does nothing in forward pass; in backward pass, gets rid of very small grads using
@ -549,6 +639,9 @@ class ActivationBalancer(torch.nn.Module):
if prob is None:
prob = ScheduledFloat((0.0, 0.4), (8000.0, 0.1), default=0.4)
self.prob = prob
# 10% of the time we will return and do nothing because memory usage
# is too high.
self.mem_cutoff = CutoffEstimator(0.1)
# actually self.num_channels is no longer needed except for an assertion.
self.num_channels = num_channels
@ -562,11 +655,9 @@ class ActivationBalancer(torch.nn.Module):
self.scale_gain_factor = scale_gain_factor
def forward(self, x: Tensor) -> Tensor:
if torch.jit.is_scripting() or not x.requires_grad:
if (torch.jit.is_scripting() or not x.requires_grad or
(x.is_cuda and self.mem_cutoff(torch.cuda.memory_allocated()))):
return _no_op(x)
prob = float(self.prob)
@ -720,7 +811,7 @@ class Whiten(nn.Module):
num_groups: int,
whitening_limit: FloatLike,
prob: Union[float, Tuple[float,float]],
grad_scale: float):
grad_scale: FloatLike):
"""
Args:
num_groups: the number of groups to divide the channel dim into before
@ -745,6 +836,12 @@ class Whiten(nn.Module):
assert grad_scale >= 0
self.num_groups = num_groups
self.whitening_limit = whitening_limit
self.grad_scale = grad_scale
# 10% of the time we will return and do nothing because memory usage
# is too high.
self.mem_cutoff = CutoffEstimator(0.1)
if isinstance(prob, float):
assert 0 < prob <= 1
self.prob = prob
@ -753,7 +850,6 @@ class Whiten(nn.Module):
assert 0 < self.min_prob < self.max_prob <= 1
self.prob = self.max_prob
self.name = None # will be set in training loop
self.grad_scale = grad_scale
def forward(self,
x: Tensor) -> Tensor:
@ -773,7 +869,9 @@ class Whiten(nn.Module):
you use the returned value, or the graph will be freed
and nothing will happen in backprop.
"""
if not x.requires_grad or random.random() > self.prob or self.grad_scale == 0:
grad_scale = float(self.grad_scale)
if (not x.requires_grad or random.random() > self.prob or grad_scale == 0
or (x.is_cuda and self.mem_cutoff(torch.cuda.memory_allocated()))):
return _no_op(x)
else:
whitening_limit = float(self.whitening_limit)
@ -789,7 +887,7 @@ class Whiten(nn.Module):
return WhiteningPenaltyFunction.apply(x,
self.num_groups,
whitening_limit,
self.grad_scale,
grad_scale,
self.name)