Reduce feature_mask_dropout_prob from 0.25 to 0.15.

This commit is contained in:
Daniel Povey 2022-10-01 12:24:07 +08:00
parent 1eb603f4ad
commit cc64f2f15c

View File

@ -359,7 +359,7 @@ class ConformerEncoder(nn.Module):
if self.training: if self.training:
# feature mask. # feature mask.
# on 0.25 of the frames, drop out the extra features [force a bottleneck.] # on 0.25 of the frames, drop out the extra features [force a bottleneck.]
feature_mask_dropout_prob = 0.25 feature_mask_dropout_prob = 0.15
feature_unmasked_dim = 256 # hardcode dim for now, 1st 256 are non-masked. feature_unmasked_dim = 256 # hardcode dim for now, 1st 256 are non-masked.
feature_mask = torch.ones_like(src) # S, N, E feature_mask = torch.ones_like(src) # S, N, E